Abstract

This paper reports the experimental assessment of an automated optical assay based on label free optical fiber optrodes for the fast detection of class C β-lactamases (AmpC BLs), actually considered as one of the most important sources of resistance to β-lactams antibiotics expressed by resistant bacteria. Reflection-type long period fiber gratings (RT-LPG) have been used as highly sensitive label free optrodes, while a higher affine boronic acid-based ligand was here selected to enhance the overall assay performances compared to those obtained in our first demonstration. In order to prove the feasibility analysis towards a fully automated optical assay, an engineered system was developed to simultaneously manipulate and interrogate multiple fiber optic optrodes in the different phases of the assay. The automated system tested in AmpC solutions at increasing concentrations demonstrated a limit of detection (LOD) of 6 nM, three times better when compared with the results obtained in our previous work. Moreover, the real effectiveness of the proposed optical assay has been also confirmed in complex matrices as the case of lysates of Escherichia coli overexpressing AmpC.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

26 October 2017: A typographical correction was made to Fig. 6.


OSA Recommended Articles
Label-free Gram-negative bacteria detection using bacteriophage-adhesin-coated long-period gratings

Ewa Brzozowska, Marcin Koba, Mateusz Śmietana, Sabina Górska, Monika Janik, Andrzej Gamian, and Wojtek J. Bock
Biomed. Opt. Express 7(3) 829-840 (2016)

Label-free sensitivity of long-period gratings enhanced by atomic layer deposited TiO2 nano-overlays

Mateusz Smietana, Marcin Koba, Ewa Brzozowska, Krzysztof Krogulski, Jakub Nakonieczny, Lukasz Wachnicki, Predrag Mikulic, Marek Godlewski, and Wojtek J. Bock
Opt. Express 23(7) 8441-8453 (2015)

Whispering gallery mode sensors

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer
Adv. Opt. Photon. 7(2) 168-240 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Farina, F. Spyrakis, A. Venturelli, S. Cross, D. Tondi, and M. P. Costi, “The inhibition of extended spectrum β-lactamases: hits and leads,” Curr. Med. Chem. 21(12), 1405–1434 (2014).
    [Crossref] [PubMed]
  2. H. Nikaido, “Multidrug Resistance in Bacteria,” Annu. Rev. Biochem. 78(1), 119–146 (2009).
    [Crossref] [PubMed]
  3. F. Spyrakis, “Editorial Thematic issue: from extended spectrum β-lactamases to carbapenemase: the never ending challenge against gram-negative bacteria,” Curr. Drug Targets 17(9), 972–973 (2016).
    [Crossref] [PubMed]
  4. A. Venturelli, D. Tondi, L. Cancian, F. Morandi, G. Cannazza, B. Segatore, F. Prati, G. Amicosante, B. K. Shoichet, and M. P. Costi, “Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy,” J. Med. Chem. 50(23), 5644–5654 (2007).
    [Crossref] [PubMed]
  5. D. Tondi, S. Cross, A. Venturelli, M. P. Costi, G. Cruciani, and F. Spyrakis, “Decoding the structural basis for carbapenem hydrolysis by class A β-lactamases: fishing for a pharmacophore,” Curr. Drug Targets 17(9), 983–1005 (2016).
    [Crossref] [PubMed]
  6. C. G. Carvalhaes, R. C. Picao, A. G. Nicoletti, D. E. Xavier, and A. C. Gales, “Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results,” J. Antimicrob. Chemother. 65(2), 249–251 (2010).
    [Crossref] [PubMed]
  7. J. Hrabak, E. Chudackova, and C. C. Papagiannitsis, “Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories,” Clin. Microbiol. Infect. 20(9), 839–853 (2014).
    [Crossref] [PubMed]
  8. K. Lee, Y. Chong, H. B. Shin, Y. A. Kim, D. Yong, and J. H. Yum, “Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of pseudomonas and acinetobacter species,” Clin. Microbiol. Infect. 7(2), 88–91 (2001).
    [Crossref] [PubMed]
  9. P. Nordmann, M. Gniadkowski, C. G. Giske, L. Poirel, N. Woodford, and V. Miriagou, “Identification and screening of carbapenemase-producing Enterobacteriaceae,” Clin. Microbiol. Infect. 18(5), 432–438 (2012).
    [Crossref] [PubMed]
  10. C. Ratkai, S. Quinteira, F. Grosso, N. Monteiro, E. Nagy, and L. Peixe, “Controlling for false positives: interpreting MBL Etest and MBL combined disc test for the detection of metallo-β-lactamases,” J. Antimicrob. Chemother. 64(3), 657–658 (2009).
    [Crossref] [PubMed]
  11. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  12. A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
    [Crossref] [PubMed]
  13. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Dual-peak long-period fiber gratings with enhanced refractive index sensitivity by finely tailored mode dispersion that uses the light cladding etching technique,” Appl. Opt. 46(4), 451–455 (2007).
    [Crossref] [PubMed]
  14. P. Pilla, V. Malachovská, A. Borriello, A. Buosciolo, M. Giordano, L. Ambrosio, A. Cutolo, and A. Cusano, “Transition mode long period grating biosensor with functional multilayer coatings,” Opt. Express 19(2), 512–526 (2011).
    [Crossref] [PubMed]
  15. P. Pilla, A. Sandomenico, V. Malachovská, A. Borriello, M. Giordano, A. Cutolo, M. Ruvo, and A. Cusano, “A protein-based biointerfacing route toward label-free immunoassays with long period gratings in transition mode,” Biosens. Bioelectron. 31(1), 486–491 (2012).
    [Crossref] [PubMed]
  16. G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
    [Crossref] [PubMed]
  17. G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
    [Crossref]
  18. D. Tondi, R. A. Powers, E. Caselli, M. C. Negri, J. Blazquez, M. P. Costi, and B. K. Shoichet, “Structure-Based Design and in-Parallel Synthesis of Inhibitors of AmpC β-Lactamase,” Chem. Biol. 8(6), 593–610 (2001).
    [Crossref] [PubMed]
  19. R. A. Powers, J. Blazquez, G. S. Weston, M. I. Morosini, F. Baquero, and B. K. Shoichet, “The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase,” Protein Sci. 8(11), 2330–2337 (1999).
    [Crossref] [PubMed]
  20. R. A. Powers and B. K. Shoichet, “Structure-based approach for binding site identification on AmpC β-lactamase,” J. Med. Chem. 45(15), 3222–3234 (2002).
    [Crossref] [PubMed]
  21. M. Minozzi, G. Lattanzi, R. Benz, M. P. Costi, A. Venturelli, and P. Carloni, “Permeation through the cell membrane of a boron-based β-lactamase inhibitor,” PLoS One 6(8), e23187 (2011).
    [Crossref] [PubMed]
  22. P. Power, M. Galleni, J. A. Ayala, and G. Gutkind, “Biochemical and molecular characterization of three new variants of AmpC β-lactamases from Morganella morganii,” Antimicrob. Agents Chemother. 50(3), 962–967 (2006).
    [Crossref] [PubMed]
  23. G. S. Weston, J. Blazquez, F. Baquero, and B. K. Shoichet, “Structure-Based Enhancement of Boronic Acid-Based Inhibitors of AmpC β-Lactamase,” J. Med. Chem. 41(23), 4577–4586 (1998).
    [Crossref] [PubMed]
  24. I. Segel, Enzyme kinetics: behaviour and analysis of rapid equilibrium and steady-state enzyme systems, (Wiley Classic Library, 1993).
  25. B. T. Burlingham and T. S. Widlanski, “An intuitive look at the relationship of Ki and IC50: a more general use for the dixon plot,” J. Chem. Educ. 80(2), 214 (2003).
    [Crossref]
  26. W. L. Brooks and B. S. Sumerlin, “Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine,” Chem. Rev. 116(3), 1375–1397 (2016).
    [Crossref] [PubMed]
  27. B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P. Van Veldhuizen, A. Verma, L. M. Weiss, and T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem. 5(6), 653–676 (2013).
    [Crossref] [PubMed]
  28. Y. Chen, B. Shoichet, and R. Bonnet, “Structure, function, and inhibition along the reaction coordinate of CTX-M β-lactamases,” J. Am. Chem. Soc. 127(15), 5423–5434 (2005).
    [Crossref] [PubMed]
  29. P. A. Kiener and S. G. Waley, “Reversible inhibitors of penicillinases,” Biochem. J. 169(1), 197–204 (1978).
    [Crossref] [PubMed]
  30. D. Tondi, A. Venturelli, R. Bonnet, C. Pozzi, B. K. Shoichet, and M. P. Costi, “Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative,” J. Med. Chem. 57(12), 5449–5458 (2014).
    [Crossref] [PubMed]
  31. X. Wang, G. Minasov, J. Blazquez, E. Caselli, F. Prati, and B. K. Shoichet, “Recognition and resistance in TEM β-lactamase,” Biochemistry 42(28), 8434–8444 (2003).
    [Crossref] [PubMed]
  32. T. D. James, M. D. Phillips, and S. Shinkai, Boronic acids in saccharide recognition, Royal Society of Chemistry, (Cambridge, U.K., 2006).
  33. S. H. Lim, C. J. Musto, E. Park, W. Zhong, and K. S. Suslick, “A colorimetric sensor array for detection and identification of sugars,” Org. Lett. 10(20), 4405–4408 (2008).
    [Crossref] [PubMed]
  34. K. C. Usher, L. C. Blaszczak, G. S. Weston, B. K. Shoichet, and S. J. Remington, “Three-dimensional structure of AmpC β-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design,” Biochemistry 37(46), 16082–16092 (1998).
    [Crossref] [PubMed]
  35. S. B. Nimse, K. Song, M. D. Sonawane, D. R. Sayyed, and T. Kim, “Immobilization techniques for microarray: challenges and applications,” Sensors (Basel) 14(12), 22208–22229 (2014).
    [Crossref] [PubMed]
  36. R. J. Davies, P. R. Edwards, H. J. Watts, C. R. Lowe, P. E. Buckle, D. Yeung, T. M. Kinning, and D. V. Polland-Knight, in Techniques in protein Chemistry V, (Academic Press, San Diego, CA, 1994), pp. 285–292.
  37. M. J. Fischer, “Amine coupling through EDC/NHS: a practical approach,” Methods Mol. Biol. 627, 55–73 (2010).
    [Crossref] [PubMed]
  38. F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
    [Crossref] [PubMed]

