Abstract

The morphology of embryos produced by in vitro fertilization (IVF) is commonly used to estimate their viability. However, imaging by standard microscopy is subjective and unable to assess the embryo on a cellular scale after compaction. Optical coherence tomography is an imaging technique that can produce a depth-resolved profile of a sample and can be coupled with speckle variance (SV) to detect motion on a micron scale. In this study, day 7 post-IVF bovine embryos were observed either short-term (10 minutes) or long-term (over 18 hours) and analyzed by swept source OCT and SV to resolve their depth profile and characterize micron-scale movements potentially associated with viability. The percentage of en face images showing movement at any given time was calculated as a method to detect the vital status of the embryo. This method could be used to measure the levels of damage sustained by an embryo, for example after cryopreservation, in a rapid and non-invasive way.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Biodynamic imaging of live porcine oocytes, zygotes and blastocysts for viability assessment in assisted reproductive technologies

Ran An, Chunmin Wang, John Turek, Zoltan Machaty, and David D. Nolte
Biomed. Opt. Express 6(3) 963-976 (2015)

Rapid and noninvasive technique to assess the metabolomics profile of bovine embryos produced in vitro by Raman spectroscopy

E. C. Santos, H. S. Martinho, K. Annes, R. F. Leite, and M. P. Milazzotto
Biomed. Opt. Express 6(8) 2830-2839 (2015)

Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid

Iwona Gorczynska, Justin V. Migacz, Robert J. Zawadzki, Arlie G. Capps, and John S. Werner
Biomed. Opt. Express 7(3) 911-942 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Holm, N. N. Shukri, G. Vajta, P. Booth, C. Bendixen, and H. Callesen, “Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex,” Theriogenology 50(8), 1285–1299 (1998).
    [PubMed]
  2. I. Boiso, A. Veiga, and R. G. Edwards, “Fundamentals of human embryonic growth in vitro and the selection of high-quality embryos for transfer,” Reprod. Biomed. Online 5(3), 328–350 (2002).
    [PubMed]
  3. G. M. Lindner and R. W. Wright., “Bovine embryo morphology and evaluation,” Theriogenology 20(4), 407–416 (1983).
    [PubMed]
  4. A. Van Soom, B. Mateusen, J. Leroy, and A. De Kruif, “Assessment of mammalian embryo quality: what can we learn from embryo morphology?” Reprod. Biomed. Online 7(6), 664–670 (2003).
    [PubMed]
  5. G. A. Bo and R. J. Mapletoft, “Evaluation and classification of bovine embryos,” Anim. Reprod. 10(3), 344–348 (2013).
  6. M. Alikani, J. Cohen, G. Tomkin, G. J. Garrisi, C. Mack, and R. T. Scott, “Human embryo fragmentation in vitro and its implications for pregnancy and implantation,” Fertil. Steril. 71(5), 836–842 (1999).
    [PubMed]
  7. T. Somfai, Y. Inaba, Y. Aikawa, M. Ohtake, S. Kobayashi, K. Konishi, and K. Imai, “Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis,” J. Reprod. Dev. 56(2), 200–207 (2010).
    [PubMed]
  8. C. Racowsky, P. Kovacs, and W. P. Martins, “A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go?” J. Assist. Reprod. Genet. 32(7), 1025–1030 (2015).
    [PubMed]
  9. M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology 102(5), 748–756 (1995).
    [PubMed]
  10. D. Ruminski, B. L. Sikorski, D. Bukowska, M. Szkulmowski, K. Krawiec, G. Malukiewicz, L. Bieganowski, and M. Wojtkowski, “OCT angiography by absolute intensity difference applied to normal and diseased human retinas,” Biomed. Opt. Express 6(8), 2738–2754 (2015).
    [PubMed]
  11. A. Federici, H. S. da Costa, J. Ogien, A. K. Ellerbee, and A. Dubois, “Wide-field, full-field optical coherence microscopy for high-axial-resolution phase and amplitude imaging,” Appl. Opt. 54(27), 8212–8220 (2015).
    [PubMed]
  12. I. Gorczynska, J. V. Migacz, R. J. Zawadzki, A. G. Capps, and J. S. Werner, “Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid,” Biomed. Opt. Express 7(3), 911–942 (2016).
    [PubMed]
  13. M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 50901 (2013).
    [PubMed]
  14. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
    [PubMed]
  15. Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
    [PubMed]
  16. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
    [PubMed]
  17. I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14(5), 050506 (2009).
    [PubMed]
  18. K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
    [PubMed]
  19. J. G. Zheng, D. Lu, T. Chen, C. Wang, N. Tian, F. Zhao, T. Huo, N. Zhang, D. Chen, W. Ma, J. L. Sun, and P. Xue, “Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography,” J. Biomed. Opt. 17(7), 070503 (2012).
    [PubMed]
  20. P. Holm, P. J. Booth, M. H. Schmidt, T. Greve, and H. Callesen, “High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins,” Theriogenology 52(4), 683–700 (1999).
    [PubMed]
  21. R. Cernat, A. Bradu, N. M. Israelsen, O. Bang, S. Rivet, P. A. Keane, D. G. Heath, R. Rajendram, and A. Podoleanu, “Gabor fusion master slave optical coherence tomography,” Biomed. Opt. Express 8(2), 813–827 (2017).
    [PubMed]
  22. A. G. Podoleanu and A. Bradu, “Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography,” Opt. Express 21(16), 19324–19338 (2013).
    [PubMed]
  23. S. Rivet, M. Maria, A. Bradu, T. Feuchter, L. Leick, and A. Podoleanu, “Complex master slave interferometry,” Opt. Express 24(3), 2885–2904 (2016).
    [PubMed]
  24. I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34(7), 986–988 (2009).
    [PubMed]
  25. N. Sudheendran, S. H. Syed, M. E. Dickinson, I. V. Larina, and K. V. Larin, “Speckle variance OCT imaging of the vasculature in live mammalian embryos,” Laser Phys. Lett. 8(3), 247 (2011).
  26. K. S. Richter, D. C. Harris, S. T. Daneshmand, and B. S. Shapiro, “Quantitative grading of a human blastocyst: optimal inner cell mass size and shape,” Fertil. Steril. 76(6), 1157–1167 (2001).
    [PubMed]
  27. A. van Soom, M. T. Ysebaert, and A. de Kruif, “Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos,” Mol. Reprod. Dev. 47(1), 47–56 (1997).
    [PubMed]
  28. A. H. Handyside and S. Hunter, “A rapid procedure for visualising the inner cell mass and trophectoderm nuclei of mouse blastocysts in situ using polynucleotide-specific fluorochromes,” J. Exp. Zool. 231(3), 429–434 (1984).
    [PubMed]
  29. G. A. Thouas, N. A. Korfiatis, A. J. French, G. M. Jones, and A. O. Trounson, “Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts,” Reprod. Biomed. Online 3(1), 25–29 (2001).
    [PubMed]
  30. K. Hardy, A. H. Handyside, and R. M. Winston, “The human blastocyst: cell number, death and allocation during late preimplantation development in vitro,” Development 107(3), 597–604 (1989).
    [PubMed]
  31. H. Stinshoff, S. Wilkening, A. Hanstedt, K. Brüning, and C. Wrenzycki, “Cryopreservation affects the quality of in vitro produced bovine embryos at the molecular level,” Theriogenology 76(8), 1433–1441 (2011).
    [PubMed]
  32. L. Zarnescu, M. Abeyta, T. M. Baer, B. Behr, and A. K. Ellerbee, “Assessment of imaging parameters correlated with the effects of cryopreservation on embryo development,” Optical Methods in Developmental Biology II, Proc. SPIE 8953, 89530F (2014).
  33. L. Zarnescu, M. C. Leung, M. Abeyta, H. Sudkamp, T. Baer, B. Behr, and A. K. Ellerbee, “Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography,” J. Biomed. Opt. 20(9), 096004 (2015).
    [PubMed]

