Abstract

Phase-sensitive optical coherence elastography (PhS-OCE) is an emerging optical technique to quantify soft-tissue biomechanical properties. We implemented a common-path OCT design to enhance displacement sensitivity and optical phase stability for dynamic elastography imaging. The background phase stability was greater in common-path PhS-OCE (0.24 ± 0.07nm) than conventional PhS-OCE (1.60 ± 0.11μm). The coefficient of variation for surface displacement measurements using conventional PhS-OCE averaged 11% versus 2% for common-path PhS-OCE. Young’s modulus estimates showed good precision (95% CIs) for tissue phantoms: 24.96 ± 2.18kPa (1% agar), 49.69 ± 4.87kPa (1.5% agar), and 116.08 ± 12.14kPa (2% agar), respectively. Common-path PhS-OCE effectively reduced the amplitude of background dynamic optical phase instability to a sub-nanometer level, which provided a larger dynamic detection range and higher detection sensitivity for surface displacement measurements than conventional PhS-OCE.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography

Shang Wang, Andrew L. Lopez, Yuka Morikawa, Ge Tao, Jiasong Li, Irina V. Larina, James F. Martin, and Kirill V. Larin
Biomed. Opt. Express 5(7) 1980-1992 (2014)

Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure

Brendan F. Kennedy, Robert A. McLaughlin, Kelsey M. Kennedy, Lixin Chin, Andrea Curatolo, Alan Tien, Bruce Latham, Christobel M. Saunders, and David D. Sampson
Biomed. Opt. Express 5(7) 2113-2124 (2014)

Optical micro-scale mapping of dynamic biomechanical tissue properties

Xing Liang, Amy L. Oldenburg, Vasilica Crecea, Eric J. Chaney, and Stephen A. Boppart
Opt. Express 16(15) 11052-11065 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5, 57–78 (2003).
    [PubMed]
  2. A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
    [PubMed]
  3. S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
    [PubMed]
  4. K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics,” Biomed. Opt. Express 8(2), 1172–1202 (2017).
    [PubMed]
  5. J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
    [PubMed]
  6. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
    [PubMed]
  7. C. L. de Korte, A. F. van der Steen, E. I. Céspedes, and G. Pasterkamp, “Intravascular ultrasound elastography in human arteries: initial experience in vitro,” Ultrasound Med. Biol. 24(3), 401–408 (1998).
    [PubMed]
  8. K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
    [PubMed]
  9. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
    [PubMed]
  10. A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
    [PubMed]
  11. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al.., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [PubMed]
  12. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
    [PubMed]
  13. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
    [PubMed]
  14. R. K. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89, 144103 (2006).
  15. R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
    [PubMed]
  16. M. H. De la Torre-Ibarra, P. D. Ruiz, and J. M. Huntley, “Double-shot depth-resolved displacement field measurement using phase-contrast spectral optical coherence tomography,” Opt. Express 14(21), 9643–9656 (2006).
    [PubMed]
  17. M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, “Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography,” Opt. Lett. 26(8), 518–520 (2001).
    [PubMed]
  18. M. D. Twa, J. Li, S. Vantipalli, M. Singh, S. Aglyamov, S. Emelianov, and K. V. Larin, “Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking,” Biomed. Opt. Express 5(5), 1419–1427 (2014).
    [PubMed]
  19. J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
    [PubMed]
  20. S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
    [PubMed]
  21. J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
    [PubMed]
  22. S. Song, W. Wei, B. Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
    [PubMed]
  23. S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
    [PubMed]
  24. M. P. Norton and D. G. Karczub, Fundamentals of Noise and Vibration Analysis for Engineers (Cambridge University Press, 2003).
  25. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
    [PubMed]
  26. B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6(9), 3313–3319 (2015).
    [PubMed]
  27. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
    [PubMed]
  28. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt. 42(34), 6953–6958 (2003).
    [PubMed]
  29. H. Fizeau, Recherches sur les modifications que subit la vitesse de la lumiere dans le verre et plusieurs autres corps solides sous l'influence de la chaleur (Mallet-Bachelier, Imprimeur-Libraire, 1862).
  30. D. J. Gauthier, R. W. Boyd, R. K. Jungquist, J. B. Lisson, and L. L. Voci, “Phase-conjugate Fizeau interferometer,” Opt. Lett. 14(6), 323–325 (1989).
    [PubMed]
  31. X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. Kang, “Miniature fiber-optic force sensor based on low-coherence Fabry-Pérot interferometry for vitreoretinal microsurgery,” Biomed. Opt. Express 3(5), 1062–1076 (2012).
    [PubMed]
  32. U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
    [PubMed]
  33. X. Li, J.-H. Han, X. Liu, and J. U. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47(27), 4833–4840 (2008).
    [PubMed]
  34. J.-U. Kang, J.-H. Han, X. Liu, and K. Zhang, “Common-path optical coherence tomography for biomedical imaging and sensing,” J. Opt. Soc. Korea 14(1), 1–13 (2010).
    [PubMed]
  35. B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
    [PubMed]
  36. Y. Qiu, Y. Wang, Y. Xu, N. Chandra, J. Haorah, B. Hubbi, B. J. Pfister, and X. Liu, “Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties,” Biomed. Opt. Express 7(2), 688–700 (2016).
    [PubMed]
  37. W. Shang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).
  38. S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
    [PubMed]
  39. C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
    [PubMed]
  40. J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).
  41. J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. Twa, and K. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).
  42. D. G. Altman and J. M. Bland, “Measurement in medicine: the analysis of method comparison studies,” Statistician 32, 307–317 (1983).
  43. Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys. Med. Biol. 60(9), 3531–3547 (2015).
    [PubMed]
  44. I. S. Sokolnikoff and R. D. Specht, Mathematical Theory of Elasticity (McGraw-Hill New York, 1956), Vol. 83.
  45. J. F. Doyle, “Wave propagation in structure: spectral analysis using fast discrete Fourier transforms,” Springer-Verlag, New York (1997).
  46. M. Singh, C. Wu, C. H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Opt. Lett. 40(11), 2588–2591 (2015).
    [PubMed]
  47. V. Fathipour, T. Schmoll, A. Bonakdar, S. Wheaton, and H. Mohseni, “Demonstration of Shot-noise-limited Swept Source OCT Without Balanced Detection,” Sci. Rep. 7(1), 1183 (2017).
    [PubMed]
  48. R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105, 1–10 (2009).
  49. R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).
  50. C. H. Liu, A. Schill, R. Raghunathan, C. Wu, M. Singh, Z. Han, A. Nair, and K. V. Larin, “Ultra-fast line-field low coherence holographic elastography using spatial phase shifting,” Biomed. Opt. Express 8(2), 993–1004 (2017).
    [PubMed]
  51. W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
    [PubMed]
  52. R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).
  53. R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105, 102040 (2009).
  54. Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 90504 (2016).
    [PubMed]
  55. M. Singh, J. Li, S. Vantipalli, Z. Han, K. V. Larin, and M. D. Twa, “Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking,” J. Biomed. Opt. 22(9), 91504 (2017).
    [PubMed]
  56. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt. 42(34), 6953–6958 (2003).
    [PubMed]
  57. K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
    [PubMed]
  58. J. U. Kang, J. H. Han, X. Liu, and K. Zhang, “Common-Path Optical Coherence Tomography for Biomedical Imaging and Sensing,” J. Opt. Soc. Korea 14(1), 1–13 (2010).
    [PubMed]
  59. U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
    [PubMed]
  60. C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
    [PubMed]
  61. Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6, 38967 (2016).
    [PubMed]
  62. C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
    [PubMed]
  63. T. M. Nguyen, A. Zorgani, M. Lescanne, C. Boccara, M. Fink, and S. Catheline, “Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography,” J. Biomed. Opt. 21(12), 126013 (2016).
    [PubMed]
  64. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13(11), 3931–3944 (2005).
    [PubMed]
  65. J. A. Izatt, M. A. Choma, and A.-H. Dhalla, “Theory of optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, Berlin, 2015), pp. 65–94.
  66. L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
    [PubMed]
  67. P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
    [PubMed]
  68. G. Lan and G. Li, “Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography,” Sci. Rep. 7, 42353 (2017).
    [PubMed]
  69. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
    [PubMed]