2016 (5)

F. Spyrakis, “Editorial Thematic issue: from extended spectrum β-lactamases to carbapenemase: the never ending challenge against gram-negative bacteria,” Curr. Drug Targets 17(9), 972–973 (2016).
[Crossref] [PubMed]

D. Tondi, S. Cross, A. Venturelli, M. P. Costi, G. Cruciani, and F. Spyrakis, “Decoding the structural basis for carbapenem hydrolysis by class A β-lactamases: fishing for a pharmacophore,” Curr. Drug Targets 17(9), 983–1005 (2016).
[Crossref] [PubMed]

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
[Crossref]

W. L. Brooks and B. S. Sumerlin, “Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine,” Chem. Rev. 116(3), 1375–1397 (2016).
[Crossref] [PubMed]

2015 (1)

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[Crossref] [PubMed]

2014 (5)

J. Hrabak, E. Chudackova, and C. C. Papagiannitsis, “Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories,” Clin. Microbiol. Infect. 20(9), 839–853 (2014).
[Crossref] [PubMed]

D. Farina, F. Spyrakis, A. Venturelli, S. Cross, D. Tondi, and M. P. Costi, “The inhibition of extended spectrum β-lactamases: hits and leads,” Curr. Med. Chem. 21(12), 1405–1434 (2014).
[Crossref] [PubMed]

D. Tondi, A. Venturelli, R. Bonnet, C. Pozzi, B. K. Shoichet, and M. P. Costi, “Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative,” J. Med. Chem. 57(12), 5449–5458 (2014).
[Crossref] [PubMed]

S. B. Nimse, K. Song, M. D. Sonawane, D. R. Sayyed, and T. Kim, “Immobilization techniques for microarray: challenges and applications,” Sensors (Basel) 14(12), 22208–22229 (2014).
[Crossref] [PubMed]

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

2013 (1)

B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P. Van Veldhuizen, A. Verma, L. M. Weiss, and T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem. 5(6), 653–676 (2013).
[Crossref] [PubMed]

2012 (2)

P. Pilla, A. Sandomenico, V. Malachovská, A. Borriello, M. Giordano, A. Cutolo, M. Ruvo, and A. Cusano, “A protein-based biointerfacing route toward label-free immunoassays with long period gratings in transition mode,” Biosens. Bioelectron. 31(1), 486–491 (2012).
[Crossref] [PubMed]

P. Nordmann, M. Gniadkowski, C. G. Giske, L. Poirel, N. Woodford, and V. Miriagou, “Identification and screening of carbapenemase-producing Enterobacteriaceae,” Clin. Microbiol. Infect. 18(5), 432–438 (2012).
[Crossref] [PubMed]

2011 (2)

P. Pilla, V. Malachovská, A. Borriello, A. Buosciolo, M. Giordano, L. Ambrosio, A. Cutolo, and A. Cusano, “Transition mode long period grating biosensor with functional multilayer coatings,” Opt. Express 19(2), 512–526 (2011).
[Crossref] [PubMed]

M. Minozzi, G. Lattanzi, R. Benz, M. P. Costi, A. Venturelli, and P. Carloni, “Permeation through the cell membrane of a boron-based β-lactamase inhibitor,” PLoS One 6(8), e23187 (2011).
[Crossref] [PubMed]

2010 (2)

M. J. Fischer, “Amine coupling through EDC/NHS: a practical approach,” Methods Mol. Biol. 627, 55–73 (2010).
[Crossref] [PubMed]

C. G. Carvalhaes, R. C. Picao, A. G. Nicoletti, D. E. Xavier, and A. C. Gales, “Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results,” J. Antimicrob. Chemother. 65(2), 249–251 (2010).
[Crossref] [PubMed]

2009 (2)

H. Nikaido, “Multidrug Resistance in Bacteria,” Annu. Rev. Biochem. 78(1), 119–146 (2009).
[Crossref] [PubMed]

C. Ratkai, S. Quinteira, F. Grosso, N. Monteiro, E. Nagy, and L. Peixe, “Controlling for false positives: interpreting MBL Etest and MBL combined disc test for the detection of metallo-β-lactamases,” J. Antimicrob. Chemother. 64(3), 657–658 (2009).
[Crossref] [PubMed]

2008 (2)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

S. H. Lim, C. J. Musto, E. Park, W. Zhong, and K. S. Suslick, “A colorimetric sensor array for detection and identification of sugars,” Org. Lett. 10(20), 4405–4408 (2008).
[Crossref] [PubMed]

2007 (2)

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Dual-peak long-period fiber gratings with enhanced refractive index sensitivity by finely tailored mode dispersion that uses the light cladding etching technique,” Appl. Opt. 46(4), 451–455 (2007).
[Crossref] [PubMed]

A. Venturelli, D. Tondi, L. Cancian, F. Morandi, G. Cannazza, B. Segatore, F. Prati, G. Amicosante, B. K. Shoichet, and M. P. Costi, “Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy,” J. Med. Chem. 50(23), 5644–5654 (2007).
[Crossref] [PubMed]

2006 (1)

P. Power, M. Galleni, J. A. Ayala, and G. Gutkind, “Biochemical and molecular characterization of three new variants of AmpC β-lactamases from Morganella morganii,” Antimicrob. Agents Chemother. 50(3), 962–967 (2006).
[Crossref] [PubMed]

2005 (1)

Y. Chen, B. Shoichet, and R. Bonnet, “Structure, function, and inhibition along the reaction coordinate of CTX-M β-lactamases,” J. Am. Chem. Soc. 127(15), 5423–5434 (2005).
[Crossref] [PubMed]

2003 (2)

X. Wang, G. Minasov, J. Blazquez, E. Caselli, F. Prati, and B. K. Shoichet, “Recognition and resistance in TEM β-lactamase,” Biochemistry 42(28), 8434–8444 (2003).
[Crossref] [PubMed]

B. T. Burlingham and T. S. Widlanski, “An intuitive look at the relationship of Ki and IC50: a more general use for the dixon plot,” J. Chem. Educ. 80(2), 214 (2003).
[Crossref]

2002 (1)

R. A. Powers and B. K. Shoichet, “Structure-based approach for binding site identification on AmpC β-lactamase,” J. Med. Chem. 45(15), 3222–3234 (2002).
[Crossref] [PubMed]

2001 (2)

K. Lee, Y. Chong, H. B. Shin, Y. A. Kim, D. Yong, and J. H. Yum, “Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of pseudomonas and acinetobacter species,” Clin. Microbiol. Infect. 7(2), 88–91 (2001).
[Crossref] [PubMed]

D. Tondi, R. A. Powers, E. Caselli, M. C. Negri, J. Blazquez, M. P. Costi, and B. K. Shoichet, “Structure-Based Design and in-Parallel Synthesis of Inhibitors of AmpC β-Lactamase,” Chem. Biol. 8(6), 593–610 (2001).
[Crossref] [PubMed]

1999 (1)

R. A. Powers, J. Blazquez, G. S. Weston, M. I. Morosini, F. Baquero, and B. K. Shoichet, “The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase,” Protein Sci. 8(11), 2330–2337 (1999).
[Crossref] [PubMed]

1998 (2)

K. C. Usher, L. C. Blaszczak, G. S. Weston, B. K. Shoichet, and S. J. Remington, “Three-dimensional structure of AmpC β-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design,” Biochemistry 37(46), 16082–16092 (1998).
[Crossref] [PubMed]

G. S. Weston, J. Blazquez, F. Baquero, and B. K. Shoichet, “Structure-Based Enhancement of Boronic Acid-Based Inhibitors of AmpC β-Lactamase,” J. Med. Chem. 41(23), 4577–4586 (1998).
[Crossref] [PubMed]

1978 (1)

P. A. Kiener and S. G. Waley, “Reversible inhibitors of penicillinases,” Biochem. J. 169(1), 197–204 (1978).
[Crossref] [PubMed]

Ambrosio, L.

