Abstract

With almost 50% of all surgeries in the U.S. being performed as minimally invasive procedures, there is a need to develop quantitative endoscopic imaging techniques to aid surgical guidance. Recent developments in widefield optical imaging make endoscopic implementations of real-time measurement possible. In this work, we introduce a proof-of-concept endoscopic implementation of a functional widefield imaging technique called 3D single snapshot of optical properties (3D-SSOP) that provides quantitative maps of absorption and reduced scattering optical properties as well as surface topography with simple instrumentation added to a commercial endoscope. The system’s precision and accuracy is validated using tissue-mimicking phantoms, showing a max error of 0.004 mm−1, 0.05 mm−1, and 1.1 mm for absorption, reduced scattering, and sample topography, respectively. This study further demonstrates video acquisition of a moving phantom and an in vivo sample with a framerate of approximately 11 frames per second.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Real-time, profile-corrected single snapshot imaging of optical properties

Martijn van de Giessen, Joseph P. Angelo, and Sylvain Gioux
Biomed. Opt. Express 6(10) 4051-4062 (2015)

Real-time simultaneous single snapshot of optical properties and blood flow using coherent spatial frequency domain imaging (cSFDI)

Michael Ghijsen, Bernard Choi, Anthony J. Durkin, Sylvain Gioux, and Bruce J. Tromberg
Biomed. Opt. Express 7(3) 870-882 (2016)

qF-SSOP: real-time optical property corrected fluorescence imaging

Pablo A. Valdes, Joseph P. Angelo, Hak Soo Choi, and Sylvain Gioux
Biomed. Opt. Express 8(8) 3597-3605 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Tsui, R. Klein, and M. Garabrant, “Minimally invasive surgery: national trends in adoption and future directions for hospital strategy,” Surg. Endosc. 27(7), 2253–2257 (2013).
    [PubMed]
  2. J. Fengler, “Near-infrared fluorescence laparoscopy-technical description of PINPOINT(R) a novel and commercially available system,” Colorectal Dis. 17(Suppl 3), 3–6 (2015).
    [PubMed]
  3. N. Thekkek, M. H. Lee, A. D. Polydorides, D. G. Rosen, S. Anandasabapathy, and R. Richards-Kortum, “Quantitative evaluation of in vivo vital-dye fluorescence endoscopic imaging for the detection of Barrett’s-associated neoplasia,” J. Biomed. Opt. 20(5), 56002 (2015).
    [PubMed]
  4. Y. Jiang, Y. Gong, J. H. Rubenstein, T. D. Wang, and E. J. Seibel, “Toward real-time quantification of fluorescence molecular probes using target/background ratio for guiding biopsy and endoscopic therapy of esophageal neoplasia,” J. Med. Imaging (Bellingham) 4(2), 024502 (2017).
    [PubMed]
  5. R. Leitner, M. De Biasio, T. Arnold, C. V. Dinh, M. Loog, and R. P. Duin, “Multi-spectral video endoscopy system for the detection of cancerous tissue,” Pattern Recognit. Lett. 34, 85–93 (2013).
  6. N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21(6), 66001 (2016).
    [PubMed]
  7. T. Rath, G. E. Tontini, M. Vieth, A. Nägel, M. F. Neurath, and H. Neumann, “In vivo real-time assessment of colorectal polyp histology using an optical biopsy forceps system based on laser-induced fluorescence spectroscopy,” Endoscopy 48(6), 557–562 (2016).
    [PubMed]
  8. N. J. Durr, V. Parot, G. Traverso, W. P. Puricelli, B. J. Vakoc, N. S. Nishioka, and G. Gonzalez, “Imaging colonic surface topography with a photometric stereo endoscope,” Gastrointest. Endosc. 79, 5S (2014).
  9. I. Intuitive Surgical, “Da Vinci Surgical System” (Intuitive Surgical, Inc.), retrieved August, 2016, http://www.intuitivesurgical.com .
  10. I. Olympus, “Endoeye Flex 3D” (Olympus, Inc), retrieved August, 2016, medical.olympusamerica.com .
  11. J. Vervandier and S. Gioux, “Single snapshot imaging of optical properties,” Biomed. Opt. Express 4(12), 2938–2944 (2013).
    [PubMed]
  12. K. P. Nadeau, A. J. Durkin, and B. J. Tromberg, “Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain,” J. Biomed. Opt. 19(5), 056013 (2014).
    [PubMed]
  13. N. Dögnitz and G. Wagnières, “Determination of tissue optical properties by steady-state spatial frequency-domain reflectometry,” Lasers Med. Sci. 13, 55–65 (1998).
  14. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
    [PubMed]
  15. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
    [PubMed]
  16. S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
    [PubMed]
  17. Y. Zhao, S. Tabassum, S. Piracha, M. S. Nandhu, M. Viapiano, and D. Roblyer, “Angle correction for small animal tumor imaging with spatial frequency domain imaging (SFDI),” Biomed. Opt. Express 7(6), 2373–2384 (2016).
    [PubMed]
  18. A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
    [PubMed]
  19. S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
    [PubMed]
  20. M. van de Giessen, J. P. Angelo, and S. Gioux, “Real-time, profile-corrected single snapshot imaging of optical properties,” Biomed. Opt. Express 6(10), 4051–4062 (2015).
    [PubMed]
  21. K. P. Nadeau, T. B. Rice, A. J. Durkin, and B. J. Tromberg, “Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging,” J. Biomed. Opt. 20(11), 116005 (2015).
    [PubMed]
  22. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [PubMed]
  23. V. Venugopal, M. Park, Y. Ashitate, F. Neacsu, F. Kettenring, J. V. Frangioni, S. P. Gangadharan, and S. Gioux, “Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system,” J. Biomed. Opt. 18(12), 126018 (2013).
    [PubMed]
  24. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22(24), 3977 (1983).
    [PubMed]
  25. W. S. Zhou and X. Y. Su, “A Direct Mapping Algorithm for Phase-measuring Profilometry,” J. Mod. Opt. 41, 89–94 (1994).
  26. J. Swartling, A. Pifferi, A. M. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A 20(4), 714–727 (2003).
    [PubMed]
  27. F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in 2008), 687007–687009.
  28. T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging,” Appl. Opt. 39(34), 6487–6497 (2000).
    [PubMed]
  29. M. Ghijsen, B. Choi, A. J. Durkin, S. Gioux, and B. J. Tromberg, “Real-time simultaneous single snapshot of optical properties and blood flow using coherent spatial frequency domain imaging (cSFDI),” Biomed. Opt. Express 7(3), 870–882 (2016).
    [PubMed]
  30. P. Diep, S. Pannem, J. Sweer, J. Lo, M. Snyder, G. Stueber, Y. Zhao, S. Tabassum, R. Istfan, J. Wu, S. Erramilli, and D. Roblyer, “Three-dimensional printed optical phantoms with customized absorption and scattering properties,” Biomed. Opt. Express 6(11), 4212–4220 (2015).
    [PubMed]
  31. J. Angelo, C. R. Vargas, B. T. Lee, I. J. Bigio, and S. Gioux, “Ultrafast optical property map generation using lookup tables,” J. Biomed. Opt. 21(11), 110501 (2016).
    [PubMed]
  32. P. A. Valdes, J. P. Angelo, H. S. Choi, and S. Gioux, “qF-SSOP: real-time optical property corrected fluorescence imaging,” Biomed. Opt. Express 8(8), 3597–3605 (2017).
    [PubMed]
  33. M. Sibai, I. Veilleux, J. T. Elliott, F. Leblond, and B. C. Wilson, “Quantitative spatial frequency fluorescence imaging in the sub-diffusive domain for image-guided glioma resection,” Biomed. Opt. Express 6(12), 4923–4933 (2015).
    [PubMed]
  34. K. P. Nadeau, A. Ponticorvo, H. J. Lee, D. Lu, A. J. Durkin, and B. J. Tromberg, “Quantitative assessment of renal arterial occlusion in a porcine model using spatial frequency domain imaging,” Opt. Lett. 38(18), 3566–3569 (2013).
    [PubMed]

