Abstract

Shaping methods that are commonly used in Fourier-domain optical coherence tomography (FD-OCT) can suppress sidelobe artifacts in the axial direction, but they typically broaden the mainlobe of the point spread function (PSF) and reduce the axial resolution. To improve OCT image quality without this tradeoff, we have developed a multi-shaping technique that reduces the axial sidelobe magnitude dramatically and achieves better axial resolution than conventional shaping methods. This technique is robust and compatible in various FD-OCT imaging systems. Testing of multi-shaping in three experimental settings shows that it reduced the axial sidelobe contribution by more than 8 dB and improved the contrast to noise by at least 30% and up to three-fold. Multi-shaping enables accurate image analysis and is potentially useful in many OCT applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-throughput imaging of zebrafish embryos using a linear-CCD-based flow imaging system

Lifeng Liu, Guang Yang, Shoupeng Liu, Linbo Wang, Xibin Yang, Huiming Qu, Xiaofen Liu, Le Cao, Weijun Pan, and Hui Li
Biomed. Opt. Express 8(12) 5651-5662 (2017)

A dual-modal retinal imaging system with adaptive optics

Alexander Meadway, Christopher A. Girkin, and Yuhua Zhang
Opt. Express 21(24) 29792-29807 (2013)

In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy

Jian Gao, Joseph A. Lyon, Daniel P. Szeto, and Jun Chen
Biomed. Opt. Express 3(10) 2623-2635 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [PubMed]
  2. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
    [PubMed]
  3. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
    [PubMed]
  4. B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
    [PubMed]
  5. E. Sattler, R. Kästle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18(6), 061224 (2013).
    [PubMed]
  6. J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
    [PubMed]
  7. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27(6), 406–408 (2002).
    [PubMed]
  8. J. F. de Boer, C. E. Saxer, and J. S. Nelson, “Stable carrier generation and phase-resolved digital data processing in optical coherence tomography,” Appl. Opt. 40(31), 5787–5790 (2001).
    [PubMed]
  9. M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246, 569–578 (2005).
  10. H.-C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4(8), 1236–1254 (2013).
    [PubMed]
  11. Y. Zhang, M. Sato, and N. Tanno, “Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes,” Opt. Lett. 26(4), 205–207 (2001).
    [PubMed]
  12. A. C. Akcay, J. P. Rolland, and J. M. Eichenholz, “Spectral shaping to improve the point spread function in optical coherence tomography,” Opt. Lett. 28(20), 1921–1923 (2003).
    [PubMed]
  13. S. Shan, G. Ji-Hua, G. Jian-Song, and X. Ping, “Enhancement of optical coherence tomography axial resolution by spectral shaping,” Chin. Phys. Lett. 19, 1456–1458 (2002).
  14. D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9(6), 1281–1287 (2004).
    [PubMed]
  15. J. Gong, B. Liu, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Optimal spectral reshaping for resolution improvement in optical coherence tomography,” Opt. Express 14, 5909–5915 (2006).
  16. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
  17. B. Hofer, B. Považay, B. Hermann, S. M. Rey, V. Kajić, A. Tumlinson, K. Powell, G. Matz, and W. Drexler, “Artefact reduction for cell migration visualization using spectral domain optical coherence tomography,” J. Biophotonics 4(5), 355–367 (2011).
    [PubMed]
  18. H. C. Stankwitz, R. J. Dallaire, and J. R. Fienup, “Nonlinear apodization for sidelobe control in SAR imagery,” IEEE Trans. Aerosp. Electron. Syst. 31, 267–279 (1995).
  19. S. He and J. Lu, “Sidelobe reduction of limited diffraction beams with Chebyshev aperture apodization,” J. Acoust. Soc. Am. 107(6), 3556–3559 (2000).
    [PubMed]
  20. C. H. Seo and J. T. Yen, “Sidelobe suppression in ultrasound imaging using dual apodization with cross-correlation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(10), 2198–2210 (2008).
    [PubMed]
  21. X. Xu and R. M. Narayanan, “Enhanced resolution in Sar/ISAR imaging using iterative sidelobe apodization,” IEEE Trans. Image Process. 14(4), 537–547 (2005).
    [PubMed]
  22. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).
  23. J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3, 66–75 (1998).
  24. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
    [PubMed]
  25. Y. Wang, Y. Liang, and K. Xu, “Signal processing for sidelobe suppression in optical coherence tomography images,” J. Opt. Soc. Am. A 27, 415–421 (2010).
  26. S. A. Hojjatoleslami, M. R. N. Avanaki, and A. G. Podoleanu, “Image quality improvement in optical coherence tomography using Lucy-Richardson deconvolution algorithm,” Appl. Opt. 52(23), 5663–5670 (2013).
    [PubMed]
  27. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
    [PubMed]
  28. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [PubMed]
  29. D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
    [PubMed]
  30. Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “Phase variance optical coherence microscopy for label-free imaging of the developing vasculature in zebrafish embryos,” J. Biomed. Opt. 21(12), 126022 (2016).
    [PubMed]
  31. Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “3D in vivo imaging with extended-focus optical coherence microscopy,” J. Biophotonics 9, 1–11 (2017).
    [PubMed]
  32. S. Krishnan, K. Rigby, and M. O’Donnell, “Improved estimation of phase aberration profiles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 701–713 (1997).
  33. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007).
    [PubMed]