2017 (5)

V. Fathipour, T. Schmoll, A. Bonakdar, S. Wheaton, and H. Mohseni, “Demonstration of Shot-noise-limited Swept Source OCT Without Balanced Detection,” Sci. Rep. 7(1), 1183 (2017).
[PubMed]

M. Singh, J. Li, S. Vantipalli, Z. Han, K. V. Larin, and M. D. Twa, “Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking,” J. Biomed. Opt. 22(9), 91504 (2017).
[PubMed]

G. Lan and G. Li, “Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography,” Sci. Rep. 7, 42353 (2017).
[PubMed]

C. H. Liu, A. Schill, R. Raghunathan, C. Wu, M. Singh, Z. Han, A. Nair, and K. V. Larin, “Ultra-fast line-field low coherence holographic elastography using spatial phase shifting,” Biomed. Opt. Express 8(2), 993–1004 (2017).
[PubMed]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics,” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[PubMed]

2016 (5)

Y. Qiu, Y. Wang, Y. Xu, N. Chandra, J. Haorah, B. Hubbi, B. J. Pfister, and X. Liu, “Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties,” Biomed. Opt. Express 7(2), 688–700 (2016).
[PubMed]

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 90504 (2016).
[PubMed]

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6, 38967 (2016).
[PubMed]

T. M. Nguyen, A. Zorgani, M. Lescanne, C. Boccara, M. Fink, and S. Catheline, “Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography,” J. Biomed. Opt. 21(12), 126013 (2016).
[PubMed]

S. Song, W. Wei, B. Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[PubMed]

2015 (6)

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[PubMed]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys. Med. Biol. 60(9), 3531–3547 (2015).
[PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[PubMed]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[PubMed]