2017 (2)

Y. Jiang, Y. Gong, J. H. Rubenstein, T. D. Wang, and E. J. Seibel, “Toward real-time quantification of fluorescence molecular probes using target/background ratio for guiding biopsy and endoscopic therapy of esophageal neoplasia,” J. Med. Imaging (Bellingham) 4(2), 024502 (2017).
[PubMed]

P. A. Valdes, J. P. Angelo, H. S. Choi, and S. Gioux, “qF-SSOP: real-time optical property corrected fluorescence imaging,” Biomed. Opt. Express 8(8), 3597–3605 (2017).
[PubMed]

2016 (5)

M. Ghijsen, B. Choi, A. J. Durkin, S. Gioux, and B. J. Tromberg, “Real-time simultaneous single snapshot of optical properties and blood flow using coherent spatial frequency domain imaging (cSFDI),” Biomed. Opt. Express 7(3), 870–882 (2016).
[PubMed]

Y. Zhao, S. Tabassum, S. Piracha, M. S. Nandhu, M. Viapiano, and D. Roblyer, “Angle correction for small animal tumor imaging with spatial frequency domain imaging (SFDI),” Biomed. Opt. Express 7(6), 2373–2384 (2016).
[PubMed]

J. Angelo, C. R. Vargas, B. T. Lee, I. J. Bigio, and S. Gioux, “Ultrafast optical property map generation using lookup tables,” J. Biomed. Opt. 21(11), 110501 (2016).
[PubMed]

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21(6), 66001 (2016).
[PubMed]

T. Rath, G. E. Tontini, M. Vieth, A. Nägel, M. F. Neurath, and H. Neumann, “In vivo real-time assessment of colorectal polyp histology using an optical biopsy forceps system based on laser-induced fluorescence spectroscopy,” Endoscopy 48(6), 557–562 (2016).
[PubMed]

2015 (6)

J. Fengler, “Near-infrared fluorescence laparoscopy-technical description of PINPOINT(R) a novel and commercially available system,” Colorectal Dis. 17(Suppl 3), 3–6 (2015).
[PubMed]

N. Thekkek, M. H. Lee, A. D. Polydorides, D. G. Rosen, S. Anandasabapathy, and R. Richards-Kortum, “Quantitative evaluation of in vivo vital-dye fluorescence endoscopic imaging for the detection of Barrett’s-associated neoplasia,” J. Biomed. Opt. 20(5), 56002 (2015).
[PubMed]

K. P. Nadeau, T. B. Rice, A. J. Durkin, and B. J. Tromberg, “Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging,” J. Biomed. Opt. 20(11), 116005 (2015).
[PubMed]

M. van de Giessen, J. P. Angelo, and S. Gioux, “Real-time, profile-corrected single snapshot imaging of optical properties,” Biomed. Opt. Express 6(10), 4051–4062 (2015).
[PubMed]