Amicosante, G.

A. Venturelli, D. Tondi, L. Cancian, F. Morandi, G. Cannazza, B. Segatore, F. Prati, G. Amicosante, B. K. Shoichet, and M. P. Costi, “Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy,” J. Med. Chem. 50(23), 5644–5654 (2007).
[Crossref] [PubMed]

Ayala, J. A.

P. Power, M. Galleni, J. A. Ayala, and G. Gutkind, “Biochemical and molecular characterization of three new variants of AmpC β-lactamases from Morganella morganii,” Antimicrob. Agents Chemother. 50(3), 962–967 (2006).
[Crossref] [PubMed]

Baldini, F.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Bandyopadhyay, S.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Banerjee, S. K.

B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P. Van Veldhuizen, A. Verma, L. M. Weiss, and T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem. 5(6), 653–676 (2013).
[Crossref] [PubMed]

Baquero, F.

R. A. Powers, J. Blazquez, G. S. Weston, M. I. Morosini, F. Baquero, and B. K. Shoichet, “The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase,” Protein Sci. 8(11), 2330–2337 (1999).
[Crossref] [PubMed]

G. S. Weston, J. Blazquez, F. Baquero, and B. K. Shoichet, “Structure-Based Enhancement of Boronic Acid-Based Inhibitors of AmpC β-Lactamase,” J. Med. Chem. 41(23), 4577–4586 (1998).
[Crossref] [PubMed]

Basumallick, N.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Bennion, I.

Benz, R.

M. Minozzi, G. Lattanzi, R. Benz, M. P. Costi, A. Venturelli, and P. Carloni, “Permeation through the cell membrane of a boron-based β-lactamase inhibitor,” PLoS One 6(8), e23187 (2011).
[Crossref] [PubMed]

Biswas, P.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Blaszczak, L. C.

K. C. Usher, L. C. Blaszczak, G. S. Weston, B. K. Shoichet, and S. J. Remington, “Three-dimensional structure of AmpC β-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design,” Biochemistry 37(46), 16082–16092 (1998).
[Crossref] [PubMed]

Blazquez, J.

X. Wang, G. Minasov, J. Blazquez, E. Caselli, F. Prati, and B. K. Shoichet, “Recognition and resistance in TEM β-lactamase,” Biochemistry 42(28), 8434–8444 (2003).
[Crossref] [PubMed]

D. Tondi, R. A. Powers, E. Caselli, M. C. Negri, J. Blazquez, M. P. Costi, and B. K. Shoichet, “Structure-Based Design and in-Parallel Synthesis of Inhibitors of AmpC β-Lactamase,” Chem. Biol. 8(6), 593–610 (2001).
[Crossref] [PubMed]

R. A. Powers, J. Blazquez, G. S. Weston, M. I. Morosini, F. Baquero, and B. K. Shoichet, “The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase,” Protein Sci. 8(11), 2330–2337 (1999).
[Crossref] [PubMed]

G. S. Weston, J. Blazquez, F. Baquero, and B. K. Shoichet, “Structure-Based Enhancement of Boronic Acid-Based Inhibitors of AmpC β-Lactamase,” J. Med. Chem. 41(23), 4577–4586 (1998).
[Crossref] [PubMed]

Boniello, A.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

Bonnet, R.

D. Tondi, A. Venturelli, R. Bonnet, C. Pozzi, B. K. Shoichet, and M. P. Costi, “Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative,” J. Med. Chem. 57(12), 5449–5458 (2014).
[Crossref] [PubMed]

Y. Chen, B. Shoichet, and R. Bonnet, “Structure, function, and inhibition along the reaction coordinate of CTX-M β-lactamases,” J. Am. Chem. Soc. 127(15), 5423–5434 (2005).
[Crossref] [PubMed]

Borriello, A.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
[Crossref]

P. Pilla, A. Sandomenico, V. Malachovská, A. Borriello, M. Giordano, A. Cutolo, M. Ruvo, and A. Cusano, “A protein-based biointerfacing route toward label-free immunoassays with long period gratings in transition mode,” Biosens. Bioelectron. 31(1), 486–491 (2012).
[Crossref] [PubMed]

P. Pilla, V. Malachovská, A. Borriello, A. Buosciolo, M. Giordano, L. Ambrosio, A. Cutolo, and A. Cusano, “Transition mode long period grating biosensor with functional multilayer coatings,” Opt. Express 19(2), 512–526 (2011).
[Crossref] [PubMed]

Brooks, W. L.

W. L. Brooks and B. S. Sumerlin, “Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine,” Chem. Rev. 116(3), 1375–1397 (2016).
[Crossref] [PubMed]

Buosciolo, A.

Burlingham, B. T.

B. T. Burlingham and T. S. Widlanski, “An intuitive look at the relationship of Ki and IC50: a more general use for the dixon plot,” J. Chem. Educ. 80(2), 214 (2003).
[Crossref]

Cancian, L.

A. Venturelli, D. Tondi, L. Cancian, F. Morandi, G. Cannazza, B. Segatore, F. Prati, G. Amicosante, B. K. Shoichet, and M. P. Costi, “Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy,” J. Med. Chem. 50(23), 5644–5654 (2007).
[Crossref] [PubMed]

Cannazza, G.

A. Venturelli, D. Tondi, L. Cancian, F. Morandi, G. Cannazza, B. Segatore, F. Prati, G. Amicosante, B. K. Shoichet, and M. P. Costi, “Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy,” J. Med. Chem. 50(23), 5644–5654 (2007).
[Crossref] [PubMed]

Carloni, P.

M. Minozzi, G. Lattanzi, R. Benz, M. P. Costi, A. Venturelli, and P. Carloni, “Permeation through the cell membrane of a boron-based β-lactamase inhibitor,” PLoS One 6(8), e23187 (2011).
[Crossref] [PubMed]

Carvalhaes, C. G.

C. G. Carvalhaes, R. C. Picao, A. G. Nicoletti, D. E. Xavier, and A. C. Gales, “Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results,” J. Antimicrob. Chemother. 65(2), 249–251 (2010).
[Crossref] [PubMed]

Caselli, E.

X. Wang, G. Minasov, J. Blazquez, E. Caselli, F. Prati, and B. K. Shoichet, “Recognition and resistance in TEM β-lactamase,” Biochemistry 42(28), 8434–8444 (2003).
[Crossref] [PubMed]

D. Tondi, R. A. Powers, E. Caselli, M. C. Negri, J. Blazquez, M. P. Costi, and B. K. Shoichet, “Structure-Based Design and in-Parallel Synthesis of Inhibitors of AmpC β-Lactamase,” Chem. Biol. 8(6), 593–610 (2001).
[Crossref] [PubMed]

Chen, X.

Chen, Y.

Y. Chen, B. Shoichet, and R. Bonnet, “Structure, function, and inhibition along the reaction coordinate of CTX-M β-lactamases,” J. Am. Chem. Soc. 127(15), 5423–5434 (2005).
[Crossref] [PubMed]

Chiavaioli, F.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Chong, Y.

K. Lee, Y. Chong, H. B. Shin, Y. A. Kim, D. Yong, and J. H. Yum, “Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of pseudomonas and acinetobacter species,” Clin. Microbiol. Infect. 7(2), 88–91 (2001).
[Crossref] [PubMed]

Chudackova, E.

J. Hrabak, E. Chudackova, and C. C. Papagiannitsis, “Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories,” Clin. Microbiol. Infect. 20(9), 839–853 (2014).
[Crossref] [PubMed]

Colao, A.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

Consales, M.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
[Crossref]

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[Crossref] [PubMed]

Costi, M. P.