M. Singh, C. Wu, C. H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Opt. Lett. 40(11), 2588–2591 (2015).
[PubMed]

B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6(9), 3313–3319 (2015).
[PubMed]

2014 (6)

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
[PubMed]

M. D. Twa, J. Li, S. Vantipalli, M. Singh, S. Aglyamov, S. Emelianov, and K. V. Larin, “Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking,” Biomed. Opt. Express 5(5), 1419–1427 (2014).
[PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[PubMed]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[PubMed]

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. Twa, and K. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

2013 (7)

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[PubMed]

W. Shang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).

S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[PubMed]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
[PubMed]

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
[PubMed]

2012 (3)

2011 (1)

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[PubMed]

2010 (3)

2009 (3)

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105, 102040 (2009).

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[PubMed]

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105, 1–10 (2009).

2008 (3)

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).

X. Li, J.-H. Han, X. Liu, and J. U. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47(27), 4833–4840 (2008).
[PubMed]

2007 (2)

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[PubMed]

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[PubMed]

2006 (3)

2005 (2)

2004 (1)

2003 (4)

A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt. 42(34), 6953–6958 (2003).
[PubMed]

A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt. 42(34), 6953–6958 (2003).
[PubMed]

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5, 57–78 (2003).
[PubMed]

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
[PubMed]

2001 (2)

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[PubMed]

M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, “Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography,” Opt. Lett. 26(8), 518–520 (2001).
[PubMed]

2000 (1)

1998 (2)

J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
[PubMed]

C. L. de Korte, A. F. van der Steen, E. I. Céspedes, and G. Pasterkamp, “Intravascular ultrasound elastography in human arteries: initial experience in vitro,” Ultrasound Med. Biol. 24(3), 401–408 (1998).
[PubMed]

1995 (1)

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[PubMed]

1991 (2)

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al.., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

1989 (1)

1983 (1)

D. G. Altman and J. M. Bland, “Measurement in medicine: the analysis of method comparison studies,” Statistician 32, 307–317 (1983).

Aglyamov, S.

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[PubMed]

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. Twa, and K. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

M. D. Twa, J. Li, S. Vantipalli, M. Singh, S. Aglyamov, S. Emelianov, and K. V. Larin, “Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking,” Biomed. Opt. Express 5(5), 1419–1427 (2014).
[PubMed]

W. Shang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[PubMed]

Aglyamov, S. R.

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 90504 (2016).
[PubMed]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys. Med. Biol. 60(9), 3531–3547 (2015).
[PubMed]

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[PubMed]

Akca, B. I.

Altman, D. G.

D. G. Altman and J. M. Bland, “Measurement in medicine: the analysis of method comparison studies,” Statistician 32, 307–317 (1983).

Ambrozinski, L.

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6, 38967 (2016).
[PubMed]

Amromin, E.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[PubMed]

An, L.

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[PubMed]

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
[PubMed]

Arnal, B.

S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[PubMed]

Bland, J. M.

D. G. Altman and J. M. Bland, “Measurement in medicine: the analysis of method comparison studies,” Statistician 32, 307–317 (1983).

Boccara, C.

T. M. Nguyen, A. Zorgani, M. Lescanne, C. Boccara, M. Fink, and S. Catheline, “Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography,” J. Biomed. Opt. 21(12), 126013 (2016).
[PubMed]

Bonakdar, A.

V. Fathipour, T. Schmoll, A. Bonakdar, S. Wheaton, and H. Mohseni, “Demonstration of Shot-noise-limited Swept Source OCT Without Balanced Detection,” Sci. Rep. 7(1), 1183 (2017).
[PubMed]

Bouma, B.

Boyd, R. W.

Catheline, S.

T. M. Nguyen, A. Zorgani, M. Lescanne, C. Boccara, M. Fink, and S. Catheline, “Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography,” J. Biomed. Opt. 21(12), 126013 (2016).
[PubMed]

Cense, B.

Céspedes, E. I.

C. L. de Korte, A. F. van der Steen, E. I. Céspedes, and G. Pasterkamp, “Intravascular ultrasound elastography in human arteries: initial experience in vitro,” Ultrasound Med. Biol. 24(3), 401–408 (1998).
[PubMed]

Céspedes, I.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[PubMed]

Chandra, N.

Chang, E. W.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al.., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Chen, Z.

Chin, L.

Curatolo, A.

de Boer, J.

de Boer, J. F.

de Korte, C. L.

C. L. de Korte, A. F. van der Steen, E. I. Céspedes, and G. Pasterkamp, “Intravascular ultrasound elastography in human arteries: initial experience in vitro,” Ultrasound Med. Biol. 24(3), 401–408 (1998).
[PubMed]

De la Torre-Ibarra, M. H.

Dresner, M. A.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[PubMed]

Drexler, W.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[PubMed]

Du, Y.

Duncan, D. D.

Ehman, R. L.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[PubMed]

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[PubMed]

Emelianov, S.