P. Diep, S. Pannem, J. Sweer, J. Lo, M. Snyder, G. Stueber, Y. Zhao, S. Tabassum, R. Istfan, J. Wu, S. Erramilli, and D. Roblyer, “Three-dimensional printed optical phantoms with customized absorption and scattering properties,” Biomed. Opt. Express 6(11), 4212–4220 (2015).
[PubMed]

M. Sibai, I. Veilleux, J. T. Elliott, F. Leblond, and B. C. Wilson, “Quantitative spatial frequency fluorescence imaging in the sub-diffusive domain for image-guided glioma resection,” Biomed. Opt. Express 6(12), 4923–4933 (2015).
[PubMed]

2014 (2)

N. J. Durr, V. Parot, G. Traverso, W. P. Puricelli, B. J. Vakoc, N. S. Nishioka, and G. Gonzalez, “Imaging colonic surface topography with a photometric stereo endoscope,” Gastrointest. Endosc. 79, 5S (2014).

K. P. Nadeau, A. J. Durkin, and B. J. Tromberg, “Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain,” J. Biomed. Opt. 19(5), 056013 (2014).
[PubMed]

2013 (5)

R. Leitner, M. De Biasio, T. Arnold, C. V. Dinh, M. Loog, and R. P. Duin, “Multi-spectral video endoscopy system for the detection of cancerous tissue,” Pattern Recognit. Lett. 34, 85–93 (2013).

V. Venugopal, M. Park, Y. Ashitate, F. Neacsu, F. Kettenring, J. V. Frangioni, S. P. Gangadharan, and S. Gioux, “Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system,” J. Biomed. Opt. 18(12), 126018 (2013).
[PubMed]

C. Tsui, R. Klein, and M. Garabrant, “Minimally invasive surgery: national trends in adoption and future directions for hospital strategy,” Surg. Endosc. 27(7), 2253–2257 (2013).
[PubMed]

K. P. Nadeau, A. Ponticorvo, H. J. Lee, D. Lu, A. J. Durkin, and B. J. Tromberg, “Quantitative assessment of renal arterial occlusion in a porcine model using spatial frequency domain imaging,” Opt. Lett. 38(18), 3566–3569 (2013).
[PubMed]

J. Vervandier and S. Gioux, “Single snapshot imaging of optical properties,” Biomed. Opt. Express 4(12), 2938–2944 (2013).
[PubMed]

2011 (1)

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

2010 (1)

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[PubMed]

2009 (2)

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[PubMed]

2005 (1)

2003 (1)

2000 (1)

1998 (1)

N. Dögnitz and G. Wagnières, “Determination of tissue optical properties by steady-state spatial frequency-domain reflectometry,” Lasers Med. Sci. 13, 55–65 (1998).

1994 (1)

W. S. Zhou and X. Y. Su, “A Direct Mapping Algorithm for Phase-measuring Profilometry,” J. Mod. Opt. 41, 89–94 (1994).

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[PubMed]

1983 (1)

Anandasabapathy, S.

N. Thekkek, M. H. Lee, A. D. Polydorides, D. G. Rosen, S. Anandasabapathy, and R. Richards-Kortum, “Quantitative evaluation of in vivo vital-dye fluorescence endoscopic imaging for the detection of Barrett’s-associated neoplasia,” J. Biomed. Opt. 20(5), 56002 (2015).
[PubMed]

Andersson-Engels, S.

Angelo, J.

J. Angelo, C. R. Vargas, B. T. Lee, I. J. Bigio, and S. Gioux, “Ultrafast optical property map generation using lookup tables,” J. Biomed. Opt. 21(11), 110501 (2016).
[PubMed]

Angelo, J. P.

Arnold, T.

R. Leitner, M. De Biasio, T. Arnold, C. V. Dinh, M. Loog, and R. P. Duin, “Multi-spectral video endoscopy system for the detection of cancerous tissue,” Pattern Recognit. Lett. 34, 85–93 (2013).

Ashitate, Y.

V. Venugopal, M. Park, Y. Ashitate, F. Neacsu, F. Kettenring, J. V. Frangioni, S. P. Gangadharan, and S. Gioux, “Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system,” J. Biomed. Opt. 18(12), 126018 (2013).
[PubMed]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[PubMed]

Bevilacqua, F.

Bigio, I. J.

J. Angelo, C. R. Vargas, B. T. Lee, I. J. Bigio, and S. Gioux, “Ultrafast optical property map generation using lookup tables,” J. Biomed. Opt. 21(11), 110501 (2016).
[PubMed]

Bodenschatz, N.

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21(6), 66001 (2016).
[PubMed]

Carraro, A.

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21(6), 66001 (2016).
[PubMed]

Choi, B.

Choi, H. S.

Cuccia, D. J.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[PubMed]

Dam, J. S.

De Biasio, M.

R. Leitner, M. De Biasio, T. Arnold, C. V. Dinh, M. Loog, and R. P. Duin, “Multi-spectral video endoscopy system for the detection of cancerous tissue,” Pattern Recognit. Lett. 34, 85–93 (2013).

Dell, S.

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[PubMed]

Diep, P.

Dinh, C. V.

R. Leitner, M. De Biasio, T. Arnold, C. V. Dinh, M. Loog, and R. P. Duin, “Multi-spectral video endoscopy system for the detection of cancerous tissue,” Pattern Recognit. Lett. 34, 85–93 (2013).

Dögnitz, N.

N. Dögnitz and G. Wagnières, “Determination of tissue optical properties by steady-state spatial frequency-domain reflectometry,” Lasers Med. Sci. 13, 55–65 (1998).