2017 (1)

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “3D in vivo imaging with extended-focus optical coherence microscopy,” J. Biophotonics 9, 1–11 (2017).
[PubMed]

2016 (1)

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “Phase variance optical coherence microscopy for label-free imaging of the developing vasculature in zebrafish embryos,” J. Biomed. Opt. 21(12), 126022 (2016).
[PubMed]

2015 (1)

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[PubMed]

2013 (4)

E. Sattler, R. Kästle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18(6), 061224 (2013).
[PubMed]

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[PubMed]

H.-C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4(8), 1236–1254 (2013).
[PubMed]

S. A. Hojjatoleslami, M. R. N. Avanaki, and A. G. Podoleanu, “Image quality improvement in optical coherence tomography using Lucy-Richardson deconvolution algorithm,” Appl. Opt. 52(23), 5663–5670 (2013).
[PubMed]

2012 (1)

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[PubMed]

2011 (1)

B. Hofer, B. Považay, B. Hermann, S. M. Rey, V. Kajić, A. Tumlinson, K. Powell, G. Matz, and W. Drexler, “Artefact reduction for cell migration visualization using spectral domain optical coherence tomography,” J. Biophotonics 4(5), 355–367 (2011).
[PubMed]

2010 (1)

2009 (2)

2008 (2)

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
[PubMed]

C. H. Seo and J. T. Yen, “Sidelobe suppression in ultrasound imaging using dual apodization with cross-correlation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(10), 2198–2210 (2008).
[PubMed]

2007 (2)

2006 (1)

2005 (2)

X. Xu and R. M. Narayanan, “Enhanced resolution in Sar/ISAR imaging using iterative sidelobe apodization,” IEEE Trans. Image Process. 14(4), 537–547 (2005).
[PubMed]

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246, 569–578 (2005).

2004 (3)

2003 (1)

2002 (2)

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27(6), 406–408 (2002).
[PubMed]

S. Shan, G. Ji-Hua, G. Jian-Song, and X. Ping, “Enhancement of optical coherence tomography axial resolution by spectral shaping,” Chin. Phys. Lett. 19, 1456–1458 (2002).

2001 (2)

2000 (1)

S. He and J. Lu, “Sidelobe reduction of limited diffraction beams with Chebyshev aperture apodization,” J. Acoust. Soc. Am. 107(6), 3556–3559 (2000).
[PubMed]

1998 (1)

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3, 66–75 (1998).

1997 (2)

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).

S. Krishnan, K. Rigby, and M. O’Donnell, “Improved estimation of phase aberration profiles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 701–713 (1997).

1995 (1)

H. C. Stankwitz, R. J. Dallaire, and J. R. Fienup, “Nonlinear apodization for sidelobe control in SAR imagery,” IEEE Trans. Aerosp. Electron. Syst. 31, 267–279 (1995).

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Aguirre, A. D.

Akcay, A. C.

Akiba, M.

Avanaki, M. R. N.

Backman, V.

Bajraszewski, T.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246, 569–578 (2005).

Bilenca, A.

Boppart, S. A.

D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9(6), 1281–1287 (2004).
[PubMed]

Bouma, B.

Bouma, B. E.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[PubMed]

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007).
[PubMed]

Brown, W.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[PubMed]

Carney, P. S.

D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9(6), 1281–1287 (2004).
[PubMed]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Chen, T.

Chen, Y.