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[PubMed]

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. Twa, and K. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

M. D. Twa, J. Li, S. Vantipalli, M. Singh, S. Aglyamov, S. Emelianov, and K. V. Larin, “Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking,” Biomed. Opt. Express 5(5), 1419–1427 (2014).
[PubMed]

W. Shang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[PubMed]

Fatemi, M.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[PubMed]

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5, 57–78 (2003).
[PubMed]

Fathipour, V.

V. Fathipour, T. Schmoll, A. Bonakdar, S. Wheaton, and H. Mohseni, “Demonstration of Shot-noise-limited Swept Source OCT Without Balanced Detection,” Sci. Rep. 7(1), 1183 (2017).
[PubMed]

Felmlee, J. P.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[PubMed]

Fercher, A. F.

Fink, M.

T. M. Nguyen, A. Zorgani, M. Lescanne, C. Boccara, M. Fink, and S. Catheline, “Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography,” J. Biomed. Opt. 21(12), 126013 (2016).
[PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al.., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Gao, L.

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6, 38967 (2016).
[PubMed]

Garra, B. S.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[PubMed]

Gauthier, D. J.

Greenleaf, J. F.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5, 57–78 (2003).
[PubMed]

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[PubMed]

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al.., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Guan, G.

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[PubMed]

Hall, T. J.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[PubMed]

Han, J.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[PubMed]

Han, J. H.

Han, J.-H.

Han, Z.

M. Singh, J. Li, S. Vantipalli, Z. Han, K. V. Larin, and M. D. Twa, “Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking,” J. Biomed. Opt. 22(9), 91504 (2017).
[PubMed]

C. H. Liu, A. Schill, R. Raghunathan, C. Wu, M. Singh, Z. Han, A. Nair, and K. V. Larin, “Ultra-fast line-field low coherence holographic elastography using spatial phase shifting,” Biomed. Opt. Express 8(2), 993–1004 (2017).
[PubMed]

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 90504 (2016).
[PubMed]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys. Med. Biol. 60(9), 3531–3547 (2015).
[PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[PubMed]

Haorah, J.

He, X.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al.., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Hitzenberger, C. K.

Hsieh, B. Y.

S. Song, W. Wei, B. Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al.., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Huang, S.

Huang, Z.

S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
[PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[PubMed]

Hubbi, B.

Huntley, J. M.

Idugboe, R.

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys. Med. Biol. 60(9), 3531–3547 (2015).
[PubMed]

Insana, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5, 57–78 (2003).
[PubMed]

Iordachita, I. I.

Jiasong, L.

W. Shang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).

Johnstone, M.

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[PubMed]

Jungquist, R. K.

Kamali, T.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[PubMed]

Kane, D. J.

Kang, J. U.

X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. Kang, “Miniature fiber-optic force sensor based on low-coherence Fabry-Pérot interferometry for vitreoretinal microsurgery,” Biomed. Opt. Express 3(5), 1062–1076 (2012).
[PubMed]

J. U. Kang, J. H. Han, X. Liu, and K. Zhang, “Common-Path Optical Coherence Tomography for Biomedical Imaging and Sensing,” J. Opt. Soc. Korea 14(1), 1–13 (2010).
[PubMed]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[PubMed]

X. Li, J.-H. Han, X. Liu, and J. U. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47(27), 4833–4840 (2008).
[PubMed]

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[PubMed]

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[PubMed]

Kang, J.-U.

Kennedy, B. F.

Kennedy, K. M.

Kirk Shung, K.

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[PubMed]

Kirkpatrick, S. J.

R. K. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89, 144103 (2006).

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[PubMed]

Kling, S.

Kruse, S. A.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[PubMed]

Kumar, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[PubMed]

Lan, G.

G. Lan and G. Li, “Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography,” Sci. Rep. 7, 42353 (2017).
[PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[PubMed]

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
[PubMed]

Larin, K.

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. Twa, and K. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

Larin, K. V.

M. Singh, J. Li, S. Vantipalli, Z. Han, K. V. Larin, and M. D. Twa, “Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking,” J. Biomed. Opt. 22(9), 91504 (2017).
[PubMed]

C. H. Liu, A. Schill, R. Raghunathan, C. Wu, M. Singh, Z. Han, A. Nair, and K. V. Larin, “Ultra-fast line-field low coherence holographic elastography using spatial phase shifting,” Biomed. Opt. Express 8(2), 993–1004 (2017).
[PubMed]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics,” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[PubMed]

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 90504 (2016).
[PubMed]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys. Med. Biol. 60(9), 3531–3547 (2015).
[PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[PubMed]

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[PubMed]

M. Singh, C. Wu, C. H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Opt. Lett. 40(11), 2588–2591 (2015).
[PubMed]

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
[PubMed]

M. D. Twa, J. Li, S. Vantipalli, M. Singh, S. Aglyamov, S. Emelianov, and K. V. Larin, “Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking,” Biomed. Opt. Express 5(5), 1419–1427 (2014).
[PubMed]

W. Shang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[PubMed]

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105, 102040 (2009).