Duin, R. P.

R. Leitner, M. De Biasio, T. Arnold, C. V. Dinh, M. Loog, and R. P. Duin, “Multi-spectral video endoscopy system for the detection of cancerous tissue,” Pattern Recognit. Lett. 34, 85–93 (2013).

Durkin, A. J.

M. Ghijsen, B. Choi, A. J. Durkin, S. Gioux, and B. J. Tromberg, “Real-time simultaneous single snapshot of optical properties and blood flow using coherent spatial frequency domain imaging (cSFDI),” Biomed. Opt. Express 7(3), 870–882 (2016).
[PubMed]

K. P. Nadeau, T. B. Rice, A. J. Durkin, and B. J. Tromberg, “Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging,” J. Biomed. Opt. 20(11), 116005 (2015).
[PubMed]

K. P. Nadeau, A. J. Durkin, and B. J. Tromberg, “Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain,” J. Biomed. Opt. 19(5), 056013 (2014).
[PubMed]

K. P. Nadeau, A. Ponticorvo, H. J. Lee, D. Lu, A. J. Durkin, and B. J. Tromberg, “Quantitative assessment of renal arterial occlusion in a porcine model using spatial frequency domain imaging,” Opt. Lett. 38(18), 3566–3569 (2013).
[PubMed]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[PubMed]

Durr, N. J.

N. J. Durr, V. Parot, G. Traverso, W. P. Puricelli, B. J. Vakoc, N. S. Nishioka, and G. Gonzalez, “Imaging colonic surface topography with a photometric stereo endoscope,” Gastrointest. Endosc. 79, 5S (2014).

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

Elliott, J. T.

Enejder, A. M.

Erramilli, S.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[PubMed]

Fengler, J.

J. Fengler, “Near-infrared fluorescence laparoscopy-technical description of PINPOINT(R) a novel and commercially available system,” Colorectal Dis. 17(Suppl 3), 3–6 (2015).
[PubMed]

Frangioni, J. V.

V. Venugopal, M. Park, Y. Ashitate, F. Neacsu, F. Kettenring, J. V. Frangioni, S. P. Gangadharan, and S. Gioux, “Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system,” J. Biomed. Opt. 18(12), 126018 (2013).
[PubMed]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[PubMed]

Gangadharan, S. P.

V. Venugopal, M. Park, Y. Ashitate, F. Neacsu, F. Kettenring, J. V. Frangioni, S. P. Gangadharan, and S. Gioux, “Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system,” J. Biomed. Opt. 18(12), 126018 (2013).
[PubMed]

Garabrant, M.

C. Tsui, R. Klein, and M. Garabrant, “Minimally invasive surgery: national trends in adoption and future directions for hospital strategy,” Surg. Endosc. 27(7), 2253–2257 (2013).
[PubMed]

Ghijsen, M.

Gioux, S.

P. A. Valdes, J. P. Angelo, H. S. Choi, and S. Gioux, “qF-SSOP: real-time optical property corrected fluorescence imaging,” Biomed. Opt. Express 8(8), 3597–3605 (2017).
[PubMed]

M. Ghijsen, B. Choi, A. J. Durkin, S. Gioux, and B. J. Tromberg, “Real-time simultaneous single snapshot of optical properties and blood flow using coherent spatial frequency domain imaging (cSFDI),” Biomed. Opt. Express 7(3), 870–882 (2016).
[PubMed]

J. Angelo, C. R. Vargas, B. T. Lee, I. J. Bigio, and S. Gioux, “Ultrafast optical property map generation using lookup tables,” J. Biomed. Opt. 21(11), 110501 (2016).
[PubMed]

M. van de Giessen, J. P. Angelo, and S. Gioux, “Real-time, profile-corrected single snapshot imaging of optical properties,” Biomed. Opt. Express 6(10), 4051–4062 (2015).
[PubMed]

V. Venugopal, M. Park, Y. Ashitate, F. Neacsu, F. Kettenring, J. V. Frangioni, S. P. Gangadharan, and S. Gioux, “Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system,” J. Biomed. Opt. 18(12), 126018 (2013).
[PubMed]

J. Vervandier and S. Gioux, “Single snapshot imaging of optical properties,” Biomed. Opt. Express 4(12), 2938–2944 (2013).
[PubMed]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[PubMed]

Gong, Y.

Y. Jiang, Y. Gong, J. H. Rubenstein, T. D. Wang, and E. J. Seibel, “Toward real-time quantification of fluorescence molecular probes using target/background ratio for guiding biopsy and endoscopic therapy of esophageal neoplasia,” J. Med. Imaging (Bellingham) 4(2), 024502 (2017).
[PubMed]

Gonzalez, G.

N. J. Durr, V. Parot, G. Traverso, W. P. Puricelli, B. J. Vakoc, N. S. Nishioka, and G. Gonzalez, “Imaging colonic surface topography with a photometric stereo endoscope,” Gastrointest. Endosc. 79, 5S (2014).

Istfan, R.

Jiang, Y.

Y. Jiang, Y. Gong, J. H. Rubenstein, T. D. Wang, and E. J. Seibel, “Toward real-time quantification of fluorescence molecular probes using target/background ratio for guiding biopsy and endoscopic therapy of esophageal neoplasia,” J. Med. Imaging (Bellingham) 4(2), 024502 (2017).
[PubMed]

Kelly, E.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

Kettenring, F.

V. Venugopal, M. Park, Y. Ashitate, F. Neacsu, F. Kettenring, J. V. Frangioni, S. P. Gangadharan, and S. Gioux, “Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system,” J. Biomed. Opt. 18(12), 126018 (2013).
[PubMed]

Kienle, A.