2017 (2)

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[PubMed]

R. Cernat, A. Bradu, N. M. Israelsen, O. Bang, S. Rivet, P. A. Keane, D. G. Heath, R. Rajendram, and A. Podoleanu, “Gabor fusion master slave optical coherence tomography,” Biomed. Opt. Express 8(2), 813–827 (2017).
[PubMed]

2016 (2)

2015 (4)

D. Ruminski, B. L. Sikorski, D. Bukowska, M. Szkulmowski, K. Krawiec, G. Malukiewicz, L. Bieganowski, and M. Wojtkowski, “OCT angiography by absolute intensity difference applied to normal and diseased human retinas,” Biomed. Opt. Express 6(8), 2738–2754 (2015).
[PubMed]

A. Federici, H. S. da Costa, J. Ogien, A. K. Ellerbee, and A. Dubois, “Wide-field, full-field optical coherence microscopy for high-axial-resolution phase and amplitude imaging,” Appl. Opt. 54(27), 8212–8220 (2015).
[PubMed]

C. Racowsky, P. Kovacs, and W. P. Martins, “A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go?” J. Assist. Reprod. Genet. 32(7), 1025–1030 (2015).
[PubMed]

L. Zarnescu, M. C. Leung, M. Abeyta, H. Sudkamp, T. Baer, B. Behr, and A. K. Ellerbee, “Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography,” J. Biomed. Opt. 20(9), 096004 (2015).
[PubMed]

2014 (2)

L. Zarnescu, M. Abeyta, T. M. Baer, B. Behr, and A. K. Ellerbee, “Assessment of imaging parameters correlated with the effects of cryopreservation on embryo development,” Optical Methods in Developmental Biology II, Proc. SPIE 8953, 89530F (2014).

Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[PubMed]

2013 (3)

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 50901 (2013).
[PubMed]

G. A. Bo and R. J. Mapletoft, “Evaluation and classification of bovine embryos,” Anim. Reprod. 10(3), 344–348 (2013).

A. G. Podoleanu and A. Bradu, “Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography,” Opt. Express 21(16), 19324–19338 (2013).
[PubMed]

2012 (1)

J. G. Zheng, D. Lu, T. Chen, C. Wang, N. Tian, F. Zhao, T. Huo, N. Zhang, D. Chen, W. Ma, J. L. Sun, and P. Xue, “Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography,” J. Biomed. Opt. 17(7), 070503 (2012).
[PubMed]

2011 (2)

N. Sudheendran, S. H. Syed, M. E. Dickinson, I. V. Larina, and K. V. Larin, “Speckle variance OCT imaging of the vasculature in live mammalian embryos,” Laser Phys. Lett. 8(3), 247 (2011).

H. Stinshoff, S. Wilkening, A. Hanstedt, K. Brüning, and C. Wrenzycki, “Cryopreservation affects the quality of in vitro produced bovine embryos at the molecular level,” Theriogenology 76(8), 1433–1441 (2011).
[PubMed]

2010 (2)

A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[PubMed]

T. Somfai, Y. Inaba, Y. Aikawa, M. Ohtake, S. Kobayashi, K. Konishi, and K. Imai, “Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis,” J. Reprod. Dev. 56(2), 200–207 (2010).
[PubMed]

2009 (2)

I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14(5), 050506 (2009).
[PubMed]

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34(7), 986–988 (2009).
[PubMed]

2003 (1)

A. Van Soom, B. Mateusen, J. Leroy, and A. De Kruif, “Assessment of mammalian embryo quality: what can we learn from embryo morphology?” Reprod. Biomed. Online 7(6), 664–670 (2003).
[PubMed]

2002 (1)

I. Boiso, A. Veiga, and R. G. Edwards, “Fundamentals of human embryonic growth in vitro and the selection of high-quality embryos for transfer,” Reprod. Biomed. Online 5(3), 328–350 (2002).
[PubMed]

2001 (2)

G. A. Thouas, N. A. Korfiatis, A. J. French, G. M. Jones, and A. O. Trounson, “Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts,” Reprod. Biomed. Online 3(1), 25–29 (2001).
[PubMed]

K. S. Richter, D. C. Harris, S. T. Daneshmand, and B. S. Shapiro, “Quantitative grading of a human blastocyst: optimal inner cell mass size and shape,” Fertil. Steril. 76(6), 1157–1167 (2001).
[PubMed]

1999 (3)

P. Holm, P. J. Booth, M. H. Schmidt, T. Greve, and H. Callesen, “High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins,” Theriogenology 52(4), 683–700 (1999).
[PubMed]