D. Tondi, S. Cross, A. Venturelli, M. P. Costi, G. Cruciani, and F. Spyrakis, “Decoding the structural basis for carbapenem hydrolysis by class A β-lactamases: fishing for a pharmacophore,” Curr. Drug Targets 17(9), 983–1005 (2016).
[Crossref] [PubMed]

G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
[Crossref]

D. Farina, F. Spyrakis, A. Venturelli, S. Cross, D. Tondi, and M. P. Costi, “The inhibition of extended spectrum β-lactamases: hits and leads,” Curr. Med. Chem. 21(12), 1405–1434 (2014).
[Crossref] [PubMed]

D. Tondi, A. Venturelli, R. Bonnet, C. Pozzi, B. K. Shoichet, and M. P. Costi, “Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative,” J. Med. Chem. 57(12), 5449–5458 (2014).
[Crossref] [PubMed]

M. Minozzi, G. Lattanzi, R. Benz, M. P. Costi, A. Venturelli, and P. Carloni, “Permeation through the cell membrane of a boron-based β-lactamase inhibitor,” PLoS One 6(8), e23187 (2011).
[Crossref] [PubMed]

A. Venturelli, D. Tondi, L. Cancian, F. Morandi, G. Cannazza, B. Segatore, F. Prati, G. Amicosante, B. K. Shoichet, and M. P. Costi, “Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy,” J. Med. Chem. 50(23), 5644–5654 (2007).
[Crossref] [PubMed]

D. Tondi, R. A. Powers, E. Caselli, M. C. Negri, J. Blazquez, M. P. Costi, and B. K. Shoichet, “Structure-Based Design and in-Parallel Synthesis of Inhibitors of AmpC β-Lactamase,” Chem. Biol. 8(6), 593–610 (2001).
[Crossref] [PubMed]

Crescitelli, A.

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[Crossref] [PubMed]

Cross, S.

D. Tondi, S. Cross, A. Venturelli, M. P. Costi, G. Cruciani, and F. Spyrakis, “Decoding the structural basis for carbapenem hydrolysis by class A β-lactamases: fishing for a pharmacophore,” Curr. Drug Targets 17(9), 983–1005 (2016).
[Crossref] [PubMed]

D. Farina, F. Spyrakis, A. Venturelli, S. Cross, D. Tondi, and M. P. Costi, “The inhibition of extended spectrum β-lactamases: hits and leads,” Curr. Med. Chem. 21(12), 1405–1434 (2014).
[Crossref] [PubMed]

Cruciani, G.

D. Tondi, S. Cross, A. Venturelli, M. P. Costi, G. Cruciani, and F. Spyrakis, “Decoding the structural basis for carbapenem hydrolysis by class A β-lactamases: fishing for a pharmacophore,” Curr. Drug Targets 17(9), 983–1005 (2016).
[Crossref] [PubMed]

Cusano, A.

G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
[Crossref]

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[Crossref] [PubMed]

P. Pilla, A. Sandomenico, V. Malachovská, A. Borriello, M. Giordano, A. Cutolo, M. Ruvo, and A. Cusano, “A protein-based biointerfacing route toward label-free immunoassays with long period gratings in transition mode,” Biosens. Bioelectron. 31(1), 486–491 (2012).
[Crossref] [PubMed]

P. Pilla, V. Malachovská, A. Borriello, A. Buosciolo, M. Giordano, L. Ambrosio, A. Cutolo, and A. Cusano, “Transition mode long period grating biosensor with functional multilayer coatings,” Opt. Express 19(2), 512–526 (2011).
[Crossref] [PubMed]

Cutolo, A.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
[Crossref]

P. Pilla, A. Sandomenico, V. Malachovská, A. Borriello, M. Giordano, A. Cutolo, M. Ruvo, and A. Cusano, “A protein-based biointerfacing route toward label-free immunoassays with long period gratings in transition mode,” Biosens. Bioelectron. 31(1), 486–491 (2012).
[Crossref] [PubMed]

P. Pilla, V. Malachovská, A. Borriello, A. Buosciolo, M. Giordano, L. Ambrosio, A. Cutolo, and A. Cusano, “Transition mode long period grating biosensor with functional multilayer coatings,” Opt. Express 19(2), 512–526 (2011).
[Crossref] [PubMed]

Das, B. C.

B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P. Van Veldhuizen, A. Verma, L. M. Weiss, and T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem. 5(6), 653–676 (2013).
[Crossref] [PubMed]

Das, S.

B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P. Van Veldhuizen, A. Verma, L. M. Weiss, and T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem. 5(6), 653–676 (2013).
[Crossref] [PubMed]

Dasgupta, K.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Diodato, L.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
[Crossref]

Esposito, E.

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[Crossref] [PubMed]

Evans, T.

B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P. Van Veldhuizen, A. Verma, L. M. Weiss, and T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem. 5(6), 653–676 (2013).
[Crossref] [PubMed]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Farina, D.

D. Farina, F. Spyrakis, A. Venturelli, S. Cross, D. Tondi, and M. P. Costi, “The inhibition of extended spectrum β-lactamases: hits and leads,” Curr. Med. Chem. 21(12), 1405–1434 (2014).
[Crossref] [PubMed]

Fischer, M. J.

M. J. Fischer, “Amine coupling through EDC/NHS: a practical approach,” Methods Mol. Biol. 627, 55–73 (2010).
[Crossref] [PubMed]

Gales, A. C.

C. G. Carvalhaes, R. C. Picao, A. G. Nicoletti, D. E. Xavier, and A. C. Gales, “Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results,” J. Antimicrob. Chemother. 65(2), 249–251 (2010).
[Crossref] [PubMed]

Galleni, M.

P. Power, M. Galleni, J. A. Ayala, and G. Gutkind, “Biochemical and molecular characterization of three new variants of AmpC β-lactamases from Morganella morganii,” Antimicrob. Agents Chemother. 50(3), 962–967 (2006).
[Crossref] [PubMed]

Giannetti, A.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Giordano, M.

G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
[Crossref]

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

P. Pilla, A. Sandomenico, V. Malachovská, A. Borriello, M. Giordano, A. Cutolo, M. Ruvo, and A. Cusano, “A protein-based biointerfacing route toward label-free immunoassays with long period gratings in transition mode,” Biosens. Bioelectron. 31(1), 486–491 (2012).
[Crossref] [PubMed]

P. Pilla, V. Malachovská, A. Borriello, A. Buosciolo, M. Giordano, L. Ambrosio, A. Cutolo, and A. Cusano, “Transition mode long period grating biosensor with functional multilayer coatings,” Opt. Express 19(2), 512–526 (2011).
[Crossref] [PubMed]

Giske, C. G.

P. Nordmann, M. Gniadkowski, C. G. Giske, L. Poirel, N. Woodford, and V. Miriagou, “Identification and screening of carbapenemase-producing Enterobacteriaceae,” Clin. Microbiol. Infect. 18(5), 432–438 (2012).
[Crossref] [PubMed]

Gniadkowski, M.

P. Nordmann, M. Gniadkowski, C. G. Giske, L. Poirel, N. Woodford, and V. Miriagou, “Identification and screening of carbapenemase-producing Enterobacteriaceae,” Clin. Microbiol. Infect. 18(5), 432–438 (2012).
[Crossref] [PubMed]

Grosso, F.

C. Ratkai, S. Quinteira, F. Grosso, N. Monteiro, E. Nagy, and L. Peixe, “Controlling for false positives: interpreting MBL Etest and MBL combined disc test for the detection of metallo-β-lactamases,” J. Antimicrob. Chemother. 64(3), 657–658 (2009).
[Crossref] [PubMed]

Gutkind, G.

P. Power, M. Galleni, J. A. Ayala, and G. Gutkind, “Biochemical and molecular characterization of three new variants of AmpC β-lactamases from Morganella morganii,” Antimicrob. Agents Chemother. 50(3), 962–967 (2006).
[Crossref] [PubMed]

Hrabak, J.

J. Hrabak, E. Chudackova, and C. C. Papagiannitsis, “Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories,” Clin. Microbiol. Infect. 20(9), 839–853 (2014).
[Crossref] [PubMed]

Kambhampati, S.

B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P. Van Veldhuizen, A. Verma, L. M. Weiss, and T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem. 5(6), 653–676 (2013).
[Crossref] [PubMed]

Karki, R.

B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P. Van Veldhuizen, A. Verma, L. M. Weiss, and T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem. 5(6), 653–676 (2013).
[Crossref] [PubMed]

Kiener, P. A.

P. A. Kiener and S. G. Waley, “Reversible inhibitors of penicillinases,” Biochem. J. 169(1), 197–204 (1978).
[Crossref] [PubMed]

Kim, T.

S. B. Nimse, K. Song, M. D. Sonawane, D. R. Sayyed, and T. Kim, “Immobilization techniques for microarray: challenges and applications,” Sensors (Basel) 14(12), 22208–22229 (2014).
[Crossref] [PubMed]

Kim, Y. A.

K. Lee, Y. Chong, H. B. Shin, Y. A. Kim, D. Yong, and J. H. Yum, “Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of pseudomonas and acinetobacter species,” Clin. Microbiol. Infect. 7(2), 88–91 (2001).
[Crossref] [PubMed]

Lattanzi, G.