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21(6), 66001 (2016).
[PubMed]

Klein, R.

C. Tsui, R. Klein, and M. Garabrant, “Minimally invasive surgery: national trends in adoption and future directions for hospital strategy,” Surg. Endosc. 27(7), 2253–2257 (2013).
[PubMed]

Korbelik, J.

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21(6), 66001 (2016).
[PubMed]

Lam, S.

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21(6), 66001 (2016).
[PubMed]

Leblond, F.

Lee, B. T.

J. Angelo, C. R. Vargas, B. T. Lee, I. J. Bigio, and S. Gioux, “Ultrafast optical property map generation using lookup tables,” J. Biomed. Opt. 21(11), 110501 (2016).
[PubMed]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

Lee, H. J.

Lee, M.

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21(6), 66001 (2016).
[PubMed]

Lee, M. H.

N. Thekkek, M. H. Lee, A. D. Polydorides, D. G. Rosen, S. Anandasabapathy, and R. Richards-Kortum, “Quantitative evaluation of in vivo vital-dye fluorescence endoscopic imaging for the detection of Barrett’s-associated neoplasia,” J. Biomed. Opt. 20(5), 56002 (2015).
[PubMed]

Leitner, R.

R. Leitner, M. De Biasio, T. Arnold, C. V. Dinh, M. Loog, and R. P. Duin, “Multi-spectral video endoscopy system for the detection of cancerous tissue,” Pattern Recognit. Lett. 34, 85–93 (2013).

Lin, S. J.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

Lo, J.

Loog, M.

R. Leitner, M. De Biasio, T. Arnold, C. V. Dinh, M. Loog, and R. P. Duin, “Multi-spectral video endoscopy system for the detection of cancerous tissue,” Pattern Recognit. Lett. 34, 85–93 (2013).

Lu, D.

MacAulay, C.

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21(6), 66001 (2016).
[PubMed]

Mazhar, A.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[PubMed]

McAlpine, J. N.

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21(6), 66001 (2016).
[PubMed]

Miller, D. M.

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21(6), 66001 (2016).
[PubMed]

Moffitt, L. A.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

Mutoh, K.

Nadeau, K. P.

K. P. Nadeau, T. B. Rice, A. J. Durkin, and B. J. Tromberg, “Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging,” J. Biomed. Opt. 20(11), 116005 (2015).
[PubMed]

K. P. Nadeau, A. J. Durkin, and B. J. Tromberg, “Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain,” J. Biomed. Opt. 19(5), 056013 (2014).
[PubMed]

K. P. Nadeau, A. Ponticorvo, H. J. Lee, D. Lu, A. J. Durkin, and B. J. Tromberg, “Quantitative assessment of renal arterial occlusion in a porcine model using spatial frequency domain imaging,” Opt. Lett. 38(18), 3566–3569 (2013).
[PubMed]

Nägel, A.

T. Rath, G. E. Tontini, M. Vieth, A. Nägel, M. F. Neurath, and H. Neumann, “In vivo real-time assessment of colorectal polyp histology using an optical biopsy forceps system based on laser-induced fluorescence spectroscopy,” Endoscopy 48(6), 557–562 (2016).
[PubMed]

Nandhu, M. S.

Neacsu, F.

V. Venugopal, M. Park, Y. Ashitate, F. Neacsu, F. Kettenring, J. V. Frangioni, S. P. Gangadharan, and S. Gioux, “Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system,” J. Biomed. Opt. 18(12), 126018 (2013).
[PubMed]

Neumann, H.

T. Rath, G. E. Tontini, M. Vieth, A. Nägel, M. F. Neurath, and H. Neumann, “In vivo real-time assessment of colorectal polyp histology using an optical biopsy forceps system based on laser-induced fluorescence spectroscopy,” Endoscopy 48(6), 557–562 (2016).
[PubMed]

Neurath, M. F.

T. Rath, G. E. Tontini, M. Vieth, A. Nägel, M. F. Neurath, and H. Neumann, “In vivo real-time assessment of colorectal polyp histology using an optical biopsy forceps system based on laser-induced fluorescence spectroscopy,” Endoscopy 48(6), 557–562 (2016).
[PubMed]

Nishioka, N. S.

N. J. Durr, V. Parot, G. Traverso, W. P. Puricelli, B. J. Vakoc, N. S. Nishioka, and G. Gonzalez, “Imaging colonic surface topography with a photometric stereo endoscope,” Gastrointest. Endosc. 79, 5S (2014).

Oketokoun, R.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

Pannem, S.

Park, M.

V. Venugopal, M. Park, Y. Ashitate, F. Neacsu, F. Kettenring, J. V. Frangioni, S. P. Gangadharan, and S. Gioux, “Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system,” J. Biomed. Opt. 18(12), 126018 (2013).
[PubMed]

Parot, V.

N. J. Durr, V. Parot, G. Traverso, W. P. Puricelli, B. J. Vakoc, N. S. Nishioka, and G. Gonzalez, “Imaging colonic surface topography with a photometric stereo endoscope,” Gastrointest. Endosc. 79, 5S (2014).

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[PubMed]

Pham, T. H.

Pifferi, A.

Piracha, S.

Polydorides, A. D.

N. Thekkek, M. H. Lee, A. D. Polydorides, D. G. Rosen, S. Anandasabapathy, and R. Richards-Kortum, “Quantitative evaluation of in vivo vital-dye fluorescence endoscopic imaging for the detection of Barrett’s-associated neoplasia,” J. Biomed. Opt. 20(5), 56002 (2015).
[PubMed]

Ponticorvo, A.