M. Alikani, J. Cohen, G. Tomkin, G. J. Garrisi, C. Mack, and R. T. Scott, “Human embryo fragmentation in vitro and its implications for pregnancy and implantation,” Fertil. Steril. 71(5), 836–842 (1999).
[PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[PubMed]

1998 (1)

P. Holm, N. N. Shukri, G. Vajta, P. Booth, C. Bendixen, and H. Callesen, “Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex,” Theriogenology 50(8), 1285–1299 (1998).
[PubMed]

1997 (1)

A. van Soom, M. T. Ysebaert, and A. de Kruif, “Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos,” Mol. Reprod. Dev. 47(1), 47–56 (1997).
[PubMed]

1995 (1)

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology 102(5), 748–756 (1995).
[PubMed]

1989 (1)

K. Hardy, A. H. Handyside, and R. M. Winston, “The human blastocyst: cell number, death and allocation during late preimplantation development in vitro,” Development 107(3), 597–604 (1989).
[PubMed]

1984 (1)

A. H. Handyside and S. Hunter, “A rapid procedure for visualising the inner cell mass and trophectoderm nuclei of mouse blastocysts in situ using polynucleotide-specific fluorochromes,” J. Exp. Zool. 231(3), 429–434 (1984).
[PubMed]

1983 (1)

G. M. Lindner and R. W. Wright., “Bovine embryo morphology and evaluation,” Theriogenology 20(4), 407–416 (1983).
[PubMed]

Abeyta, M.

L. Zarnescu, M. C. Leung, M. Abeyta, H. Sudkamp, T. Baer, B. Behr, and A. K. Ellerbee, “Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography,” J. Biomed. Opt. 20(9), 096004 (2015).
[PubMed]

L. Zarnescu, M. Abeyta, T. M. Baer, B. Behr, and A. K. Ellerbee, “Assessment of imaging parameters correlated with the effects of cryopreservation on embryo development,” Optical Methods in Developmental Biology II, Proc. SPIE 8953, 89530F (2014).

Aikawa, Y.

T. Somfai, Y. Inaba, Y. Aikawa, M. Ohtake, S. Kobayashi, K. Konishi, and K. Imai, “Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis,” J. Reprod. Dev. 56(2), 200–207 (2010).
[PubMed]

Ajduk, A.

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[PubMed]

Alikani, M.

M. Alikani, J. Cohen, G. Tomkin, G. J. Garrisi, C. Mack, and R. T. Scott, “Human embryo fragmentation in vitro and its implications for pregnancy and implantation,” Fertil. Steril. 71(5), 836–842 (1999).
[PubMed]

An, L.

Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[PubMed]

Baer, T.

L. Zarnescu, M. C. Leung, M. Abeyta, H. Sudkamp, T. Baer, B. Behr, and A. K. Ellerbee, “Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography,” J. Biomed. Opt. 20(9), 096004 (2015).
[PubMed]

Baer, T. M.

L. Zarnescu, M. Abeyta, T. M. Baer, B. Behr, and A. K. Ellerbee, “Assessment of imaging parameters correlated with the effects of cryopreservation on embryo development,” Optical Methods in Developmental Biology II, Proc. SPIE 8953, 89530F (2014).

Bang, O.

Behr, B.

L. Zarnescu, M. C. Leung, M. Abeyta, H. Sudkamp, T. Baer, B. Behr, and A. K. Ellerbee, “Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography,” J. Biomed. Opt. 20(9), 096004 (2015).
[PubMed]

L. Zarnescu, M. Abeyta, T. M. Baer, B. Behr, and A. K. Ellerbee, “Assessment of imaging parameters correlated with the effects of cryopreservation on embryo development,” Optical Methods in Developmental Biology II, Proc. SPIE 8953, 89530F (2014).

Behringer, R. R.

I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14(5), 050506 (2009).
[PubMed]

Bendixen, C.

P. Holm, N. N. Shukri, G. Vajta, P. Booth, C. Bendixen, and H. Callesen, “Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex,” Theriogenology 50(8), 1285–1299 (1998).
[PubMed]

Bieganowski, L.

Bo, G. A.

G. A. Bo and R. J. Mapletoft, “Evaluation and classification of bovine embryos,” Anim. Reprod. 10(3), 344–348 (2013).

Boiso, I.

I. Boiso, A. Veiga, and R. G. Edwards, “Fundamentals of human embryonic growth in vitro and the selection of high-quality embryos for transfer,” Reprod. Biomed. Online 5(3), 328–350 (2002).
[PubMed]

Booth, P.

P. Holm, N. N. Shukri, G. Vajta, P. Booth, C. Bendixen, and H. Callesen, “Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex,” Theriogenology 50(8), 1285–1299 (1998).
[PubMed]

Booth, P. J.

P. Holm, P. J. Booth, M. H. Schmidt, T. Greve, and H. Callesen, “High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins,” Theriogenology 52(4), 683–700 (1999).
[PubMed]

Boppart, S. A.

Bradu, A.

Brüning, K.

H. Stinshoff, S. Wilkening, A. Hanstedt, K. Brüning, and C. Wrenzycki, “Cryopreservation affects the quality of in vitro produced bovine embryos at the molecular level,” Theriogenology 76(8), 1433–1441 (2011).
[PubMed]

Bukowska, D.

Cadotte, D. W.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 50901 (2013).
[PubMed]

Callesen, H.

P. Holm, P. J. Booth, M. H. Schmidt, T. Greve, and H. Callesen, “High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins,” Theriogenology 52(4), 683–700 (1999).
[PubMed]

P. Holm, N. N. Shukri, G. Vajta, P. Booth, C. Bendixen, and H. Callesen, “Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex,” Theriogenology 50(8), 1285–1299 (1998).
[PubMed]

Capps, A. G.

Cernat, R.

Chen, D.

J. G. Zheng, D. Lu, T. Chen, C. Wang, N. Tian, F. Zhao, T. Huo, N. Zhang, D. Chen, W. Ma, J. L. Sun, and P. Xue, “Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography,” J. Biomed. Opt. 17(7), 070503 (2012).
[PubMed]

Chen, T.

J. G. Zheng, D. Lu, T. Chen, C. Wang, N. Tian, F. Zhao, T. Huo, N. Zhang, D. Chen, W. Ma, J. L. Sun, and P. Xue, “Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography,” J. Biomed. Opt. 17(7), 070503 (2012).
[PubMed]

Cohen, J.