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “3D in vivo imaging with extended-focus optical coherence microscopy,” J. Biophotonics 9, 1–11 (2017).
[PubMed]

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “Phase variance optical coherence microscopy for label-free imaging of the developing vasculature in zebrafish embryos,” J. Biomed. Opt. 21(12), 126022 (2016).
[PubMed]

Connolly, J. L.

Dallaire, R. J.

H. C. Stankwitz, R. J. Dallaire, and J. R. Fienup, “Nonlinear apodization for sidelobe control in SAR imagery,” IEEE Trans. Aerosp. Electron. Syst. 31, 267–279 (1995).

de Boer, J.

de Boer, J. F.

Desjardins, A. E.

Drexler, W.

B. Hofer, B. Považay, B. Hermann, S. M. Rey, V. Kajić, A. Tumlinson, K. Powell, G. Matz, and W. Drexler, “Artefact reduction for cell migration visualization using spectral domain optical coherence tomography,” J. Biophotonics 4(5), 355–367 (2011).
[PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
[PubMed]

Duker, J.

Eichenholz, J. M.

Fienup, J. R.

H. C. Stankwitz, R. J. Dallaire, and J. R. Fienup, “Nonlinear apodization for sidelobe control in SAR imagery,” IEEE Trans. Aerosp. Electron. Syst. 31, 267–279 (1995).

Fingler, J.

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “3D in vivo imaging with extended-focus optical coherence microscopy,” J. Biophotonics 9, 1–11 (2017).
[PubMed]

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “Phase variance optical coherence microscopy for label-free imaging of the developing vasculature in zebrafish embryos,” J. Biomed. Opt. 21(12), 126022 (2016).
[PubMed]

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Fraser, S. E.

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “3D in vivo imaging with extended-focus optical coherence microscopy,” J. Biophotonics 9, 1–11 (2017).
[PubMed]

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “Phase variance optical coherence microscopy for label-free imaging of the developing vasculature in zebrafish embryos,” J. Biomed. Opt. 21(12), 126022 (2016).
[PubMed]

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[PubMed]

Fujimoto, J.

Fujimoto, J. G.

H.-C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4(8), 1236–1254 (2013).
[PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Fukumura, D.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[PubMed]

Gong, J.

Gorczynska, I.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246, 569–578 (2005).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

He, S.

S. He and J. Lu, “Sidelobe reduction of limited diffraction beams with Chebyshev aperture apodization,” J. Acoust. Soc. Am. 107(6), 3556–3559 (2000).
[PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Hermann, B.

B. Hofer, B. Považay, B. Hermann, S. M. Rey, V. Kajić, A. Tumlinson, K. Powell, G. Matz, and W. Drexler, “Artefact reduction for cell migration visualization using spectral domain optical coherence tomography,” J. Biophotonics 4(5), 355–367 (2011).
[PubMed]

Hofer, B.

B. Hofer, B. Považay, B. Hermann, S. M. Rey, V. Kajić, A. Tumlinson, K. Powell, G. Matz, and W. Drexler, “Artefact reduction for cell migration visualization using spectral domain optical coherence tomography,” J. Biophotonics 4(5), 355–367 (2011).
[PubMed]

Hojjatoleslami, S. A.

Hong, Y.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Izatt, J. A.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).

Jain, R. K.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[PubMed]

Jian-Song, G.

S. Shan, G. Ji-Hua, G. Jian-Song, and X. Ping, “Enhancement of optical coherence tomography axial resolution by spectral shaping,” Chin. Phys. Lett. 19, 1456–1458 (2002).

Ji-Hua, G.

S. Shan, G. Ji-Hua, G. Jian-Song, and X. Ping, “Enhancement of optical coherence tomography axial resolution by spectral shaping,” Chin. Phys. Lett. 19, 1456–1458 (2002).

Kajic, V.

B. Hofer, B. Považay, B. Hermann, S. M. Rey, V. Kajić, A. Tumlinson, K. Powell, G. Matz, and W. Drexler, “Artefact reduction for cell migration visualization using spectral domain optical coherence tomography,” J. Biophotonics 4(5), 355–367 (2011).
[PubMed]

Kästle, R.

E. Sattler, R. Kästle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18(6), 061224 (2013).
[PubMed]

Kim, D. Y.

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[PubMed]

Kim, J.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[PubMed]

Kim, Y. L.

Ko, T.

Kowalczyk, A.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246, 569–578 (2005).

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[PubMed]

Krishnan, S.