M. Minozzi, G. Lattanzi, R. Benz, M. P. Costi, A. Venturelli, and P. Carloni, “Permeation through the cell membrane of a boron-based β-lactamase inhibitor,” PLoS One 6(8), e23187 (2011).
[Crossref] [PubMed]

Lee, K.

K. Lee, Y. Chong, H. B. Shin, Y. A. Kim, D. Yong, and J. H. Yum, “Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of pseudomonas and acinetobacter species,” Clin. Microbiol. Infect. 7(2), 88–91 (2001).
[Crossref] [PubMed]

Lim, S. H.

S. H. Lim, C. J. Musto, E. Park, W. Zhong, and K. S. Suslick, “A colorimetric sensor array for detection and identification of sugars,” Org. Lett. 10(20), 4405–4408 (2008).
[Crossref] [PubMed]

Macchia, P. E.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

Malachovská, V.

P. Pilla, A. Sandomenico, V. Malachovská, A. Borriello, M. Giordano, A. Cutolo, M. Ruvo, and A. Cusano, “A protein-based biointerfacing route toward label-free immunoassays with long period gratings in transition mode,” Biosens. Bioelectron. 31(1), 486–491 (2012).
[Crossref] [PubMed]

P. Pilla, V. Malachovská, A. Borriello, A. Buosciolo, M. Giordano, L. Ambrosio, A. Cutolo, and A. Cusano, “Transition mode long period grating biosensor with functional multilayer coatings,” Opt. Express 19(2), 512–526 (2011).
[Crossref] [PubMed]

Mazzarella, C.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

Minasov, G.

X. Wang, G. Minasov, J. Blazquez, E. Caselli, F. Prati, and B. K. Shoichet, “Recognition and resistance in TEM β-lactamase,” Biochemistry 42(28), 8434–8444 (2003).
[Crossref] [PubMed]

Minozzi, M.

M. Minozzi, G. Lattanzi, R. Benz, M. P. Costi, A. Venturelli, and P. Carloni, “Permeation through the cell membrane of a boron-based β-lactamase inhibitor,” PLoS One 6(8), e23187 (2011).
[Crossref] [PubMed]

Miriagou, V.

P. Nordmann, M. Gniadkowski, C. G. Giske, L. Poirel, N. Woodford, and V. Miriagou, “Identification and screening of carbapenemase-producing Enterobacteriaceae,” Clin. Microbiol. Infect. 18(5), 432–438 (2012).
[Crossref] [PubMed]

Monteiro, N.

C. Ratkai, S. Quinteira, F. Grosso, N. Monteiro, E. Nagy, and L. Peixe, “Controlling for false positives: interpreting MBL Etest and MBL combined disc test for the detection of metallo-β-lactamases,” J. Antimicrob. Chemother. 64(3), 657–658 (2009).
[Crossref] [PubMed]

Morandi, F.

A. Venturelli, D. Tondi, L. Cancian, F. Morandi, G. Cannazza, B. Segatore, F. Prati, G. Amicosante, B. K. Shoichet, and M. P. Costi, “Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy,” J. Med. Chem. 50(23), 5644–5654 (2007).
[Crossref] [PubMed]

Morosini, M. I.

R. A. Powers, J. Blazquez, G. S. Weston, M. I. Morosini, F. Baquero, and B. K. Shoichet, “The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase,” Protein Sci. 8(11), 2330–2337 (1999).
[Crossref] [PubMed]

Musto, C. J.

S. H. Lim, C. J. Musto, E. Park, W. Zhong, and K. S. Suslick, “A colorimetric sensor array for detection and identification of sugars,” Org. Lett. 10(20), 4405–4408 (2008).
[Crossref] [PubMed]

Nagy, E.

C. Ratkai, S. Quinteira, F. Grosso, N. Monteiro, E. Nagy, and L. Peixe, “Controlling for false positives: interpreting MBL Etest and MBL combined disc test for the detection of metallo-β-lactamases,” J. Antimicrob. Chemother. 64(3), 657–658 (2009).
[Crossref] [PubMed]

Negri, M. C.

D. Tondi, R. A. Powers, E. Caselli, M. C. Negri, J. Blazquez, M. P. Costi, and B. K. Shoichet, “Structure-Based Design and in-Parallel Synthesis of Inhibitors of AmpC β-Lactamase,” Chem. Biol. 8(6), 593–610 (2001).
[Crossref] [PubMed]

Nettore, I. C.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

Nicoletti, A. G.

C. G. Carvalhaes, R. C. Picao, A. G. Nicoletti, D. E. Xavier, and A. C. Gales, “Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results,” J. Antimicrob. Chemother. 65(2), 249–251 (2010).
[Crossref] [PubMed]

Nikaido, H.

H. Nikaido, “Multidrug Resistance in Bacteria,” Annu. Rev. Biochem. 78(1), 119–146 (2009).
[Crossref] [PubMed]

Nimse, S. B.

S. B. Nimse, K. Song, M. D. Sonawane, D. R. Sayyed, and T. Kim, “Immobilization techniques for microarray: challenges and applications,” Sensors (Basel) 14(12), 22208–22229 (2014).
[Crossref] [PubMed]

Nordmann, P.

P. Nordmann, M. Gniadkowski, C. G. Giske, L. Poirel, N. Woodford, and V. Miriagou, “Identification and screening of carbapenemase-producing Enterobacteriaceae,” Clin. Microbiol. Infect. 18(5), 432–438 (2012).
[Crossref] [PubMed]

Papagiannitsis, C. C.

J. Hrabak, E. Chudackova, and C. C. Papagiannitsis, “Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories,” Clin. Microbiol. Infect. 20(9), 839–853 (2014).
[Crossref] [PubMed]

Park, E.

S. H. Lim, C. J. Musto, E. Park, W. Zhong, and K. S. Suslick, “A colorimetric sensor array for detection and identification of sugars,” Org. Lett. 10(20), 4405–4408 (2008).
[Crossref] [PubMed]

Peixe, L.

C. Ratkai, S. Quinteira, F. Grosso, N. Monteiro, E. Nagy, and L. Peixe, “Controlling for false positives: interpreting MBL Etest and MBL combined disc test for the detection of metallo-β-lactamases,” J. Antimicrob. Chemother. 64(3), 657–658 (2009).
[Crossref] [PubMed]

Picao, R. C.

C. G. Carvalhaes, R. C. Picao, A. G. Nicoletti, D. E. Xavier, and A. C. Gales, “Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results,” J. Antimicrob. Chemother. 65(2), 249–251 (2010).
[Crossref] [PubMed]

Pilla, P.

P. Pilla, A. Sandomenico, V. Malachovská, A. Borriello, M. Giordano, A. Cutolo, M. Ruvo, and A. Cusano, “A protein-based biointerfacing route toward label-free immunoassays with long period gratings in transition mode,” Biosens. Bioelectron. 31(1), 486–491 (2012).
[Crossref] [PubMed]

P. Pilla, V. Malachovská, A. Borriello, A. Buosciolo, M. Giordano, L. Ambrosio, A. Cutolo, and A. Cusano, “Transition mode long period grating biosensor with functional multilayer coatings,” Opt. Express 19(2), 512–526 (2011).
[Crossref] [PubMed]

Pisco, M.

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[Crossref] [PubMed]

Poirel, L.

P. Nordmann, M. Gniadkowski, C. G. Giske, L. Poirel, N. Woodford, and V. Miriagou, “Identification and screening of carbapenemase-producing Enterobacteriaceae,” Clin. Microbiol. Infect. 18(5), 432–438 (2012).
[Crossref] [PubMed]

Power, P.

P. Power, M. Galleni, J. A. Ayala, and G. Gutkind, “Biochemical and molecular characterization of three new variants of AmpC β-lactamases from Morganella morganii,” Antimicrob. Agents Chemother. 50(3), 962–967 (2006).
[Crossref] [PubMed]

Powers, R. A.

R. A. Powers and B. K. Shoichet, “Structure-based approach for binding site identification on AmpC β-lactamase,” J. Med. Chem. 45(15), 3222–3234 (2002).
[Crossref] [PubMed]

D. Tondi, R. A. Powers, E. Caselli, M. C. Negri, J. Blazquez, M. P. Costi, and B. K. Shoichet, “Structure-Based Design and in-Parallel Synthesis of Inhibitors of AmpC β-Lactamase,” Chem. Biol. 8(6), 593–610 (2001).
[Crossref] [PubMed]

R. A. Powers, J. Blazquez, G. S. Weston, M. I. Morosini, F. Baquero, and B. K. Shoichet, “The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase,” Protein Sci. 8(11), 2330–2337 (1999).
[Crossref] [PubMed]

Pozzi, C.

D. Tondi, A. Venturelli, R. Bonnet, C. Pozzi, B. K. Shoichet, and M. P. Costi, “Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative,” J. Med. Chem. 57(12), 5449–5458 (2014).
[Crossref] [PubMed]

Prati, F.

