Abstract

Tissue polarimetric imaging measures Mueller matrices of tissues or Stokes vectors of the emergent light from tissues (normally using incidence with a fixed polarization state) over a field of view, and has demonstrated utility in a number of surgical and diagnostic applications. Here we introduce a compact complete Stokes polarimetric imager that can work for multiple wavelength bands with a frame-rate suitable for real-time applications. The imager was validated with standard polarizing components, and then employed as a polarization state analyzer of a Mueller imaging polarimeter and a standalone Stokes imaging polarimeter respectively to image the process of dehydration of bovine tendon tissue. The results obtained in this work suggested that the polarization properties of the samples rich of collagen fibres can change with the degree of dehydration, and therefore, dehydration of the samples prepared for polarimetric imaging (e.g. polarimetric microscopy) should be carefully controlled.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope

Yang Dong, Ji Qi, Honghui He, Chao He, Shaoxiong Liu, Jian Wu, Daniel S. Elson, and Hui Ma
Biomed. Opt. Express 8(8) 3643-3655 (2017)

qF-SSOP: real-time optical property corrected fluorescence imaging

Pablo A. Valdes, Joseph P. Angelo, Hak Soo Choi, and Sylvain Gioux
Biomed. Opt. Express 8(8) 3597-3605 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10(8), 950–982 (2017).
    [PubMed]
  2. A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and A.-D. Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21(12), 14120–14130 (2013).
    [PubMed]
  3. A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
    [PubMed]
  4. Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
    [PubMed]
  5. A. Tata, A. Gribble, M. Ventura, M. Ganguly, E. Bluemke, H. J. Ginsberg, D. A. Jaffray, D. R. Ifa, A. Vitkin, and A. Zarrine-Afsar, “Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues,” Chem. Sci. (Camb.) 7(3), 2162–2169 (2016).
  6. W. Wang, L. G. Lim, S. Srivastava, J. Bok-Yan So, A. Shabbir, and Q. Liu, “Investigation on the potential of Mueller matrix imaging for digital staining,” J. Biophotonics 9, 364–375 (2015).
  7. S. Alali, K. J. Aitken, A. Schröder, A. Gribble, D. J. Bagli, and I. A. Vitkin, “Assessment of local structural disorders of the bladder wall in partial bladder outlet obstruction using polarized light imaging,” Biomed. Opt. Express 5(2), 621–629 (2014).
    [PubMed]
  8. P. J. Wu and J. T. Walsh., “Stokes polarimetry imaging of rat-tail tissue in a turbid medium using incident circularly polarized light,” Lasers Surg. Med. 37(5), 396–406 (2005).
    [PubMed]
  9. P. J. Wu and J. J. T. Walsh, “Stokes polarimetry imaging of rat tail tissue in a turbid medium: degree of linear polarization image maps using incident linearly polarized light,” J. Biomed. Opt. 11, 014031 (2006).
  10. B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
    [PubMed]
  11. J. Qi, M. Ye, M. Singh, N. T. Clancy, and D. S. Elson, “Narrow band 3 × 3 Mueller polarimetric endoscopy,” Biomed. Opt. Express 4(11), 2433–2449 (2013).
    [PubMed]
  12. J. Qi and D. S. Elson, “A high definition Mueller polarimetric endoscope for tissue characterisation,” Sci. Rep. 6, 25953 (2016).
    [PubMed]
  13. J. Qi, C. Barrière, T. C. Wood, and D. S. Elson, “Polarized multispectral imaging in a rigid endoscope based on elastic light scattering spectroscopy,” Biomed. Opt. Express 3(9), 2087–2099 (2012).
    [PubMed]
  14. N. T. Clancy, S. Arya, J. Qi, D. Stoyanov, G. B. Hanna, and D. S. Elson, “Polarised stereo endoscope and narrowband detection for minimal access surgery,” Biomed. Opt. Express 5(12), 4108–4117 (2014).
    [PubMed]
  15. A. Peinado, A. Lizana, J. Vidal, C. Iemmi, and J. Campos, “Optimization and performance criteria of a Stokes polarimeter based on two variable retarders,” Opt. Express 18(10), 9815–9830 (2010).
    [PubMed]
  16. S. Alali, T. Yang, and I. A. Vitkin, “Rapid time-gated polarimetric Stokes imaging using photoelastic modulators,” Opt. Lett. 38(16), 2997–3000 (2013).
    [PubMed]
  17. S. Alali, A. Gribble, and I. A. Vitkin, “Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts,” Opt. Lett. 41(5), 1038–1041 (2016).
    [PubMed]
  18. W.-L. Hsu, J. Davis, K. Balakrishnan, M. Ibn-Elhaj, S. Kroto, N. Brock, and S. Pau, “Polarization microscope using a near infrared full-Stokes imaging polarimeter,” Opt. Express 23(4), 4357–4368 (2015).
    [PubMed]
  19. X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
    [PubMed]
  20. W.-L. Hsu, G. Myhre, K. Balakrishnan, N. Brock, M. Ibn-Elhaj, and S. Pau, “Full-Stokes imaging polarimeter using an array of elliptical polarizer,” Opt. Express 22(3), 3063–3074 (2014).
    [PubMed]
  21. N. J. Brock, C. Crandall, and J. E. Millerd, “Snap-shot imaging polarimeter: performance and applications,” P. Soc Photo-Opt. Ins 9099, 909903 (2014).
  22. A. Ambirajan and J. D. C. Look, “Optimum angles for a Mueller matrix polarimeter,” in 1994), 314–326.
  23. A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).
  24. D. Goldstein and D. H. Goldstein, Polarized Light (CRC Press, 2011), Vol. 83.
  25. E. Compain, S. Poirier, and B. Drevillon, “General and Self-Consistent Method for the Calibration of Polarization Modulators, Polarimeters, and Mueller-Matrix Ellipsometers,” Appl. Opt. 38(16), 3490–3502 (1999).
    [PubMed]
  26. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
  27. N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
    [PubMed]
  28. V. V. Tuchin, “Polarized light interaction with tissues,” J. Biomed. Opt. 21(7), 071114 (2016).
    [PubMed]
  29. D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
    [PubMed]
  30. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
    [PubMed]
  31. S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004 (2012).
    [PubMed]
  32. M. Ahmad, S. Ali, M. S. Mehmood, H. Ali, A. Khurshid, S. Firdous, S. Muhammad, and M. Ikram, “Ex Vivo Assessment of Carbon Tetrachloride (CCl(4))-Induced Chronic Injury Using Polarized Light Spectroscopy,” Appl. Spectrosc. 67(12), 1382–1389 (2013).
    [PubMed]
  33. C. He, H. He, J. Chang, Y. Dong, S. Liu, N. Zeng, Y. He, and H. Ma, “Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters,” Biomed. Opt. Express 6(8), 2934–2945 (2015).
    [PubMed]
  34. Y. A. Ushenko, “Investigation of formation and interrelations of polarization singular structure and Mueller-matrix images of biological tissues and diagnostics of their cancer changes,” J. Biomed. Opt. 16, 066006 (2011).
  35. Y. A. Ushenko, M. I. Sidor, G. B. Bodnar, and G. D. Koval, “Mueller-matrix mapping of optically anisotropic fluorophores of biological tissues in the diagnosis of cancer,” Quantum Electron. 44, 785–790 (2014).
  36. H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
    [PubMed]
  37. M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
    [PubMed]
  38. Y. Dong, J. Qi, H. He, C. He, S. Liu, J. Wu, D. S. Elson, and H. Ma, “Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope,” Biomed. Opt. Express 8(8), 3643–3655 (2017).
    [PubMed]
  39. M. Dubreuil, P. Babilotte, L. Martin, D. Sevrain, S. Rivet, Y. Le Grand, G. Le Brun, B. Turlin, and B. Le Jeune, “Mueller matrix polarimetry for improved liver fibrosis diagnosis,” Opt. Lett. 37(6), 1061–1063 (2012).
    [PubMed]
  40. X. Wen, T. Yu, Q. Luo, and D. Zhu, Mechanism for Tissue Optical Clearing: Physical and Physiological Research (2010), Vol. 7999.
  41. C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11, 041117 (2006).