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105, 1–10 (2009).

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).

Latham, B.

Leitgeb, R.

Leitgeb, R. A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[PubMed]

Lescanne, M.

T. M. Nguyen, A. Zorgani, M. Lescanne, C. Boccara, M. Fink, and S. Catheline, “Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography,” J. Biomed. Opt. 21(12), 126013 (2016).
[PubMed]

Li, C.

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[PubMed]

Li, D.

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6, 38967 (2016).
[PubMed]

Li, G.

G. Lan and G. Li, “Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography,” Sci. Rep. 7, 42353 (2017).
[PubMed]

Li, J.

M. Singh, J. Li, S. Vantipalli, Z. Han, K. V. Larin, and M. D. Twa, “Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking,” J. Biomed. Opt. 22(9), 91504 (2017).
[PubMed]

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 90504 (2016).
[PubMed]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys. Med. Biol. 60(9), 3531–3547 (2015).
[PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[PubMed]

M. Singh, C. Wu, C. H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Opt. Lett. 40(11), 2588–2591 (2015).
[PubMed]

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. Twa, and K. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

M. D. Twa, J. Li, S. Vantipalli, M. Singh, S. Aglyamov, S. Emelianov, and K. V. Larin, “Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking,” Biomed. Opt. Express 5(5), 1419–1427 (2014).
[PubMed]

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[PubMed]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[PubMed]

Li, P.

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
[PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[PubMed]

Li, R.

Li, X.

X. Li, J.-H. Han, X. Liu, and J. U. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47(27), 4833–4840 (2008).
[PubMed]

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al.., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Lisson, J. B.

Liu, C. H.

C. H. Liu, A. Schill, R. Raghunathan, C. Wu, M. Singh, Z. Han, A. Nair, and K. V. Larin, “Ultra-fast line-field low coherence holographic elastography using spatial phase shifting,” Biomed. Opt. Express 8(2), 993–1004 (2017).
[PubMed]

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 90504 (2016).
[PubMed]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys. Med. Biol. 60(9), 3531–3547 (2015).
[PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[PubMed]

M. Singh, C. Wu, C. H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Opt. Lett. 40(11), 2588–2591 (2015).
[PubMed]

Liu, M.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[PubMed]

Liu, X.

Lomas, D. J.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[PubMed]

Ma, T.

Ma, Z. H.

R. K. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89, 144103 (2006).

Mahowald, J. L.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[PubMed]

Malchow, D.

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
[PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[PubMed]

Manapuram, R. K.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[PubMed]

W. Shang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105, 102040 (2009).

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105, 1–10 (2009).

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).

Manduca, A.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[PubMed]

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[PubMed]

Manne, V. G. R.

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105, 102040 (2009).

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105, 1–10 (2009).

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).

Manns, F.

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[PubMed]

Marcos, S.

McAleavey, S.

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
[PubMed]

McLaughlin, R. A.

Menodiado, F. M.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[PubMed]

Mohseni, H.

V. Fathipour, T. Schmoll, A. Bonakdar, S. Wheaton, and H. Mohseni, “Demonstration of Shot-noise-limited Swept Source OCT Without Balanced Detection,” Sci. Rep. 7(1), 1183 (2017).
[PubMed]

Mujat, M.

Muthupillai, R.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[PubMed]

Nair, A.

Nelson, J. S.

Nguyen, T. M.

T. M. Nguyen, A. Zorgani, M. Lescanne, C. Boccara, M. Fink, and S. Catheline, “Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography,” J. Biomed. Opt. 21(12), 126013 (2016).
[PubMed]

Nguyen, T.-M.

S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[PubMed]

Nightingale, K.

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
[PubMed]

Nuttall, A. L.

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[PubMed]

O’Donnell, M.

S. Song, W. Wei, B. Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[PubMed]

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6, 38967 (2016).
[PubMed]

S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[PubMed]

Oliphant, T. E.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[PubMed]

Ophir, J.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[PubMed]

Park, B.

Pasterkamp, G.

C. L. de Korte, A. F. van der Steen, E. I. Céspedes, and G. Pasterkamp, “Intravascular ultrasound elastography in human arteries: initial experience in vitro,” Ultrasound Med. Biol. 24(3), 401–408 (1998).
[PubMed]

Pelivanov, I.

S. Song, W. Wei, B. Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[PubMed]

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6, 38967 (2016).
[PubMed]

Peterson, K. A.

Pfister, B. J.

Pierce, M. C.

Ponnekanti, H.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al.., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Qi, W.

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[PubMed]

Qiu, Y.

Qu, Y.

Raghunathan, R.

C. H. Liu, A. Schill, R. Raghunathan, C. Wu, M. Singh, Z. Han, A. Nair, and K. V. Larin, “Ultra-fast line-field low coherence holographic elastography using spatial phase shifting,” Biomed. Opt. Express 8(2), 993–1004 (2017).
[PubMed]

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 90504 (2016).
[PubMed]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys. Med. Biol. 60(9), 3531–3547 (2015).
[PubMed]

Ramier, A.