A. Venturelli, D. Tondi, L. Cancian, F. Morandi, G. Cannazza, B. Segatore, F. Prati, G. Amicosante, B. K. Shoichet, and M. P. Costi, “Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy,” J. Med. Chem. 50(23), 5644–5654 (2007).
[Crossref] [PubMed]

X. Wang, G. Minasov, J. Blazquez, E. Caselli, F. Prati, and B. K. Shoichet, “Recognition and resistance in TEM β-lactamase,” Biochemistry 42(28), 8434–8444 (2003).
[Crossref] [PubMed]

Quero, G.

G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
[Crossref]

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[Crossref] [PubMed]

Quinteira, S.

C. Ratkai, S. Quinteira, F. Grosso, N. Monteiro, E. Nagy, and L. Peixe, “Controlling for false positives: interpreting MBL Etest and MBL combined disc test for the detection of metallo-β-lactamases,” J. Antimicrob. Chemother. 64(3), 657–658 (2009).
[Crossref] [PubMed]

Ratkai, C.

C. Ratkai, S. Quinteira, F. Grosso, N. Monteiro, E. Nagy, and L. Peixe, “Controlling for false positives: interpreting MBL Etest and MBL combined disc test for the detection of metallo-β-lactamases,” J. Antimicrob. Chemother. 64(3), 657–658 (2009).
[Crossref] [PubMed]

Remington, S. J.

K. C. Usher, L. C. Blaszczak, G. S. Weston, B. K. Shoichet, and S. J. Remington, “Three-dimensional structure of AmpC β-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design,” Biochemistry 37(46), 16082–16092 (1998).
[Crossref] [PubMed]

Ricciardi, A.

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[Crossref] [PubMed]

Ruvo, M.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

P. Pilla, A. Sandomenico, V. Malachovská, A. Borriello, M. Giordano, A. Cutolo, M. Ruvo, and A. Cusano, “A protein-based biointerfacing route toward label-free immunoassays with long period gratings in transition mode,” Biosens. Bioelectron. 31(1), 486–491 (2012).
[Crossref] [PubMed]

Sandomenico, A.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

P. Pilla, A. Sandomenico, V. Malachovská, A. Borriello, M. Giordano, A. Cutolo, M. Ruvo, and A. Cusano, “A protein-based biointerfacing route toward label-free immunoassays with long period gratings in transition mode,” Biosens. Bioelectron. 31(1), 486–491 (2012).
[Crossref] [PubMed]

Santorelli, F.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

Santucci, M.

G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
[Crossref]

Sayyed, D. R.

S. B. Nimse, K. Song, M. D. Sonawane, D. R. Sayyed, and T. Kim, “Immobilization techniques for microarray: challenges and applications,” Sensors (Basel) 14(12), 22208–22229 (2014).
[Crossref] [PubMed]

Schinke, C.

B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P. Van Veldhuizen, A. Verma, L. M. Weiss, and T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem. 5(6), 653–676 (2013).
[Crossref] [PubMed]

Segatore, B.

A. Venturelli, D. Tondi, L. Cancian, F. Morandi, G. Cannazza, B. Segatore, F. Prati, G. Amicosante, B. K. Shoichet, and M. P. Costi, “Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy,” J. Med. Chem. 50(23), 5644–5654 (2007).
[Crossref] [PubMed]

Severino, R.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

Shin, H. B.

K. Lee, Y. Chong, H. B. Shin, Y. A. Kim, D. Yong, and J. H. Yum, “Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of pseudomonas and acinetobacter species,” Clin. Microbiol. Infect. 7(2), 88–91 (2001).
[Crossref] [PubMed]

Shoichet, B.

Y. Chen, B. Shoichet, and R. Bonnet, “Structure, function, and inhibition along the reaction coordinate of CTX-M β-lactamases,” J. Am. Chem. Soc. 127(15), 5423–5434 (2005).
[Crossref] [PubMed]

Shoichet, B. K.

D. Tondi, A. Venturelli, R. Bonnet, C. Pozzi, B. K. Shoichet, and M. P. Costi, “Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative,” J. Med. Chem. 57(12), 5449–5458 (2014).
[Crossref] [PubMed]

A. Venturelli, D. Tondi, L. Cancian, F. Morandi, G. Cannazza, B. Segatore, F. Prati, G. Amicosante, B. K. Shoichet, and M. P. Costi, “Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy,” J. Med. Chem. 50(23), 5644–5654 (2007).
[Crossref] [PubMed]

X. Wang, G. Minasov, J. Blazquez, E. Caselli, F. Prati, and B. K. Shoichet, “Recognition and resistance in TEM β-lactamase,” Biochemistry 42(28), 8434–8444 (2003).
[Crossref] [PubMed]

R. A. Powers and B. K. Shoichet, “Structure-based approach for binding site identification on AmpC β-lactamase,” J. Med. Chem. 45(15), 3222–3234 (2002).
[Crossref] [PubMed]

D. Tondi, R. A. Powers, E. Caselli, M. C. Negri, J. Blazquez, M. P. Costi, and B. K. Shoichet, “Structure-Based Design and in-Parallel Synthesis of Inhibitors of AmpC β-Lactamase,” Chem. Biol. 8(6), 593–610 (2001).
[Crossref] [PubMed]

R. A. Powers, J. Blazquez, G. S. Weston, M. I. Morosini, F. Baquero, and B. K. Shoichet, “The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase,” Protein Sci. 8(11), 2330–2337 (1999).
[Crossref] [PubMed]

G. S. Weston, J. Blazquez, F. Baquero, and B. K. Shoichet, “Structure-Based Enhancement of Boronic Acid-Based Inhibitors of AmpC β-Lactamase,” J. Med. Chem. 41(23), 4577–4586 (1998).
[Crossref] [PubMed]

K. C. Usher, L. C. Blaszczak, G. S. Weston, B. K. Shoichet, and S. J. Remington, “Three-dimensional structure of AmpC β-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design,” Biochemistry 37(46), 16082–16092 (1998).
[Crossref] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Sonawane, M. D.

S. B. Nimse, K. Song, M. D. Sonawane, D. R. Sayyed, and T. Kim, “Immobilization techniques for microarray: challenges and applications,” Sensors (Basel) 14(12), 22208–22229 (2014).
[Crossref] [PubMed]

Song, K.

S. B. Nimse, K. Song, M. D. Sonawane, D. R. Sayyed, and T. Kim, “Immobilization techniques for microarray: challenges and applications,” Sensors (Basel) 14(12), 22208–22229 (2014).
[Crossref] [PubMed]

Spyrakis, F.

F. Spyrakis, “Editorial Thematic issue: from extended spectrum β-lactamases to carbapenemase: the never ending challenge against gram-negative bacteria,” Curr. Drug Targets 17(9), 972–973 (2016).
[Crossref] [PubMed]

D. Tondi, S. Cross, A. Venturelli, M. P. Costi, G. Cruciani, and F. Spyrakis, “Decoding the structural basis for carbapenem hydrolysis by class A β-lactamases: fishing for a pharmacophore,” Curr. Drug Targets 17(9), 983–1005 (2016).
[Crossref] [PubMed]

G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
[Crossref]

D. Farina, F. Spyrakis, A. Venturelli, S. Cross, D. Tondi, and M. P. Costi, “The inhibition of extended spectrum β-lactamases: hits and leads,” Curr. Med. Chem. 21(12), 1405–1434 (2014).
[Crossref] [PubMed]

Sumerlin, B. S.

W. L. Brooks and B. S. Sumerlin, “Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine,” Chem. Rev. 116(3), 1375–1397 (2016).
[Crossref] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suslick, K. S.

S. H. Lim, C. J. Musto, E. Park, W. Zhong, and K. S. Suslick, “A colorimetric sensor array for detection and identification of sugars,” Org. Lett. 10(20), 4405–4408 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Thapa, P.

B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P. Van Veldhuizen, A. Verma, L. M. Weiss, and T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem. 5(6), 653–676 (2013).
[Crossref] [PubMed]

Tombelli, S.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Tondi, D.

D. Tondi, S. Cross, A. Venturelli, M. P. Costi, G. Cruciani, and F. Spyrakis, “Decoding the structural basis for carbapenem hydrolysis by class A β-lactamases: fishing for a pharmacophore,” Curr. Drug Targets 17(9), 983–1005 (2016).
[Crossref] [PubMed]

D. Farina, F. Spyrakis, A. Venturelli, S. Cross, D. Tondi, and M. P. Costi, “The inhibition of extended spectrum β-lactamases: hits and leads,” Curr. Med. Chem. 21(12), 1405–1434 (2014).
[Crossref] [PubMed]

D. Tondi, A. Venturelli, R. Bonnet, C. Pozzi, B. K. Shoichet, and M. P. Costi, “Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative,” J. Med. Chem. 57(12), 5449–5458 (2014).
[Crossref] [PubMed]

A. Venturelli, D. Tondi, L. Cancian, F. Morandi, G. Cannazza, B. Segatore, F. Prati, G. Amicosante, B. K. Shoichet, and M. P. Costi, “Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy,” J. Med. Chem. 50(23), 5644–5654 (2007).
[Crossref] [PubMed]

D. Tondi, R. A. Powers, E. Caselli, M. C. Negri, J. Blazquez, M. P. Costi, and B. K. Shoichet, “Structure-Based Design and in-Parallel Synthesis of Inhibitors of AmpC β-Lactamase,” Chem. Biol. 8(6), 593–610 (2001).
[Crossref] [PubMed]

Trono, C.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Usher, K. C.