S. Krishnan, K. Rigby, and M. O’Donnell, “Improved estimation of phase aberration profiles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 701–713 (1997).

Kulkarni, M. D.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).

Lee, H.-C.

Levinson, H.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[PubMed]

Li, X.

Liang, Y.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Liu, B.

Liu, J. J.

Liu, Y.

Lu, J.

S. He and J. Lu, “Sidelobe reduction of limited diffraction beams with Chebyshev aperture apodization,” J. Acoust. Soc. Am. 107(6), 3556–3559 (2000).
[PubMed]

Maher, J. R.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[PubMed]

Makita, S.

Marks, D.

D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9(6), 1281–1287 (2004).
[PubMed]

Matz, G.

B. Hofer, B. Považay, B. Hermann, S. M. Rey, V. Kajić, A. Tumlinson, K. Powell, G. Matz, and W. Drexler, “Artefact reduction for cell migration visualization using spectral domain optical coherence tomography,” J. Biophotonics 4(5), 355–367 (2011).
[PubMed]

Miura, M.

Morse, L. S.

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[PubMed]

Mu, G.

Narayanan, R. M.

X. Xu and R. M. Narayanan, “Enhanced resolution in Sar/ISAR imaging using iterative sidelobe apodization,” IEEE Trans. Image Process. 14(4), 537–547 (2005).
[PubMed]

Nassif, N.

Nelson, J. S.

O’Donnell, M.

S. Krishnan, K. Rigby, and M. O’Donnell, “Improved estimation of phase aberration profiles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 701–713 (1997).

Ozcan, A.

Park, B.

Park, B. H.

Park, S. S.

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[PubMed]

Pierce, M.

Ping, X.

S. Shan, G. Ji-Hua, G. Jian-Song, and X. Ping, “Enhancement of optical coherence tomography axial resolution by spectral shaping,” Chin. Phys. Lett. 19, 1456–1458 (2002).

Podoleanu, A. G.

Považay, B.

B. Hofer, B. Považay, B. Hermann, S. M. Rey, V. Kajić, A. Tumlinson, K. Powell, G. Matz, and W. Drexler, “Artefact reduction for cell migration visualization using spectral domain optical coherence tomography,” J. Biophotonics 4(5), 355–367 (2011).
[PubMed]

Powell, K.

B. Hofer, B. Považay, B. Hermann, S. M. Rey, V. Kajić, A. Tumlinson, K. Powell, G. Matz, and W. Drexler, “Artefact reduction for cell migration visualization using spectral domain optical coherence tomography,” J. Biophotonics 4(5), 355–367 (2011).
[PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Radzewicz, C.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246, 569–578 (2005).

Rey, S. M.

B. Hofer, B. Považay, B. Hermann, S. M. Rey, V. Kajić, A. Tumlinson, K. Powell, G. Matz, and W. Drexler, “Artefact reduction for cell migration visualization using spectral domain optical coherence tomography,” J. Biophotonics 4(5), 355–367 (2011).
[PubMed]

Rigby, K.

S. Krishnan, K. Rigby, and M. O’Donnell, “Improved estimation of phase aberration profiles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 701–713 (1997).

Rolland, J. P.

Sato, M.

Sattler, E.

E. Sattler, R. Kästle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18(6), 061224 (2013).
[PubMed]

Saxer, C. E.

Schmitt, J. M.

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3, 66–75 (1998).

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Schwartz, D.

Schwartz, D. M.

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[PubMed]

Seo, C. H.

C. H. Seo and J. T. Yen, “Sidelobe suppression in ultrasound imaging using dual apodization with cross-correlation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(10), 2198–2210 (2008).
[PubMed]

Shan, S.

S. Shan, G. Ji-Hua, G. Jian-Song, and X. Ping, “Enhancement of optical coherence tomography axial resolution by spectral shaping,” Chin. Phys. Lett. 19, 1456–1458 (2002).

Sheikine, Y.

Srinivasan, V.

Stankwitz, H. C.

H. C. Stankwitz, R. J. Dallaire, and J. R. Fienup, “Nonlinear apodization for sidelobe control in SAR imagery,” IEEE Trans. Aerosp. Electron. Syst. 31, 267–279 (1995).

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Szkulmowski, M.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246, 569–578 (2005).

Tanno, N.

Targowski, P.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246, 569–578 (2005).

Tearney, G.

Tearney, G. J.

Thomas, C. W.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).