Reif, R.

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[PubMed]

Rossman, P. J.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[PubMed]

Ruiz, P. D.

Sampson, D. D.

Sarvazyan, A.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[PubMed]

Saunders, C. M.

Saxer, C.

Scarcelli, G.

Schill, A.

Schmitt, J.

Schmoll, T.

V. Fathipour, T. Schmoll, A. Bonakdar, S. Wheaton, and H. Mohseni, “Demonstration of Shot-noise-limited Swept Source OCT Without Balanced Detection,” Sci. Rep. 7(1), 1183 (2017).
[PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al.., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Shang, W.

W. Shang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).

Sharma, U.

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[PubMed]

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[PubMed]

Shen, T. T.

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6, 38967 (2016).
[PubMed]

S. Song, W. Wei, B. Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[PubMed]

Shung, K. K.

Singh, M.

C. H. Liu, A. Schill, R. Raghunathan, C. Wu, M. Singh, Z. Han, A. Nair, and K. V. Larin, “Ultra-fast line-field low coherence holographic elastography using spatial phase shifting,” Biomed. Opt. Express 8(2), 993–1004 (2017).
[PubMed]

M. Singh, J. Li, S. Vantipalli, Z. Han, K. V. Larin, and M. D. Twa, “Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking,” J. Biomed. Opt. 22(9), 91504 (2017).
[PubMed]

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 90504 (2016).
[PubMed]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys. Med. Biol. 60(9), 3531–3547 (2015).
[PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[PubMed]

M. Singh, C. Wu, C. H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Opt. Lett. 40(11), 2588–2591 (2015).
[PubMed]

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. Twa, and K. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

M. D. Twa, J. Li, S. Vantipalli, M. Singh, S. Aglyamov, S. Emelianov, and K. V. Larin, “Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking,” Biomed. Opt. Express 5(5), 1419–1427 (2014).
[PubMed]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[PubMed]

Song, S.

S. Song, W. Wei, B. Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[PubMed]

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6, 38967 (2016).
[PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
[PubMed]

S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[PubMed]

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al.., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Sudheendran, N.

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys. Med. Biol. 60(9), 3531–3547 (2015).
[PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al.., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Taylor, R. H.

Tearney, G.

Tien, A.

Trahey, G.

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
[PubMed]

Twa, M.

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. Twa, and K. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

Twa, M. D.

M. Singh, J. Li, S. Vantipalli, Z. Han, K. V. Larin, and M. D. Twa, “Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking,” J. Biomed. Opt. 22(9), 91504 (2017).
[PubMed]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys. Med. Biol. 60(9), 3531–3547 (2015).
[PubMed]

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

M. D. Twa, J. Li, S. Vantipalli, M. Singh, S. Aglyamov, S. Emelianov, and K. V. Larin, “Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking,” Biomed. Opt. Express 5(5), 1419–1427 (2014).
[PubMed]

W. Shang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[PubMed]

Unterhuber, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[PubMed]

Urban, M. W.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[PubMed]

Vakhtin, A. B.

Vakoc, B.

van der Steen, A. F.

C. L. de Korte, A. F. van der Steen, E. I. Céspedes, and G. Pasterkamp, “Intravascular ultrasound elastography in human arteries: initial experience in vitro,” Ultrasound Med. Biol. 24(3), 401–408 (1998).
[PubMed]

Vantipalli, S.

M. Singh, J. Li, S. Vantipalli, Z. Han, K. V. Larin, and M. D. Twa, “Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking,” J. Biomed. Opt. 22(9), 91504 (2017).
[PubMed]

M. D. Twa, J. Li, S. Vantipalli, M. Singh, S. Aglyamov, S. Emelianov, and K. V. Larin, “Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking,” Biomed. Opt. Express 5(5), 1419–1427 (2014).
[PubMed]

W. Shang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).

Voci, L. L.

Wang, R. K.

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6, 38967 (2016).
[PubMed]

S. Song, W. Wei, B. Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
[PubMed]

S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[PubMed]

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
[PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[PubMed]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[PubMed]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[PubMed]

Wang, R. K. K.

R. K. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89, 144103 (2006).

Wang, S.

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[PubMed]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys. Med. Biol. 60(9), 3531–3547 (2015).
[PubMed]

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. Twa, and K. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
[PubMed]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[PubMed]

Wang, W.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[PubMed]

Wang, Y.

Wei, W.

S. Song, W. Wei, B. Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[PubMed]

Wheaton, S.

V. Fathipour, T. Schmoll, A. Bonakdar, S. Wheaton, and H. Mohseni, “Demonstration of Shot-noise-limited Swept Source OCT Without Balanced Detection,” Sci. Rep. 7(1), 1183 (2017).
[PubMed]

Wong, E. Y.

S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[PubMed]

Wood, W. R.

Wu, C.