K. C. Usher, L. C. Blaszczak, G. S. Weston, B. K. Shoichet, and S. J. Remington, “Three-dimensional structure of AmpC β-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design,” Biochemistry 37(46), 16082–16092 (1998).
[Crossref] [PubMed]

Vaiano, P.

G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
[Crossref]

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[Crossref] [PubMed]

Van Veldhuizen, P.

B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P. Van Veldhuizen, A. Verma, L. M. Weiss, and T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem. 5(6), 653–676 (2013).
[Crossref] [PubMed]

Venturelli, A.

D. Tondi, S. Cross, A. Venturelli, M. P. Costi, G. Cruciani, and F. Spyrakis, “Decoding the structural basis for carbapenem hydrolysis by class A β-lactamases: fishing for a pharmacophore,” Curr. Drug Targets 17(9), 983–1005 (2016).
[Crossref] [PubMed]

G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
[Crossref]

D. Farina, F. Spyrakis, A. Venturelli, S. Cross, D. Tondi, and M. P. Costi, “The inhibition of extended spectrum β-lactamases: hits and leads,” Curr. Med. Chem. 21(12), 1405–1434 (2014).
[Crossref] [PubMed]

D. Tondi, A. Venturelli, R. Bonnet, C. Pozzi, B. K. Shoichet, and M. P. Costi, “Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative,” J. Med. Chem. 57(12), 5449–5458 (2014).
[Crossref] [PubMed]

M. Minozzi, G. Lattanzi, R. Benz, M. P. Costi, A. Venturelli, and P. Carloni, “Permeation through the cell membrane of a boron-based β-lactamase inhibitor,” PLoS One 6(8), e23187 (2011).
[Crossref] [PubMed]

A. Venturelli, D. Tondi, L. Cancian, F. Morandi, G. Cannazza, B. Segatore, F. Prati, G. Amicosante, B. K. Shoichet, and M. P. Costi, “Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy,” J. Med. Chem. 50(23), 5644–5654 (2007).
[Crossref] [PubMed]

Verma, A.

B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P. Van Veldhuizen, A. Verma, L. M. Weiss, and T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem. 5(6), 653–676 (2013).
[Crossref] [PubMed]

Waley, S. G.

P. A. Kiener and S. G. Waley, “Reversible inhibitors of penicillinases,” Biochem. J. 169(1), 197–204 (1978).
[Crossref] [PubMed]

Wang, X.

X. Wang, G. Minasov, J. Blazquez, E. Caselli, F. Prati, and B. K. Shoichet, “Recognition and resistance in TEM β-lactamase,” Biochemistry 42(28), 8434–8444 (2003).
[Crossref] [PubMed]

Weiss, L. M.

B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P. Van Veldhuizen, A. Verma, L. M. Weiss, and T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem. 5(6), 653–676 (2013).
[Crossref] [PubMed]

Weston, G. S.

R. A. Powers, J. Blazquez, G. S. Weston, M. I. Morosini, F. Baquero, and B. K. Shoichet, “The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase,” Protein Sci. 8(11), 2330–2337 (1999).
[Crossref] [PubMed]

G. S. Weston, J. Blazquez, F. Baquero, and B. K. Shoichet, “Structure-Based Enhancement of Boronic Acid-Based Inhibitors of AmpC β-Lactamase,” J. Med. Chem. 41(23), 4577–4586 (1998).
[Crossref] [PubMed]

K. C. Usher, L. C. Blaszczak, G. S. Weston, B. K. Shoichet, and S. J. Remington, “Three-dimensional structure of AmpC β-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design,” Biochemistry 37(46), 16082–16092 (1998).
[Crossref] [PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Widlanski, T. S.

B. T. Burlingham and T. S. Widlanski, “An intuitive look at the relationship of Ki and IC50: a more general use for the dixon plot,” J. Chem. Educ. 80(2), 214 (2003).
[Crossref]

Woodford, N.

P. Nordmann, M. Gniadkowski, C. G. Giske, L. Poirel, N. Woodford, and V. Miriagou, “Identification and screening of carbapenemase-producing Enterobacteriaceae,” Clin. Microbiol. Infect. 18(5), 432–438 (2012).
[Crossref] [PubMed]

Xavier, D. E.

C. G. Carvalhaes, R. C. Picao, A. G. Nicoletti, D. E. Xavier, and A. C. Gales, “Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results,” J. Antimicrob. Chemother. 65(2), 249–251 (2010).
[Crossref] [PubMed]

Yong, D.

K. Lee, Y. Chong, H. B. Shin, Y. A. Kim, D. Yong, and J. H. Yum, “Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of pseudomonas and acinetobacter species,” Clin. Microbiol. Infect. 7(2), 88–91 (2001).
[Crossref] [PubMed]

Yum, J. H.

K. Lee, Y. Chong, H. B. Shin, Y. A. Kim, D. Yong, and J. H. Yum, “Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of pseudomonas and acinetobacter species,” Clin. Microbiol. Infect. 7(2), 88–91 (2001).
[Crossref] [PubMed]

Zhang, L.

Zhong, W.

S. H. Lim, C. J. Musto, E. Park, W. Zhong, and K. S. Suslick, “A colorimetric sensor array for detection and identification of sugars,” Org. Lett. 10(20), 4405–4408 (2008).
[Crossref] [PubMed]

Zhou, K.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Zuppolini, S.

G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
[Crossref]

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Analyst (Lond.) (1)

A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, E. Esposito, and A. Cusano, “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst (Lond.) 140(24), 8068–8079 (2015).
[Crossref] [PubMed]

Annu. Rev. Biochem. (1)

H. Nikaido, “Multidrug Resistance in Bacteria,” Annu. Rev. Biochem. 78(1), 119–146 (2009).
[Crossref] [PubMed]

Antimicrob. Agents Chemother. (1)

P. Power, M. Galleni, J. A. Ayala, and G. Gutkind, “Biochemical and molecular characterization of three new variants of AmpC β-lactamases from Morganella morganii,” Antimicrob. Agents Chemother. 50(3), 962–967 (2006).
[Crossref] [PubMed]

Appl. Opt. (1)

Biochem. J. (1)

P. A. Kiener and S. G. Waley, “Reversible inhibitors of penicillinases,” Biochem. J. 169(1), 197–204 (1978).
[Crossref] [PubMed]

Biochemistry (2)

X. Wang, G. Minasov, J. Blazquez, E. Caselli, F. Prati, and B. K. Shoichet, “Recognition and resistance in TEM β-lactamase,” Biochemistry 42(28), 8434–8444 (2003).
[Crossref] [PubMed]

K. C. Usher, L. C. Blaszczak, G. S. Weston, B. K. Shoichet, and S. J. Remington, “Three-dimensional structure of AmpC β-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design,” Biochemistry 37(46), 16082–16092 (1998).
[Crossref] [PubMed]

Biosens. Bioelectron. (3)

P. Pilla, A. Sandomenico, V. Malachovská, A. Borriello, M. Giordano, A. Cutolo, M. Ruvo, and A. Cusano, “A protein-based biointerfacing route toward label-free immunoassays with long period gratings in transition mode,” Biosens. Bioelectron. 31(1), 486–491 (2012).
[Crossref] [PubMed]

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref] [PubMed]

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Chem. Biol. (1)

D. Tondi, R. A. Powers, E. Caselli, M. C. Negri, J. Blazquez, M. P. Costi, and B. K. Shoichet, “Structure-Based Design and in-Parallel Synthesis of Inhibitors of AmpC β-Lactamase,” Chem. Biol. 8(6), 593–610 (2001).
[Crossref] [PubMed]

Chem. Rev. (1)

W. L. Brooks and B. S. Sumerlin, “Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine,” Chem. Rev. 116(3), 1375–1397 (2016).
[Crossref] [PubMed]

Clin. Microbiol. Infect. (3)

J. Hrabak, E. Chudackova, and C. C. Papagiannitsis, “Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories,” Clin. Microbiol. Infect. 20(9), 839–853 (2014).
[Crossref] [PubMed]