M. Alikani, J. Cohen, G. Tomkin, G. J. Garrisi, C. Mack, and R. T. Scott, “Human embryo fragmentation in vitro and its implications for pregnancy and implantation,” Fertil. Steril. 71(5), 836–842 (1999).
[PubMed]

da Costa, H. S.

Daneshmand, S. T.

K. S. Richter, D. C. Harris, S. T. Daneshmand, and B. S. Shapiro, “Quantitative grading of a human blastocyst: optimal inner cell mass size and shape,” Fertil. Steril. 76(6), 1157–1167 (2001).
[PubMed]

De Kruif, A.

A. Van Soom, B. Mateusen, J. Leroy, and A. De Kruif, “Assessment of mammalian embryo quality: what can we learn from embryo morphology?” Reprod. Biomed. Online 7(6), 664–670 (2003).
[PubMed]

A. van Soom, M. T. Ysebaert, and A. de Kruif, “Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos,” Mol. Reprod. Dev. 47(1), 47–56 (1997).
[PubMed]

Dickinson, M. E.

N. Sudheendran, S. H. Syed, M. E. Dickinson, I. V. Larina, and K. V. Larin, “Speckle variance OCT imaging of the vasculature in live mammalian embryos,” Laser Phys. Lett. 8(3), 247 (2011).

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34(7), 986–988 (2009).
[PubMed]

I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14(5), 050506 (2009).
[PubMed]

Drexler, W.

Dubois, A.

Duker, J. S.

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology 102(5), 748–756 (1995).
[PubMed]

Durbin, M. K.

Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[PubMed]

Edwards, R. G.

I. Boiso, A. Veiga, and R. G. Edwards, “Fundamentals of human embryonic growth in vitro and the selection of high-quality embryos for transfer,” Reprod. Biomed. Online 5(3), 328–350 (2002).
[PubMed]

Ellerbee, A. K.

A. Federici, H. S. da Costa, J. Ogien, A. K. Ellerbee, and A. Dubois, “Wide-field, full-field optical coherence microscopy for high-axial-resolution phase and amplitude imaging,” Appl. Opt. 54(27), 8212–8220 (2015).
[PubMed]

L. Zarnescu, M. C. Leung, M. Abeyta, H. Sudkamp, T. Baer, B. Behr, and A. K. Ellerbee, “Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography,” J. Biomed. Opt. 20(9), 096004 (2015).
[PubMed]

L. Zarnescu, M. Abeyta, T. M. Baer, B. Behr, and A. K. Ellerbee, “Assessment of imaging parameters correlated with the effects of cryopreservation on embryo development,” Optical Methods in Developmental Biology II, Proc. SPIE 8953, 89530F (2014).

Federici, A.

Feuchter, T.

French, A. J.

G. A. Thouas, N. A. Korfiatis, A. J. French, G. M. Jones, and A. O. Trounson, “Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts,” Reprod. Biomed. Online 3(1), 25–29 (2001).
[PubMed]

Fujimoto, J. G.

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[PubMed]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology 102(5), 748–756 (1995).
[PubMed]

Furushima, K.

I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14(5), 050506 (2009).
[PubMed]

Garrisi, G. J.

M. Alikani, J. Cohen, G. Tomkin, G. J. Garrisi, C. Mack, and R. T. Scott, “Human embryo fragmentation in vitro and its implications for pregnancy and implantation,” Fertil. Steril. 71(5), 836–842 (1999).
[PubMed]

Gorczynska, I.

Gregori, G.

Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[PubMed]

Greve, T.

P. Holm, P. J. Booth, M. H. Schmidt, T. Greve, and H. Callesen, “High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins,” Theriogenology 52(4), 683–700 (1999).
[PubMed]

Handyside, A. H.

K. Hardy, A. H. Handyside, and R. M. Winston, “The human blastocyst: cell number, death and allocation during late preimplantation development in vitro,” Development 107(3), 597–604 (1989).
[PubMed]

A. H. Handyside and S. Hunter, “A rapid procedure for visualising the inner cell mass and trophectoderm nuclei of mouse blastocysts in situ using polynucleotide-specific fluorochromes,” J. Exp. Zool. 231(3), 429–434 (1984).
[PubMed]

Hanstedt, A.

H. Stinshoff, S. Wilkening, A. Hanstedt, K. Brüning, and C. Wrenzycki, “Cryopreservation affects the quality of in vitro produced bovine embryos at the molecular level,” Theriogenology 76(8), 1433–1441 (2011).
[PubMed]

Hardy, K.

K. Hardy, A. H. Handyside, and R. M. Winston, “The human blastocyst: cell number, death and allocation during late preimplantation development in vitro,” Development 107(3), 597–604 (1989).
[PubMed]

Harris, D. C.

K. S. Richter, D. C. Harris, S. T. Daneshmand, and B. S. Shapiro, “Quantitative grading of a human blastocyst: optimal inner cell mass size and shape,” Fertil. Steril. 76(6), 1157–1167 (2001).
[PubMed]

Heath, D. G.

Hee, M. R.

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology 102(5), 748–756 (1995).
[PubMed]

Holm, P.

P. Holm, P. J. Booth, M. H. Schmidt, T. Greve, and H. Callesen, “High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins,” Theriogenology 52(4), 683–700 (1999).
[PubMed]

P. Holm, N. N. Shukri, G. Vajta, P. Booth, C. Bendixen, and H. Callesen, “Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex,” Theriogenology 50(8), 1285–1299 (1998).
[PubMed]

Huang, Y.

Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[PubMed]

Hunter, S.

A. H. Handyside and S. Hunter, “A rapid procedure for visualising the inner cell mass and trophectoderm nuclei of mouse blastocysts in situ using polynucleotide-specific fluorochromes,” J. Exp. Zool. 231(3), 429–434 (1984).
[PubMed]

Huo, T.

J. G. Zheng, D. Lu, T. Chen, C. Wang, N. Tian, F. Zhao, T. Huo, N. Zhang, D. Chen, W. Ma, J. L. Sun, and P. Xue, “Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography,” J. Biomed. Opt. 17(7), 070503 (2012).
[PubMed]

Imai, K.