Puricelli, W. P.

N. J. Durr, V. Parot, G. Traverso, W. P. Puricelli, B. J. Vakoc, N. S. Nishioka, and G. Gonzalez, “Imaging colonic surface topography with a photometric stereo endoscope,” Gastrointest. Endosc. 79, 5S (2014).

Rath, T.

T. Rath, G. E. Tontini, M. Vieth, A. Nägel, M. F. Neurath, and H. Neumann, “In vivo real-time assessment of colorectal polyp histology using an optical biopsy forceps system based on laser-induced fluorescence spectroscopy,” Endoscopy 48(6), 557–562 (2016).
[PubMed]

Rice, T. B.

K. P. Nadeau, T. B. Rice, A. J. Durkin, and B. J. Tromberg, “Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging,” J. Biomed. Opt. 20(11), 116005 (2015).
[PubMed]

Richards-Kortum, R.

N. Thekkek, M. H. Lee, A. D. Polydorides, D. G. Rosen, S. Anandasabapathy, and R. Richards-Kortum, “Quantitative evaluation of in vivo vital-dye fluorescence endoscopic imaging for the detection of Barrett’s-associated neoplasia,” J. Biomed. Opt. 20(5), 56002 (2015).
[PubMed]

Roblyer, D.

Rosen, D. G.

N. Thekkek, M. H. Lee, A. D. Polydorides, D. G. Rosen, S. Anandasabapathy, and R. Richards-Kortum, “Quantitative evaluation of in vivo vital-dye fluorescence endoscopic imaging for the detection of Barrett’s-associated neoplasia,” J. Biomed. Opt. 20(5), 56002 (2015).
[PubMed]

Rubenstein, J. H.

Y. Jiang, Y. Gong, J. H. Rubenstein, T. D. Wang, and E. J. Seibel, “Toward real-time quantification of fluorescence molecular probes using target/background ratio for guiding biopsy and endoscopic therapy of esophageal neoplasia,” J. Med. Imaging (Bellingham) 4(2), 024502 (2017).
[PubMed]

Seibel, E. J.

Y. Jiang, Y. Gong, J. H. Rubenstein, T. D. Wang, and E. J. Seibel, “Toward real-time quantification of fluorescence molecular probes using target/background ratio for guiding biopsy and endoscopic therapy of esophageal neoplasia,” J. Med. Imaging (Bellingham) 4(2), 024502 (2017).
[PubMed]

Sibai, M.

Snyder, M.

Spott, T.

Stockdale, A.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

Stueber, G.

Su, X. Y.

W. S. Zhou and X. Y. Su, “A Direct Mapping Algorithm for Phase-measuring Profilometry,” J. Mod. Opt. 41, 89–94 (1994).

Swartling, J.

Sweer, J.

Tabassum, S.

Takeda, M.

Thekkek, N.

N. Thekkek, M. H. Lee, A. D. Polydorides, D. G. Rosen, S. Anandasabapathy, and R. Richards-Kortum, “Quantitative evaluation of in vivo vital-dye fluorescence endoscopic imaging for the detection of Barrett’s-associated neoplasia,” J. Biomed. Opt. 20(5), 56002 (2015).
[PubMed]

Tobias, A. M.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

Tontini, G. E.

T. Rath, G. E. Tontini, M. Vieth, A. Nägel, M. F. Neurath, and H. Neumann, “In vivo real-time assessment of colorectal polyp histology using an optical biopsy forceps system based on laser-induced fluorescence spectroscopy,” Endoscopy 48(6), 557–562 (2016).
[PubMed]

Traverso, G.

N. J. Durr, V. Parot, G. Traverso, W. P. Puricelli, B. J. Vakoc, N. S. Nishioka, and G. Gonzalez, “Imaging colonic surface topography with a photometric stereo endoscope,” Gastrointest. Endosc. 79, 5S (2014).

Tromberg, B. J.

M. Ghijsen, B. Choi, A. J. Durkin, S. Gioux, and B. J. Tromberg, “Real-time simultaneous single snapshot of optical properties and blood flow using coherent spatial frequency domain imaging (cSFDI),” Biomed. Opt. Express 7(3), 870–882 (2016).
[PubMed]

K. P. Nadeau, T. B. Rice, A. J. Durkin, and B. J. Tromberg, “Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging,” J. Biomed. Opt. 20(11), 116005 (2015).
[PubMed]

K. P. Nadeau, A. J. Durkin, and B. J. Tromberg, “Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain,” J. Biomed. Opt. 19(5), 056013 (2014).
[PubMed]

K. P. Nadeau, A. Ponticorvo, H. J. Lee, D. Lu, A. J. Durkin, and B. J. Tromberg, “Quantitative assessment of renal arterial occlusion in a porcine model using spatial frequency domain imaging,” Opt. Lett. 38(18), 3566–3569 (2013).
[PubMed]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[PubMed]

T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging,” Appl. Opt. 39(34), 6487–6497 (2000).
[PubMed]

Tsui, C.

C. Tsui, R. Klein, and M. Garabrant, “Minimally invasive surgery: national trends in adoption and future directions for hospital strategy,” Surg. Endosc. 27(7), 2253–2257 (2013).
[PubMed]

Vakoc, B. J.

N. J. Durr, V. Parot, G. Traverso, W. P. Puricelli, B. J. Vakoc, N. S. Nishioka, and G. Gonzalez, “Imaging colonic surface topography with a photometric stereo endoscope,” Gastrointest. Endosc. 79, 5S (2014).