K. Lee, Y. Chong, H. B. Shin, Y. A. Kim, D. Yong, and J. H. Yum, “Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of pseudomonas and acinetobacter species,” Clin. Microbiol. Infect. 7(2), 88–91 (2001).
[Crossref] [PubMed]

P. Nordmann, M. Gniadkowski, C. G. Giske, L. Poirel, N. Woodford, and V. Miriagou, “Identification and screening of carbapenemase-producing Enterobacteriaceae,” Clin. Microbiol. Infect. 18(5), 432–438 (2012).
[Crossref] [PubMed]

Curr. Drug Targets (2)

F. Spyrakis, “Editorial Thematic issue: from extended spectrum β-lactamases to carbapenemase: the never ending challenge against gram-negative bacteria,” Curr. Drug Targets 17(9), 972–973 (2016).
[Crossref] [PubMed]

D. Tondi, S. Cross, A. Venturelli, M. P. Costi, G. Cruciani, and F. Spyrakis, “Decoding the structural basis for carbapenem hydrolysis by class A β-lactamases: fishing for a pharmacophore,” Curr. Drug Targets 17(9), 983–1005 (2016).
[Crossref] [PubMed]

Curr. Med. Chem. (1)

D. Farina, F. Spyrakis, A. Venturelli, S. Cross, D. Tondi, and M. P. Costi, “The inhibition of extended spectrum β-lactamases: hits and leads,” Curr. Med. Chem. 21(12), 1405–1434 (2014).
[Crossref] [PubMed]

Future Med. Chem. (1)

B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P. Van Veldhuizen, A. Verma, L. M. Weiss, and T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem. 5(6), 653–676 (2013).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

Y. Chen, B. Shoichet, and R. Bonnet, “Structure, function, and inhibition along the reaction coordinate of CTX-M β-lactamases,” J. Am. Chem. Soc. 127(15), 5423–5434 (2005).
[Crossref] [PubMed]

J. Antimicrob. Chemother. (2)

C. G. Carvalhaes, R. C. Picao, A. G. Nicoletti, D. E. Xavier, and A. C. Gales, “Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results,” J. Antimicrob. Chemother. 65(2), 249–251 (2010).
[Crossref] [PubMed]

C. Ratkai, S. Quinteira, F. Grosso, N. Monteiro, E. Nagy, and L. Peixe, “Controlling for false positives: interpreting MBL Etest and MBL combined disc test for the detection of metallo-β-lactamases,” J. Antimicrob. Chemother. 64(3), 657–658 (2009).
[Crossref] [PubMed]

J. Chem. Educ. (1)

B. T. Burlingham and T. S. Widlanski, “An intuitive look at the relationship of Ki and IC50: a more general use for the dixon plot,” J. Chem. Educ. 80(2), 214 (2003).
[Crossref]

J. Med. Chem. (4)

G. S. Weston, J. Blazquez, F. Baquero, and B. K. Shoichet, “Structure-Based Enhancement of Boronic Acid-Based Inhibitors of AmpC β-Lactamase,” J. Med. Chem. 41(23), 4577–4586 (1998).
[Crossref] [PubMed]

R. A. Powers and B. K. Shoichet, “Structure-based approach for binding site identification on AmpC β-lactamase,” J. Med. Chem. 45(15), 3222–3234 (2002).
[Crossref] [PubMed]

D. Tondi, A. Venturelli, R. Bonnet, C. Pozzi, B. K. Shoichet, and M. P. Costi, “Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative,” J. Med. Chem. 57(12), 5449–5458 (2014).
[Crossref] [PubMed]

A. Venturelli, D. Tondi, L. Cancian, F. Morandi, G. Cannazza, B. Segatore, F. Prati, G. Amicosante, B. K. Shoichet, and M. P. Costi, “Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy,” J. Med. Chem. 50(23), 5644–5654 (2007).
[Crossref] [PubMed]

Methods Mol. Biol. (1)

M. J. Fischer, “Amine coupling through EDC/NHS: a practical approach,” Methods Mol. Biol. 627, 55–73 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Org. Lett. (1)

S. H. Lim, C. J. Musto, E. Park, W. Zhong, and K. S. Suslick, “A colorimetric sensor array for detection and identification of sugars,” Org. Lett. 10(20), 4405–4408 (2008).
[Crossref] [PubMed]

PLoS One (1)

M. Minozzi, G. Lattanzi, R. Benz, M. P. Costi, A. Venturelli, and P. Carloni, “Permeation through the cell membrane of a boron-based β-lactamase inhibitor,” PLoS One 6(8), e23187 (2011).
[Crossref] [PubMed]

Protein Sci. (1)

R. A. Powers, J. Blazquez, G. S. Weston, M. I. Morosini, F. Baquero, and B. K. Shoichet, “The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase,” Protein Sci. 8(11), 2330–2337 (1999).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo, and A. Cusano, “Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria,” Sens. Actuators B Chem. 230, 510–520 (2016).
[Crossref]

Sensors (Basel) (1)

S. B. Nimse, K. Song, M. D. Sonawane, D. R. Sayyed, and T. Kim, “Immobilization techniques for microarray: challenges and applications,” Sensors (Basel) 14(12), 22208–22229 (2014).
[Crossref] [PubMed]

Other (3)

R. J. Davies, P. R. Edwards, H. J. Watts, C. R. Lowe, P. E. Buckle, D. Yeung, T. M. Kinning, and D. V. Polland-Knight, in Techniques in protein Chemistry V, (Academic Press, San Diego, CA, 1994), pp. 285–292.

T. D. James, M. D. Phillips, and S. Shinkai, Boronic acids in saccharide recognition, Royal Society of Chemistry, (Cambridge, U.K., 2006).

I. Segel, Enzyme kinetics: behaviour and analysis of rapid equilibrium and steady-state enzyme systems, (Wiley Classic Library, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Chemical structure of the selected AmpC boronic-based inhibitors: (1) 3-aminophenyl boronic acid (3-APBA), (2) benzo[b]thiophen-2-yl boronic acid (BZB) and (3) 5-aminomethylbenzo[b]thiophen-2-ylboronic acid (BZD).
Fig. 2
Fig. 2 Conceptual scheme summarizing the main parts of the system.
Fig. 3
Fig. 3 (a) View of the manufactured automated system, showing the test chamber. (b) View of the optoelectronic interrogation unit and electronic circuits hosted on the side panel (the enclosure has been removed).
Fig. 4
Fig. 4 A scheme of the architecture of the optoelectronic interrogation unit.
Fig. 5
Fig. 5 (a) Action mechanism of a generic boronic acid inhibitor. (b-d) Possible orientation of BZD in AmpC binding site (derived by AmpC-BZD complex; PDB code 2i72 [35]). Overall view of the BZD-AmpC BL complex (b) and (c). The protein is represented as surface and cartoons, respectively, the ligand in capped sticks. (d) Binding site close-up. BZD and the residues lining the pocket are shown in capped sticks. Hydrogen bonds formed by the ligand with the surrounding residues are reported as black dashed lines. Crucial residues are labelled. The amino group involved in the RT-LPG covalent anchoring is highlighted by the red circle.
Fig. 6
Fig. 6 (a) RT-LPG sensorgram during the biofunctionalization phase. (b) RT-LPG sensorgram during the AmpC β-lactamase binding experiments. (c) Schematic representation of the RT-LPG coated with aPS and PMMA-co-MA layers for AmpC β-lactamase binding experiments.
Fig. 7
Fig. 7 Characteristic curves (O vs. AmpC BL cumulative concentrations) of the RT-LPG device obtained by binding experiments with purified AmpC (orange curve) and negative blank test using not functionalized probe (cyan curve). The error bars refer to the standard deviation calculated by considering the results obtained by repeating 3 times the experiment with the same concentration.
Fig. 8
Fig. 8 (a) Reflection-type LPG sensorgram reporting the central wavelength shift of 6th cladding mode attenuation band during the AmpC BL binding for lysate solutions containing different protein concentration. (b) Characteristic curves (O vs. AmpC BL cumulative concentrations) of the RT-LPG device obtained for binding experiments with purified AmpC (orange curve) in PBS buffer solution and AmpC in complex lysate (violet stars), negative blank test (i.e. using not functionalized probes) in PBS buffer solution (cyan curve), and control test using complex lysate without BZD (red star). The error bars refer to the standard deviation calculated by considering the results obtained by repeating 3 times the experiment with the same concentration. (c) Inset showing a magnification of the results obtained at low concentrations.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

C ( λ ) = 1 0 × Log 1 0 [ B ( λ ) / A ( λ ) ] .
O air water = Δ λ air water / Δ λ PMMA
O = Δ λ C / Δ λ PMMA
S AmpC BZD = O AmpC BZD / C = 1 . 449 μ Μ 1
O min = Δ λ min / Δ λ PMMA
LOD AmpC BZD = O min / S AmpC BZD 6 nM

Metrics