T. Somfai, Y. Inaba, Y. Aikawa, M. Ohtake, S. Kobayashi, K. Konishi, and K. Imai, “Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis,” J. Reprod. Dev. 56(2), 200–207 (2010).
[PubMed]

Inaba, Y.

T. Somfai, Y. Inaba, Y. Aikawa, M. Ohtake, S. Kobayashi, K. Konishi, and K. Imai, “Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis,” J. Reprod. Dev. 56(2), 200–207 (2010).
[PubMed]

Ippen, E. P.

Israelsen, N. M.

Ivers, S.

Jarvi, M.

Jones, G. M.

G. A. Thouas, N. A. Korfiatis, A. J. French, G. M. Jones, and A. O. Trounson, “Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts,” Reprod. Biomed. Online 3(1), 25–29 (2001).
[PubMed]

Karnowski, K.

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[PubMed]

Kärtner, F. X.

Keane, P. A.

Kobayashi, S.

T. Somfai, Y. Inaba, Y. Aikawa, M. Ohtake, S. Kobayashi, K. Konishi, and K. Imai, “Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis,” J. Reprod. Dev. 56(2), 200–207 (2010).
[PubMed]

Konishi, K.

T. Somfai, Y. Inaba, Y. Aikawa, M. Ohtake, S. Kobayashi, K. Konishi, and K. Imai, “Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis,” J. Reprod. Dev. 56(2), 200–207 (2010).
[PubMed]

Korfiatis, N. A.

G. A. Thouas, N. A. Korfiatis, A. J. French, G. M. Jones, and A. O. Trounson, “Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts,” Reprod. Biomed. Online 3(1), 25–29 (2001).
[PubMed]

Kovacs, P.

C. Racowsky, P. Kovacs, and W. P. Martins, “A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go?” J. Assist. Reprod. Genet. 32(7), 1025–1030 (2015).
[PubMed]

Krawiec, K.

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[PubMed]

D. Ruminski, B. L. Sikorski, D. Bukowska, M. Szkulmowski, K. Krawiec, G. Malukiewicz, L. Bieganowski, and M. Wojtkowski, “OCT angiography by absolute intensity difference applied to normal and diseased human retinas,” Biomed. Opt. Express 6(8), 2738–2754 (2015).
[PubMed]

Larin, K. V.

N. Sudheendran, S. H. Syed, M. E. Dickinson, I. V. Larina, and K. V. Larin, “Speckle variance OCT imaging of the vasculature in live mammalian embryos,” Laser Phys. Lett. 8(3), 247 (2011).

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34(7), 986–988 (2009).
[PubMed]

I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14(5), 050506 (2009).
[PubMed]

Larina, I. V.

N. Sudheendran, S. H. Syed, M. E. Dickinson, I. V. Larina, and K. V. Larin, “Speckle variance OCT imaging of the vasculature in live mammalian embryos,” Laser Phys. Lett. 8(3), 247 (2011).

I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34(7), 986–988 (2009).
[PubMed]

I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14(5), 050506 (2009).
[PubMed]

Laron, M.

Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[PubMed]

Lee, K.

Leick, L.

Leroy, J.

A. Van Soom, B. Mateusen, J. Leroy, and A. De Kruif, “Assessment of mammalian embryo quality: what can we learn from embryo morphology?” Reprod. Biomed. Online 7(6), 664–670 (2003).
[PubMed]

Leung, M. C.

L. Zarnescu, M. C. Leung, M. Abeyta, H. Sudkamp, T. Baer, B. Behr, and A. K. Ellerbee, “Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography,” J. Biomed. Opt. 20(9), 096004 (2015).
[PubMed]

Leung, M. K. K.

Li, X. D.

Lindner, G. M.

G. M. Lindner and R. W. Wright., “Bovine embryo morphology and evaluation,” Theriogenology 20(4), 407–416 (1983).
[PubMed]

Lu, D.

J. G. Zheng, D. Lu, T. Chen, C. Wang, N. Tian, F. Zhao, T. Huo, N. Zhang, D. Chen, W. Ma, J. L. Sun, and P. Xue, “Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography,” J. Biomed. Opt. 17(7), 070503 (2012).
[PubMed]

Luk, T. W.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 50901 (2013).
[PubMed]

Ma, W.

J. G. Zheng, D. Lu, T. Chen, C. Wang, N. Tian, F. Zhao, T. Huo, N. Zhang, D. Chen, W. Ma, J. L. Sun, and P. Xue, “Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography,” J. Biomed. Opt. 17(7), 070503 (2012).
[PubMed]

Mack, C.

M. Alikani, J. Cohen, G. Tomkin, G. J. Garrisi, C. Mack, and R. T. Scott, “Human embryo fragmentation in vitro and its implications for pregnancy and implantation,” Fertil. Steril. 71(5), 836–842 (1999).
[PubMed]

Mahmud, M. S.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 50901 (2013).
[PubMed]

Malukiewicz, G.

Mapletoft, R. J.

G. A. Bo and R. J. Mapletoft, “Evaluation and classification of bovine embryos,” Anim. Reprod. 10(3), 344–348 (2013).

Maria, M.

Mariampillai, A.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 50901 (2013).
[PubMed]

A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[PubMed]

Martins, W. P.

C. Racowsky, P. Kovacs, and W. P. Martins, “A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go?” J. Assist. Reprod. Genet. 32(7), 1025–1030 (2015).
[PubMed]

Mateusen, B.

A. Van Soom, B. Mateusen, J. Leroy, and A. De Kruif, “Assessment of mammalian embryo quality: what can we learn from embryo morphology?” Reprod. Biomed. Online 7(6), 664–670 (2003).
[PubMed]

Migacz, J. V.

Morgner, U.

Ogien, J.

Ohtake, M.

T. Somfai, Y. Inaba, Y. Aikawa, M. Ohtake, S. Kobayashi, K. Konishi, and K. Imai, “Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis,” J. Reprod. Dev. 56(2), 200–207 (2010).
[PubMed]

Pitris, C.

Podoleanu, A.

Podoleanu, A. G.

Puliafito, C. A.

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology 102(5), 748–756 (1995).
[PubMed]

Racowsky, C.

C. Racowsky, P. Kovacs, and W. P. Martins, “A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go?” J. Assist. Reprod. Genet. 32(7), 1025–1030 (2015).
[PubMed]

Rajendram, R.