Valdes, P. A.

van de Giessen, M.

Vargas, C. R.

J. Angelo, C. R. Vargas, B. T. Lee, I. J. Bigio, and S. Gioux, “Ultrafast optical property map generation using lookup tables,” J. Biomed. Opt. 21(11), 110501 (2016).
[PubMed]

Veilleux, I.

Venugopal, V.

V. Venugopal, M. Park, Y. Ashitate, F. Neacsu, F. Kettenring, J. V. Frangioni, S. P. Gangadharan, and S. Gioux, “Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system,” J. Biomed. Opt. 18(12), 126018 (2013).
[PubMed]

Vervandier, J.

Viapiano, M.

Vieth, M.

T. Rath, G. E. Tontini, M. Vieth, A. Nägel, M. F. Neurath, and H. Neumann, “In vivo real-time assessment of colorectal polyp histology using an optical biopsy forceps system based on laser-induced fluorescence spectroscopy,” Endoscopy 48(6), 557–562 (2016).
[PubMed]

Wagnières, G.

N. Dögnitz and G. Wagnières, “Determination of tissue optical properties by steady-state spatial frequency-domain reflectometry,” Lasers Med. Sci. 13, 55–65 (1998).

Wang, T. D.

Y. Jiang, Y. Gong, J. H. Rubenstein, T. D. Wang, and E. J. Seibel, “Toward real-time quantification of fluorescence molecular probes using target/background ratio for guiding biopsy and endoscopic therapy of esophageal neoplasia,” J. Med. Imaging (Bellingham) 4(2), 024502 (2017).
[PubMed]

Weinmann, M.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[PubMed]

Wilson, B. C.

Wu, J.

Zhao, Y.

Zhou, W. S.

W. S. Zhou and X. Y. Su, “A Direct Mapping Algorithm for Phase-measuring Profilometry,” J. Mod. Opt. 41, 89–94 (1994).

Appl. Opt. (2)

Biomed. Opt. Express (7)

J. Vervandier and S. Gioux, “Single snapshot imaging of optical properties,” Biomed. Opt. Express 4(12), 2938–2944 (2013).
[PubMed]

M. van de Giessen, J. P. Angelo, and S. Gioux, “Real-time, profile-corrected single snapshot imaging of optical properties,” Biomed. Opt. Express 6(10), 4051–4062 (2015).
[PubMed]

P. Diep, S. Pannem, J. Sweer, J. Lo, M. Snyder, G. Stueber, Y. Zhao, S. Tabassum, R. Istfan, J. Wu, S. Erramilli, and D. Roblyer, “Three-dimensional printed optical phantoms with customized absorption and scattering properties,” Biomed. Opt. Express 6(11), 4212–4220 (2015).
[PubMed]

M. Sibai, I. Veilleux, J. T. Elliott, F. Leblond, and B. C. Wilson, “Quantitative spatial frequency fluorescence imaging in the sub-diffusive domain for image-guided glioma resection,” Biomed. Opt. Express 6(12), 4923–4933 (2015).
[PubMed]

M. Ghijsen, B. Choi, A. J. Durkin, S. Gioux, and B. J. Tromberg, “Real-time simultaneous single snapshot of optical properties and blood flow using coherent spatial frequency domain imaging (cSFDI),” Biomed. Opt. Express 7(3), 870–882 (2016).
[PubMed]

Y. Zhao, S. Tabassum, S. Piracha, M. S. Nandhu, M. Viapiano, and D. Roblyer, “Angle correction for small animal tumor imaging with spatial frequency domain imaging (SFDI),” Biomed. Opt. Express 7(6), 2373–2384 (2016).
[PubMed]

P. A. Valdes, J. P. Angelo, H. S. Choi, and S. Gioux, “qF-SSOP: real-time optical property corrected fluorescence imaging,” Biomed. Opt. Express 8(8), 3597–3605 (2017).
[PubMed]

Colorectal Dis. (1)

J. Fengler, “Near-infrared fluorescence laparoscopy-technical description of PINPOINT(R) a novel and commercially available system,” Colorectal Dis. 17(Suppl 3), 3–6 (2015).
[PubMed]

Endoscopy (1)

T. Rath, G. E. Tontini, M. Vieth, A. Nägel, M. F. Neurath, and H. Neumann, “In vivo real-time assessment of colorectal polyp histology using an optical biopsy forceps system based on laser-induced fluorescence spectroscopy,” Endoscopy 48(6), 557–562 (2016).
[PubMed]

Gastrointest. Endosc. (1)

N. J. Durr, V. Parot, G. Traverso, W. P. Puricelli, B. J. Vakoc, N. S. Nishioka, and G. Gonzalez, “Imaging colonic surface topography with a photometric stereo endoscope,” Gastrointest. Endosc. 79, 5S (2014).