C. H. Liu, A. Schill, R. Raghunathan, C. Wu, M. Singh, Z. Han, A. Nair, and K. V. Larin, “Ultra-fast line-field low coherence holographic elastography using spatial phase shifting,” Biomed. Opt. Express 8(2), 993–1004 (2017).
[PubMed]

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 90504 (2016).
[PubMed]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys. Med. Biol. 60(9), 3531–3547 (2015).
[PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[PubMed]

M. Singh, C. Wu, C. H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Opt. Lett. 40(11), 2588–2591 (2015).
[PubMed]

Xiang, S.

Xu, Y.

Yazdi, Y.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[PubMed]

Yoon, S. J.

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6, 38967 (2016).
[PubMed]

Yun, S.

Yun, S. H.

Zhang, K.

J. U. Kang, J. H. Han, X. Liu, and K. Zhang, “Common-Path Optical Coherence Tomography for Biomedical Imaging and Sensing,” J. Opt. Soc. Korea 14(1), 1–13 (2010).
[PubMed]

J.-U. Kang, J.-H. Han, X. Liu, and K. Zhang, “Common-path optical coherence tomography for biomedical imaging and sensing,” J. Opt. Soc. Korea 14(1), 1–13 (2010).
[PubMed]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[PubMed]

Zhao, Y.

Zhou, Q.

Zhu, J.

Zorgani, A.

T. M. Nguyen, A. Zorgani, M. Lescanne, C. Boccara, M. Fink, and S. Catheline, “Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography,” J. Biomed. Opt. 21(12), 126013 (2016).
[PubMed]

Annu. Rev. Biomed. Eng. (1)

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5, 57–78 (2003).
[PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[PubMed]

S. Song, W. Wei, B. Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[PubMed]

R. K. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89, 144103 (2006).

Biomed. Opt. Express (8)

M. D. Twa, J. Li, S. Vantipalli, M. Singh, S. Aglyamov, S. Emelianov, and K. V. Larin, “Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking,” Biomed. Opt. Express 5(5), 1419–1427 (2014).
[PubMed]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics,” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[PubMed]

B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6(9), 3313–3319 (2015).
[PubMed]

X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. Kang, “Miniature fiber-optic force sensor based on low-coherence Fabry-Pérot interferometry for vitreoretinal microsurgery,” Biomed. Opt. Express 3(5), 1062–1076 (2012).
[PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[PubMed]

Y. Qiu, Y. Wang, Y. Xu, N. Chandra, J. Haorah, B. Hubbi, B. J. Pfister, and X. Liu, “Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties,” Biomed. Opt. Express 7(2), 688–700 (2016).
[PubMed]

C. H. Liu, A. Schill, R. Raghunathan, C. Wu, M. Singh, Z. Han, A. Nair, and K. V. Larin, “Ultra-fast line-field low coherence holographic elastography using spatial phase shifting,” Biomed. Opt. Express 8(2), 993–1004 (2017).
[PubMed]

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
[PubMed]

Curr. Med. Imaging Rev. (1)

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[PubMed]

IEEE Trans. Biomed. Eng. (1)

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[PubMed]

J. Appl. Phys. (2)

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105, 1–10 (2009).

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys. 105, 102040 (2009).

J. Biomed. Opt. (9)

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 90504 (2016).
[PubMed]

M. Singh, J. Li, S. Vantipalli, Z. Han, K. V. Larin, and M. D. Twa, “Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking,” J. Biomed. Opt. 22(9), 91504 (2017).
[PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[PubMed]

T. M. Nguyen, A. Zorgani, M. Lescanne, C. Boccara, M. Fink, and S. Catheline, “Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography,” J. Biomed. Opt. 21(12), 126013 (2016).
[PubMed]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[PubMed]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
[PubMed]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[PubMed]

S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[PubMed]

J. Biophotonics (1)

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[PubMed]

J. Opt. Soc. Korea (2)

J. R. Soc. Interface (1)

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[PubMed]

Laser Phys. (2)

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).

Laser Phys. Lett. (3)

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. Twa, and K. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo,” Laser Phys. Lett. 11, 065601 (2014).

W. Shang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).

Med. Image Anal. (1)

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[PubMed]

Opt. Express (6)

Opt. Lett. (7)

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[PubMed]

D. J. Gauthier, R. W. Boyd, R. K. Jungquist, J. B. Lisson, and L. L. Voci, “Phase-conjugate Fizeau interferometer,” Opt. Lett. 14(6), 323–325 (1989).
[PubMed]

M. Singh, C. Wu, C. H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Opt. Lett. 40(11), 2588–2591 (2015).
[PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
[PubMed]

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
[PubMed]

M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, “Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography,” Opt. Lett. 26(8), 518–520 (2001).
[PubMed]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[PubMed]

Phys. Med. Biol. (1)

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, S. Wang, R. Idugboe, R. Raghunathan, N. Sudheendran, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study,” Phys. Med. Biol. 60(9), 3531–3547 (2015).
[PubMed]

Rev. Sci. Instrum. (2)

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[PubMed]

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[PubMed]

Sci. Rep. (3)

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6, 38967 (2016).
[PubMed]

G. Lan and G. Li, “Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography,” Sci. Rep. 7, 42353 (2017).
[PubMed]

V. Fathipour, T. Schmoll, A. Bonakdar, S. Wheaton, and H. Mohseni, “Demonstration of Shot-noise-limited Swept Source OCT Without Balanced Detection,” Sci. Rep. 7(1), 1183 (2017).
[PubMed]

Science (2)

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al.., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Statistician (1)

D. G. Altman and J. M. Bland, “Measurement in medicine: the analysis of method comparison studies,” Statistician 32, 307–317 (1983).