Reichel, E.

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology 102(5), 748–756 (1995).
[PubMed]

Richter, K. S.

K. S. Richter, D. C. Harris, S. T. Daneshmand, and B. S. Shapiro, “Quantitative grading of a human blastocyst: optimal inner cell mass size and shape,” Fertil. Steril. 76(6), 1157–1167 (2001).
[PubMed]

Rivet, S.

Rosenfeld, P. J.

Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[PubMed]

Ruminski, D.

Schmidt, M. H.

P. Holm, P. J. Booth, M. H. Schmidt, T. Greve, and H. Callesen, “High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins,” Theriogenology 52(4), 683–700 (1999).
[PubMed]

Schuman, J. S.

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology 102(5), 748–756 (1995).
[PubMed]

Scott, R. T.

M. Alikani, J. Cohen, G. Tomkin, G. J. Garrisi, C. Mack, and R. T. Scott, “Human embryo fragmentation in vitro and its implications for pregnancy and implantation,” Fertil. Steril. 71(5), 836–842 (1999).
[PubMed]

Shapiro, B. S.

K. S. Richter, D. C. Harris, S. T. Daneshmand, and B. S. Shapiro, “Quantitative grading of a human blastocyst: optimal inner cell mass size and shape,” Fertil. Steril. 76(6), 1157–1167 (2001).
[PubMed]

Sharma, U.

Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[PubMed]

Shukri, N. N.

P. Holm, N. N. Shukri, G. Vajta, P. Booth, C. Bendixen, and H. Callesen, “Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex,” Theriogenology 50(8), 1285–1299 (1998).
[PubMed]

Sikorski, B. L.

Somfai, T.

T. Somfai, Y. Inaba, Y. Aikawa, M. Ohtake, S. Kobayashi, K. Konishi, and K. Imai, “Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis,” J. Reprod. Dev. 56(2), 200–207 (2010).
[PubMed]

Standish, B. A.

Stinshoff, H.

H. Stinshoff, S. Wilkening, A. Hanstedt, K. Brüning, and C. Wrenzycki, “Cryopreservation affects the quality of in vitro produced bovine embryos at the molecular level,” Theriogenology 76(8), 1433–1441 (2011).
[PubMed]

Sudheendran, N.

N. Sudheendran, S. H. Syed, M. E. Dickinson, I. V. Larina, and K. V. Larin, “Speckle variance OCT imaging of the vasculature in live mammalian embryos,” Laser Phys. Lett. 8(3), 247 (2011).

Sudkamp, H.

L. Zarnescu, M. C. Leung, M. Abeyta, H. Sudkamp, T. Baer, B. Behr, and A. K. Ellerbee, “Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography,” J. Biomed. Opt. 20(9), 096004 (2015).
[PubMed]

Sun, C.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 50901 (2013).
[PubMed]

Sun, J. L.

J. G. Zheng, D. Lu, T. Chen, C. Wang, N. Tian, F. Zhao, T. Huo, N. Zhang, D. Chen, W. Ma, J. L. Sun, and P. Xue, “Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography,” J. Biomed. Opt. 17(7), 070503 (2012).
[PubMed]

Swanson, E. A.

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology 102(5), 748–756 (1995).
[PubMed]

Syed, S.

Syed, S. H.

N. Sudheendran, S. H. Syed, M. E. Dickinson, I. V. Larina, and K. V. Larin, “Speckle variance OCT imaging of the vasculature in live mammalian embryos,” Laser Phys. Lett. 8(3), 247 (2011).

Szkulmowski, M.

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[PubMed]

D. Ruminski, B. L. Sikorski, D. Bukowska, M. Szkulmowski, K. Krawiec, G. Malukiewicz, L. Bieganowski, and M. Wojtkowski, “OCT angiography by absolute intensity difference applied to normal and diseased human retinas,” Biomed. Opt. Express 6(8), 2738–2754 (2015).
[PubMed]

Tamborski, S.

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[PubMed]

Thorell, M. R.

Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[PubMed]

Thouas, G. A.

G. A. Thouas, N. A. Korfiatis, A. J. French, G. M. Jones, and A. O. Trounson, “Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts,” Reprod. Biomed. Online 3(1), 25–29 (2001).
[PubMed]

Tian, N.

J. G. Zheng, D. Lu, T. Chen, C. Wang, N. Tian, F. Zhao, T. Huo, N. Zhang, D. Chen, W. Ma, J. L. Sun, and P. Xue, “Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography,” J. Biomed. Opt. 17(7), 070503 (2012).
[PubMed]

Tomkin, G.

M. Alikani, J. Cohen, G. Tomkin, G. J. Garrisi, C. Mack, and R. T. Scott, “Human embryo fragmentation in vitro and its implications for pregnancy and implantation,” Fertil. Steril. 71(5), 836–842 (1999).
[PubMed]

Trounson, A. O.

G. A. Thouas, N. A. Korfiatis, A. J. French, G. M. Jones, and A. O. Trounson, “Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts,” Reprod. Biomed. Online 3(1), 25–29 (2001).
[PubMed]

Vajta, G.

P. Holm, N. N. Shukri, G. Vajta, P. Booth, C. Bendixen, and H. Callesen, “Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex,” Theriogenology 50(8), 1285–1299 (1998).
[PubMed]

Van Soom, A.

A. Van Soom, B. Mateusen, J. Leroy, and A. De Kruif, “Assessment of mammalian embryo quality: what can we learn from embryo morphology?” Reprod. Biomed. Online 7(6), 664–670 (2003).
[PubMed]

A. van Soom, M. T. Ysebaert, and A. de Kruif, “Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos,” Mol. Reprod. Dev. 47(1), 47–56 (1997).
[PubMed]

Veiga, A.

I. Boiso, A. Veiga, and R. G. Edwards, “Fundamentals of human embryonic growth in vitro and the selection of high-quality embryos for transfer,” Reprod. Biomed. Online 5(3), 328–350 (2002).
[PubMed]

Vitkin, A.

Vuong, B.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 50901 (2013).
[PubMed]

Wang, C.

J. G. Zheng, D. Lu, T. Chen, C. Wang, N. Tian, F. Zhao, T. Huo, N. Zhang, D. Chen, W. Ma, J. L. Sun, and P. Xue, “Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography,” J. Biomed. Opt. 17(7), 070503 (2012).
[PubMed]

Wang, R. K.

Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[PubMed]

Werner, J. S.

Wieloch, B.

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[PubMed]

Wilkening, S.

H. Stinshoff, S. Wilkening, A. Hanstedt, K. Brüning, and C. Wrenzycki, “Cryopreservation affects the quality of in vitro produced bovine embryos at the molecular level,” Theriogenology 76(8), 1433–1441 (2011).
[PubMed]

Wilson, B. C.

Winston, R. M.

K. Hardy, A. H. Handyside, and R. M. Winston, “The human blastocyst: cell number, death and allocation during late preimplantation development in vitro,” Development 107(3), 597–604 (1989).
[PubMed]

Wojtkowski, M.

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[PubMed]

D. Ruminski, B. L. Sikorski, D. Bukowska, M. Szkulmowski, K. Krawiec, G. Malukiewicz, L. Bieganowski, and M. Wojtkowski, “OCT angiography by absolute intensity difference applied to normal and diseased human retinas,” Biomed. Opt. Express 6(8), 2738–2754 (2015).
[PubMed]

Wong, C.

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology 102(5), 748–756 (1995).
[PubMed]

Wrenzycki, C.

H. Stinshoff, S. Wilkening, A. Hanstedt, K. Brüning, and C. Wrenzycki, “Cryopreservation affects the quality of in vitro produced bovine embryos at the molecular level,” Theriogenology 76(8), 1433–1441 (2011).
[PubMed]

Wright, R. W.

G. M. Lindner and R. W. Wright., “Bovine embryo morphology and evaluation,” Theriogenology 20(4), 407–416 (1983).
[PubMed]

Xue, P.

J. G. Zheng, D. Lu, T. Chen, C. Wang, N. Tian, F. Zhao, T. Huo, N. Zhang, D. Chen, W. Ma, J. L. Sun, and P. Xue, “Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography,” J. Biomed. Opt. 17(7), 070503 (2012).
[PubMed]

Yang, V. X.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 50901 (2013).
[PubMed]

Yang, V. X. D.

Ysebaert, M. T.

A. van Soom, M. T. Ysebaert, and A. de Kruif, “Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos,” Mol. Reprod. Dev. 47(1), 47–56 (1997).
[PubMed]

Zarnescu, L.

L. Zarnescu, M. C. Leung, M. Abeyta, H. Sudkamp, T. Baer, B. Behr, and A. K. Ellerbee, “Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography,” J. Biomed. Opt. 20(9), 096004 (2015).
[PubMed]

L. Zarnescu, M. Abeyta, T. M. Baer, B. Behr, and A. K. Ellerbee, “Assessment of imaging parameters correlated with the effects of cryopreservation on embryo development,” Optical Methods in Developmental Biology II, Proc. SPIE 8953, 89530F (2014).

Zawadzki, R. J.

Zhang, N.

J. G. Zheng, D. Lu, T. Chen, C. Wang, N. Tian, F. Zhao, T. Huo, N. Zhang, D. Chen, W. Ma, J. L. Sun, and P. Xue, “Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography,” J. Biomed. Opt. 17(7), 070503 (2012).
[PubMed]

Zhang, Q.

Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[PubMed]

Zhao, F.

J. G. Zheng, D. Lu, T. Chen, C. Wang, N. Tian, F. Zhao, T. Huo, N. Zhang, D. Chen, W. Ma, J. L. Sun, and P. Xue, “Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography,” J. Biomed. Opt. 17(7), 070503 (2012).
[PubMed]

Zheng, J. G.

J. G. Zheng, D. Lu, T. Chen, C. Wang, N. Tian, F. Zhao, T. Huo, N. Zhang, D. Chen, W. Ma, J. L. Sun, and P. Xue, “Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography,” J. Biomed. Opt. 17(7), 070503 (2012).
[PubMed]

Anim. Reprod. (1)

G. A. Bo and R. J. Mapletoft, “Evaluation and classification of bovine embryos,” Anim. Reprod. 10(3), 344–348 (2013).

Appl. Opt. (1)

Biomed. Opt. Express (3)

Development (1)

K. Hardy, A. H. Handyside, and R. M. Winston, “The human blastocyst: cell number, death and allocation during late preimplantation development in vitro,” Development 107(3), 597–604 (1989).
[PubMed]

Fertil. Steril. (2)

K. S. Richter, D. C. Harris, S. T. Daneshmand, and B. S. Shapiro, “Quantitative grading of a human blastocyst: optimal inner cell mass size and shape,” Fertil. Steril. 76(6), 1157–1167 (2001).
[PubMed]

M. Alikani, J. Cohen, G. Tomkin, G. J. Garrisi, C. Mack, and R. T. Scott, “Human embryo fragmentation in vitro and its implications for pregnancy and implantation,” Fertil. Steril. 71(5), 836–842 (1999).
[PubMed]

J. Assist. Reprod. Genet. (1)

C. Racowsky, P. Kovacs, and W. P. Martins, “A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go?” J. Assist. Reprod. Genet. 32(7), 1025–1030 (2015).
[PubMed]

J. Biomed. Opt. (4)

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 50901 (2013).
[PubMed]

I. V. Larina, K. Furushima, M. E. Dickinson, R. R. Behringer, and K. V. Larin, “Live imaging of rat embryos with Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 14(5), 050506 (2009).
[PubMed]

L. Zarnescu, M. C. Leung, M. Abeyta, H. Sudkamp, T. Baer, B. Behr, and A. K. Ellerbee, “Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography,” J. Biomed. Opt. 20(9), 096004 (2015).
[PubMed]

J. G. Zheng, D. Lu, T. Chen, C. Wang, N. Tian, F. Zhao, T. Huo, N. Zhang, D. Chen, W. Ma, J. L. Sun, and P. Xue, “Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography,” J. Biomed. Opt. 17(7), 070503 (2012).
[PubMed]

J. Exp. Zool. (1)

A. H. Handyside and S. Hunter, “A rapid procedure for visualising the inner cell mass and trophectoderm nuclei of mouse blastocysts in situ using polynucleotide-specific fluorochromes,” J. Exp. Zool. 231(3), 429–434 (1984).
[PubMed]

J. Reprod. Dev. (1)

T. Somfai, Y. Inaba, Y. Aikawa, M. Ohtake, S. Kobayashi, K. Konishi, and K. Imai, “Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis,” J. Reprod. Dev. 56(2), 200–207 (2010).
[PubMed]

Laser Phys. Lett. (1)

N. Sudheendran, S. H. Syed, M. E. Dickinson, I. V. Larina, and K. V. Larin, “Speckle variance OCT imaging of the vasculature in live mammalian embryos,” Laser Phys. Lett. 8(3), 247 (2011).