J. Biomed. Opt. (10)

N. Thekkek, M. H. Lee, A. D. Polydorides, D. G. Rosen, S. Anandasabapathy, and R. Richards-Kortum, “Quantitative evaluation of in vivo vital-dye fluorescence endoscopic imaging for the detection of Barrett’s-associated neoplasia,” J. Biomed. Opt. 20(5), 56002 (2015).
[PubMed]

N. Bodenschatz, S. Lam, A. Carraro, J. Korbelik, D. M. Miller, J. N. McAlpine, M. Lee, A. Kienle, and C. MacAulay, “Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix,” J. Biomed. Opt. 21(6), 66001 (2016).
[PubMed]

K. P. Nadeau, A. J. Durkin, and B. J. Tromberg, “Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain,” J. Biomed. Opt. 19(5), 056013 (2014).
[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[PubMed]

K. P. Nadeau, T. B. Rice, A. J. Durkin, and B. J. Tromberg, “Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging,” J. Biomed. Opt. 20(11), 116005 (2015).
[PubMed]

J. Angelo, C. R. Vargas, B. T. Lee, I. J. Bigio, and S. Gioux, “Ultrafast optical property map generation using lookup tables,” J. Biomed. Opt. 21(11), 110501 (2016).
[PubMed]

V. Venugopal, M. Park, Y. Ashitate, F. Neacsu, F. Kettenring, J. V. Frangioni, S. P. Gangadharan, and S. Gioux, “Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system,” J. Biomed. Opt. 18(12), 126018 (2013).
[PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[PubMed]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16(8), 086015 (2011).
[PubMed]

J. Med. Imaging (Bellingham) (1)

Y. Jiang, Y. Gong, J. H. Rubenstein, T. D. Wang, and E. J. Seibel, “Toward real-time quantification of fluorescence molecular probes using target/background ratio for guiding biopsy and endoscopic therapy of esophageal neoplasia,” J. Med. Imaging (Bellingham) 4(2), 024502 (2017).
[PubMed]

J. Mod. Opt. (1)

W. S. Zhou and X. Y. Su, “A Direct Mapping Algorithm for Phase-measuring Profilometry,” J. Mod. Opt. 41, 89–94 (1994).

J. Opt. Soc. Am. A (1)

Lasers Med. Sci. (1)

N. Dögnitz and G. Wagnières, “Determination of tissue optical properties by steady-state spatial frequency-domain reflectometry,” Lasers Med. Sci. 13, 55–65 (1998).

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[PubMed]

Opt. Lett. (2)

Pattern Recognit. Lett. (1)

R. Leitner, M. De Biasio, T. Arnold, C. V. Dinh, M. Loog, and R. P. Duin, “Multi-spectral video endoscopy system for the detection of cancerous tissue,” Pattern Recognit. Lett. 34, 85–93 (2013).

Surg. Endosc. (1)

C. Tsui, R. Klein, and M. Garabrant, “Minimally invasive surgery: national trends in adoption and future directions for hospital strategy,” Surg. Endosc. 27(7), 2253–2257 (2013).
[PubMed]

Other (3)

I. Intuitive Surgical, “Da Vinci Surgical System” (Intuitive Surgical, Inc.), retrieved August, 2016, http://www.intuitivesurgical.com .

I. Olympus, “Endoeye Flex 3D” (Olympus, Inc), retrieved August, 2016, medical.olympusamerica.com .

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in 2008), 687007–687009.

Supplementary Material (2)

NameDescription
» Visualization 1       Validation of SSOP endoscope on a phantom
» Visualization 2       In vivo validation of SSOP endoscope

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A data flow schematic for calibration and sample processing using endoscopic SSOP.

Fig. 2
Fig. 2

(a) A schematic of the optical system: a laser source is expanded and collimated by lenses L1 and L2, passes through a mask of a sinusoid printed onto a transparency and is collimated by L3 into the projection channel of the endoscope. The polarizers P1 and P2 ensure specular light removal. The collection channel of the endoscope sends light through L4 where it is imaged onto a CCD camera. (b) A photograph of the optical system. (c) The distal end of the endoscope showing the projection and collection channels.

Fig. 3
Fig. 3

Schematic demonstrating the projection and collection characteristics (a) a common widefield setup and (b) our endoscopic system. Both systems use the phase shift in the projected sinusoid to measure distance. However, the endoscope system has a field of view dependent on distance, and so this variation is characterized during calibration.

Fig. 4
Fig. 4

A flat homogeneous phantom was measured 6 cm from the distal end of the endoscope and (a) absorption and (b) reduced scattering properties were generated. Analysis was done on the white-dotted ROIs. The statistical mean and standard deviation are reported for the set of pixels within the given ROI.

Fig. 5
Fig. 5

A flat homogeneous was measured from 4 to 9 cm in 1 cm increments. (a) The surface topography for all 6 measurements are plotted with the color map showing absorption values. (b) The topographical accuracy is shown by analyzing the ROI for each distance measurement. The analyzed (c) absorption and (d) reduced scattering values for the distance-corrected measurement and the uncorrected measurement demonstrate the need for distance-correction.

Fig. 6
Fig. 6

Absorption and reduced scattering maps measured on a flat homogeneous phantom from 4 to 9 cm. These maps demonstrate the divergence of accuracy when not correcting for sample distance. The arrows on the color bar represent the expected optical property values. The black scale bars represent 1 cm for a given distance. Note the decrease in magnification as distance is increased.

Fig. 7
Fig. 7

A hemispherical phantom resting on a flat homogeneous phantom was measured at video rate (~11 fps) (see Visualization 1). Every frame of collected raw data generated a 3D profile, absorption, and reduced scattering maps. Note: since the scale changes with distance, this scale bar is given for 7 cm distance.

Fig. 8
Fig. 8

An in vivo sample (hand) is measured at video rate as it passes into view over a homogeneous flat phantom (see Visualization 2).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(x, f x )= I DC +M(x, f x )cos(2π f x x+ϕ)
M(x, f x )= I 0 MT F sys (x, f x ) R d (x, f x )
R d (x, f x )= M(x, f x ) M ref (x, f x ) R d,ref,pred (x, f x )

Metrics