Trinh, L. A.

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “3D in vivo imaging with extended-focus optical coherence microscopy,” J. Biophotonics 9, 1–11 (2017).
[PubMed]

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “Phase variance optical coherence microscopy for label-free imaging of the developing vasculature in zebrafish embryos,” J. Biomed. Opt. 21(12), 126022 (2016).
[PubMed]

Tripathi, R.

Tumlinson, A.

B. Hofer, B. Považay, B. Hermann, S. M. Rey, V. Kajić, A. Tumlinson, K. Powell, G. Matz, and W. Drexler, “Artefact reduction for cell migration visualization using spectral domain optical coherence tomography,” J. Biophotonics 4(5), 355–367 (2011).
[PubMed]

Vakoc, B. J.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[PubMed]

Wang, Y.

Wasilewski, W.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246, 569–578 (2005).

Wax, A.

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[PubMed]

Welzel, J.

E. Sattler, R. Kästle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18(6), 061224 (2013).
[PubMed]

Werner, J. S.

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[PubMed]

Wojtkowski, M.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246, 569–578 (2005).

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[PubMed]

Xu, K.

Xu, X.

X. Xu and R. M. Narayanan, “Enhanced resolution in Sar/ISAR imaging using iterative sidelobe apodization,” IEEE Trans. Image Process. 14(4), 537–547 (2005).
[PubMed]

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yen, J. T.

C. H. Seo and J. T. Yen, “Sidelobe suppression in ultrasound imaging using dual apodization with cross-correlation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(10), 2198–2210 (2008).
[PubMed]

Yun, S.

Zawadzki, R. J.

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[PubMed]

Zhang, Y.

Zhu, X.

Appl. Opt. (2)

Biomed. Opt. Express (1)

Chin. Phys. Lett. (1)

S. Shan, G. Ji-Hua, G. Jian-Song, and X. Ping, “Enhancement of optical coherence tomography axial resolution by spectral shaping,” Chin. Phys. Lett. 19, 1456–1458 (2002).

Electron. Lett. (1)

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).

IEEE Trans. Aerosp. Electron. Syst. (1)

H. C. Stankwitz, R. J. Dallaire, and J. R. Fienup, “Nonlinear apodization for sidelobe control in SAR imagery,” IEEE Trans. Aerosp. Electron. Syst. 31, 267–279 (1995).

IEEE Trans. Image Process. (1)

X. Xu and R. M. Narayanan, “Enhanced resolution in Sar/ISAR imaging using iterative sidelobe apodization,” IEEE Trans. Image Process. 14(4), 537–547 (2005).
[PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

C. H. Seo and J. T. Yen, “Sidelobe suppression in ultrasound imaging using dual apodization with cross-correlation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(10), 2198–2210 (2008).
[PubMed]

S. Krishnan, K. Rigby, and M. O’Donnell, “Improved estimation of phase aberration profiles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 701–713 (1997).

J. Acoust. Soc. Am. (1)

S. He and J. Lu, “Sidelobe reduction of limited diffraction beams with Chebyshev aperture apodization,” J. Acoust. Soc. Am. 107(6), 3556–3559 (2000).
[PubMed]

J. Biomed. Opt. (4)

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3, 66–75 (1998).

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “Phase variance optical coherence microscopy for label-free imaging of the developing vasculature in zebrafish embryos,” J. Biomed. Opt. 21(12), 126022 (2016).
[PubMed]

D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9(6), 1281–1287 (2004).
[PubMed]

E. Sattler, R. Kästle, and J. Welzel, “Optical coherence tomography in dermatology,” J. Biomed. Opt. 18(6), 061224 (2013).
[PubMed]

J. Biophotonics (2)

B. Hofer, B. Považay, B. Hermann, S. M. Rey, V. Kajić, A. Tumlinson, K. Powell, G. Matz, and W. Drexler, “Artefact reduction for cell migration visualization using spectral domain optical coherence tomography,” J. Biophotonics 4(5), 355–367 (2011).
[PubMed]

Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “3D in vivo imaging with extended-focus optical coherence microscopy,” J. Biophotonics 9, 1–11 (2017).
[PubMed]

J. Opt. Soc. Am. A (3)

Nat. Rev. Cancer (1)

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[PubMed]

Opt. Commun. (1)

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246, 569–578 (2005).