Mol. Reprod. Dev. (1)

A. van Soom, M. T. Ysebaert, and A. de Kruif, “Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos,” Mol. Reprod. Dev. 47(1), 47–56 (1997).
[PubMed]

Ophthalmic Surg. Lasers Imaging Retina (1)

Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[PubMed]

Ophthalmology (1)

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmology 102(5), 748–756 (1995).
[PubMed]

Opt. Express (2)

Opt. Lett. (3)

Optical Methods in Developmental Biology II, Proc. SPIE (1)

L. Zarnescu, M. Abeyta, T. M. Baer, B. Behr, and A. K. Ellerbee, “Assessment of imaging parameters correlated with the effects of cryopreservation on embryo development,” Optical Methods in Developmental Biology II, Proc. SPIE 8953, 89530F (2014).

Reprod. Biomed. Online (3)

G. A. Thouas, N. A. Korfiatis, A. J. French, G. M. Jones, and A. O. Trounson, “Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts,” Reprod. Biomed. Online 3(1), 25–29 (2001).
[PubMed]

I. Boiso, A. Veiga, and R. G. Edwards, “Fundamentals of human embryonic growth in vitro and the selection of high-quality embryos for transfer,” Reprod. Biomed. Online 5(3), 328–350 (2002).
[PubMed]

A. Van Soom, B. Mateusen, J. Leroy, and A. De Kruif, “Assessment of mammalian embryo quality: what can we learn from embryo morphology?” Reprod. Biomed. Online 7(6), 664–670 (2003).
[PubMed]

Sci. Rep. (1)

K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[PubMed]

Theriogenology (4)

P. Holm, N. N. Shukri, G. Vajta, P. Booth, C. Bendixen, and H. Callesen, “Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex,” Theriogenology 50(8), 1285–1299 (1998).
[PubMed]

G. M. Lindner and R. W. Wright., “Bovine embryo morphology and evaluation,” Theriogenology 20(4), 407–416 (1983).
[PubMed]

H. Stinshoff, S. Wilkening, A. Hanstedt, K. Brüning, and C. Wrenzycki, “Cryopreservation affects the quality of in vitro produced bovine embryos at the molecular level,” Theriogenology 76(8), 1433–1441 (2011).
[PubMed]

P. Holm, P. J. Booth, M. H. Schmidt, T. Greve, and H. Callesen, “High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins,” Theriogenology 52(4), 683–700 (1999).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 A typical bovine blastocyst produced in vitro using the same method described under section 2.1. ICM: inner cell mass, TE: trophectoderm, ZP: zona pellucida. The embryo can be imagined as a liquid filled sphere. The ICM forms a discrete unit and is attached to the sphere’s internal surface, while the surface itself is formed by the thin TE cell layer. Additionally, an outer proteic shell, the ZP (arrow), encapsulates the whole embryo. The image was acquired by a Nikon Eclipse TE200 inverted modulation contrast microscope at x200 total magnification and by using an RI DC2 camera and its dedicated software RI Viewer.
Fig. 2
Fig. 2 Images of a day 7 bovine blastocyst at different time points after insemination. The images were acquired by phase contrast microscopy at x200 magnification using a time-lapse system PrimoVision Evo (Vitrolife). Completing a viability assessment is likely to require protracted observation as the general morphology of the embryo changes very little over time. Scale bar = 50 µm.
Fig. 3
Fig. 3 OCT set-up. SS: swept source; C1, C2: directional optical couplers, PC1, PC2: polarization controllers, L1, L2: lenses, TS: x,y,z translation stage to position the sample.
Fig. 4
Fig. 4 Screen-shot of the “in-house” Master/Slave software used for image guidance. Three categories of images are displayed simultaneously and in real time in each raster: 2x cross section images, 9x en face images and a SVP. (a) Cross section along the red line (plane (z,y)) in the SVP image, (b) (i-ix) en face images, (c) SVP and (d) cross section image along the green line (plane (x,z)) in the SVP image. To cover the whole depth of the embryo, 9 en face images (i – ix) are shown over a total depth of 225 µm, separated by a depth interval of 25 µm (measured in air). All images are represented on a linear scale. Blue arrows indicate the glass plate and the orange arrow indicates the embryo shape. The lateral size of images is 230 µm and the axial range of the cross sections is 1 mm (measured in air).
Fig. 5
Fig. 5 3D display of a day 7-post in vitro fertilization bovine embryo. En face images at different depths from the top embryo surface (a) 25µm, (b) 75µm, (c) 150µm, (d) 225µm and (e) 300µm (all measured in air) at the beginning of the experiment, scale bar = 50µm. (f) cross section view over 500 µm in depth (measured in air), scale bar = 150 µm x 150 µm.
Fig. 6
Fig. 6 En face images (A) of the embryo over 26 h (actively monitored over the first 18 h) and their SV en face display/Motion Map (B) at a fixed depth (150 µm from the top embryo surface measured in air). Scale bar = 50µm. SV value are displayed Red/Green scale. Red represents higher value.
Fig. 7
Fig. 7 Maximum value of the Speckle Variance for different embryos over 10 minutes. Embryo 1 – Embryo 5 (E1-E5): Curves representing the quantity of movement for live embryos, DE: Curve for dead embryo.
Fig. 8
Fig. 8 Quantity of movement (for the embryo 5 in Fig. 6) at superficial (25 µm and 300 µm, middle (75 µm and 225 µm) and central depth (150 µm) over long-term observation.
Fig. 9
Fig. 9 Percentage of number of en face images displaying SV values above threshold at any given time for an embryo (number 5 in Fig. 7) over long-term observation. The downward trend is expanded on the right hand to better display the decreasing motion of the embryo over time.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SV( i,j,k )= 1 N i=1 N ( I( i,j,k ) 1 N i=1 N I( i,j,k ) ) 2

Metrics