Ultrason. Imaging (1)

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[PubMed]

Ultrasound Med. Biol. (2)

C. L. de Korte, A. F. van der Steen, E. I. Céspedes, and G. Pasterkamp, “Intravascular ultrasound elastography in human arteries: initial experience in vitro,” Ultrasound Med. Biol. 24(3), 401–408 (1998).
[PubMed]

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
[PubMed]

Other (5)

M. P. Norton and D. G. Karczub, Fundamentals of Noise and Vibration Analysis for Engineers (Cambridge University Press, 2003).

H. Fizeau, Recherches sur les modifications que subit la vitesse de la lumiere dans le verre et plusieurs autres corps solides sous l'influence de la chaleur (Mallet-Bachelier, Imprimeur-Libraire, 1862).

I. S. Sokolnikoff and R. D. Specht, Mathematical Theory of Elasticity (McGraw-Hill New York, 1956), Vol. 83.

J. F. Doyle, “Wave propagation in structure: spectral analysis using fast discrete Fourier transforms,” Springer-Verlag, New York (1997).

J. A. Izatt, M. A. Choma, and A.-H. Dhalla, “Theory of optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, Berlin, 2015), pp. 65–94.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the custom-built phase-sensitive optical coherence elastography (PhS-OCE) system, comprised of a micro-scale air pulse stimulator to induce tissue mechanical waves and a high-resolution spectral domain optical coherence tomography (SD-OCT) imaging system to detect the resulting tissue deformation. Common-path OCT was constructed based on conventional OCT by blocking the reference arm and inserting a optically flat reference plate between the telecentric scan lens and sample. The reference plane was the sample-side optical surface of the reference plate.
Fig. 2
Fig. 2 Common-path OCE (OCECP) has greater phase stability than conventional OCE (OCECOV). Phase noise was quantified with a mirror for both OCE methods (n = 9 measures). Panel (a) OCECOV and (b) OCECP are the measured phase fluctuations, plotted from top to bottom with offset values between repeated measurements for better visualization. Panel (c) and (d) demonstrate the low-frequency sinusoidal pattern of background noise as the dominant component for both OCECOV and OCECP (note the different y-axes). Panel (e) compares the noise frequency (~21 Hz), which is similar for both OCE methods. Panels (f) and (g) show, a reduction of phase noise amplitude by method: (f) micrometer level in OCECOV; (g) sub-nanometer level in OCECP.
Fig. 3
Fig. 3 Typical M-mode surface displacement dynamics include: a baseline period before sample excitation that represents the noise level, an initial negative primary surface displacement (red) that is driven by the excitation force, a recovery response (green) that relates to sample viscoelasticity, and a period of damped oscillatory motion (blue). This example was acquired from a 2% agar phantom by common-path OCE (applied pressure: 12 Pa).
Fig. 4
Fig. 4 Common-path OCE has greater surface displacement detection sensitivity than conventional OCE. Surface displacements were measured in a 2% agar phantom and compared for both OCE methods (M-mode, n = 5 repeated measures, at 8 different excitation pressures [4 to 32 Pa: color series]). Displacements were measured 0.3 mm from the excitation point. Panel (a) shows raw surface displacement measurements by conventional OCE (OCECOV). Sinusoidal low-frequency background noise was clearly observed. (b) Digital filtering methods (OCECOV + FLT) can reduce this noise. (c) Raw displacement by common-path OCE (OCECP) shows greater phase stability (sub-nanometer level). (d) Primary displacement amplitude variability increases with excitation pressure amplitude (OCECOV > OCECOV + FLT > OCECP). (e) Coefficients of variation (CV) for primary displacement amplitude were lowest for OCECP (mean: 1.89%). (f) Comparison of residual error (mean vs difference) shows good agreement among measurement methods indicating no distinct bias between methods and similar 95% limits of agreement.
Fig. 5
Fig. 5 Stiffness characterization by common-path OCE (OCECP) in 1%, 1.5%, and 2% agar phantoms (n = 5 repeated measures per sample). (a) The primary deformation decreases with increasing agar concentration under the same air-pulse pressure. The measurement point was 0.5 mm away from the stimulation point. (b) The surface wave had faster group velocities with higher agar concentration. (c) Estimation of Young’s modulus, based on wave propagation velocities in (b) and Eq. (2), shows stiffness increases with agar concentration.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δz( t J t 0 )= λ 0 4π × ϕ z ( t J t 0 )
E= 2ρ (1+ν) 3 (0.87+1.12ν) 2 c 2

Metrics