Opt. Express (5)

Opt. Lett. (3)

Phys. Med. Biol. (1)

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[PubMed]

Prog. Retin. Eye Res. (1)

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
[PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Illustration of the multi-shaping technique. (a) Four examples of rectangular shaping functions used in multi-shaping for a 4096-pixel spectrometer. (b) Generation of a B-scan image cluster for each individual raw B-scan (n is the total amount), and an improved B-scan image by processing the intensity value for each corresponding pixel inside a cluster.
Fig. 2
Fig. 2 Numerical simulations of a single-layer mirror reflection. (a) An ideal interference spectrum with a single frequency and even fringe magnitude over all 4096 pixels. (b) Shaped interference spectrum by a Gaussian shaping function. (c) PSFs generated from four rectangular shaping functions in Fig. 1(a) and the combined PSF by selecting the minimum intensity value. (d) PSFs generated from the original spectrum in (a), the Gaussian-shape spectrum in (b), and the multi-shaping technique using 42 rectangular shaping functions.
Fig. 3
Fig. 3 Numerical simulations of two nearby reflections. In this simulation, the peak of the A 2 reflection is located at the first sidelobe position of the A 1 reflection. The A 2 reflection is not well identified if either no shaping (yellow curves) or Gaussian shaping (green curves) is employed. In contrast, the multi-shaping technique (red curves) allows the A 2 reflection to be identified, even when A 2 is much smaller than A 1 .
Fig. 4
Fig. 4 xf-OCM images of a microbead phantom. (a) B-scan image of microbeads with standard Gaussian shaping. (b) B-scan image of microbeads with the multi-shaping technique applied. (c) Axial intensity profiles from the regions of dashed lines to the left side of (a) and (b). Scale bars: 20 μm.
Fig. 5
Fig. 5 OCM images of a 3-dpf zebrafish embryo. (a) B-scan image of the embryo trunk with standard Gaussian shaping. (b) B-scan image of the embryo trunk with multi-shaping applied. (c) Axial intensity profiles from the regions of dashed lines in the center of (a) and (b). Scale bars: 100 μm.
Fig. 6
Fig. 6 OCT images of the human retina. (a) B-scan image of the retina with standard Gaussian shaping. Yellow dashed boxes indicate signal and background regions selected for CNR and statistical analyses. (b) B-scan image of the retina with multi-shaping applied. (c) Axial intensity profiles from the regions of dashed lines to the left of (a) and (b). IPL: inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; ELM: external limiting membrane; IS/OS: junction between the inner and outer photoreceptors; RPE: retinal pigment epithelium; CC: choriocapillaris; C: choroid. Scale bars: 100 μm.
Fig. 7
Fig. 7 OCM image of the zebrafish embryo. (a) B-scan image of the embryo trunk by spectral reshaping using a Wiener filter. (b) Axial intensity profiles from the regions of dashed lines in the center of B-scans processed by standard Gaussian shaping (green curve), multi-shaping (red curve), and shaping with a Wiener filter (cyan curve). Scale bars: 100 μm.
Fig. 8
Fig. 8 OCT images of the human retina. (a) B-scan image of the retina by multi-shaping with a median filter. (b) B-scan image of the retina by multi-shaping with a rank order filter that picked 17th smallest value within a B-scan image cluster. (c) Axial intensity profiles from the regions of dashed lines to the left of B-scans processed by standard Gaussian shaping (green curve), multi-shaping with a minimum filter (red curve), multi-shaping with a median filter (yellow curve), and multi-shaping with a rank order (17th smallest) filter (magenta curve). Scale bars: 100 μm.
Fig. 9
Fig. 9 Histogram analysis of pixel values of sample and background regions (yellow dashed boxes) in Fig. 6. From top to bottom: results processed by standard Gaussian shaping, multi-shaping with a minimum filter, multi-shaping with a median filter, and multi-shaping with a rank order (17th smallest) filter. The region size is 50 × 50 pixels. The averaged intensity (µ) and the standard deviation (σ) of pixel values in these regions are presented.

Tables (1)

Tables Icon

Table 1 Parameters of rectangular shaping functions used in multi-shaping for experimental data

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I( Δz )Re e ikΔz S( k )dk
W( p )={ 1 N L 2 p<N+ L 2 0 otherwise
S( p )=cos( 2πfp )
S( p )= A 1 cos( 2π f 1 p )+ A 2 cos( 2π f 2 p )
CNR= 1 N ( s=1 N μ s μ b σ b )

Metrics