2017 (2)

2016 (5)

V. V. Tuchin, “Polarized light interaction with tissues,” J. Biomed. Opt. 21(7), 071114 (2016).
[PubMed]

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[PubMed]

A. Tata, A. Gribble, M. Ventura, M. Ganguly, E. Bluemke, H. J. Ginsberg, D. A. Jaffray, D. R. Ifa, A. Vitkin, and A. Zarrine-Afsar, “Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues,” Chem. Sci. (Camb.) 7(3), 2162–2169 (2016).

J. Qi and D. S. Elson, “A high definition Mueller polarimetric endoscope for tissue characterisation,” Sci. Rep. 6, 25953 (2016).
[PubMed]

S. Alali, A. Gribble, and I. A. Vitkin, “Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts,” Opt. Lett. 41(5), 1038–1041 (2016).
[PubMed]

2015 (4)

W.-L. Hsu, J. Davis, K. Balakrishnan, M. Ibn-Elhaj, S. Kroto, N. Brock, and S. Pau, “Polarization microscope using a near infrared full-Stokes imaging polarimeter,” Opt. Express 23(4), 4357–4368 (2015).
[PubMed]

W. Wang, L. G. Lim, S. Srivastava, J. Bok-Yan So, A. Shabbir, and Q. Liu, “Investigation on the potential of Mueller matrix imaging for digital staining,” J. Biophotonics 9, 364–375 (2015).

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[PubMed]

C. He, H. He, J. Chang, Y. Dong, S. Liu, N. Zeng, Y. He, and H. Ma, “Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters,” Biomed. Opt. Express 6(8), 2934–2945 (2015).
[PubMed]

2014 (7)

Y. A. Ushenko, M. I. Sidor, G. B. Bodnar, and G. D. Koval, “Mueller-matrix mapping of optically anisotropic fluorophores of biological tissues in the diagnosis of cancer,” Quantum Electron. 44, 785–790 (2014).

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[PubMed]

W.-L. Hsu, G. Myhre, K. Balakrishnan, N. Brock, M. Ibn-Elhaj, and S. Pau, “Full-Stokes imaging polarimeter using an array of elliptical polarizer,” Opt. Express 22(3), 3063–3074 (2014).
[PubMed]

N. J. Brock, C. Crandall, and J. E. Millerd, “Snap-shot imaging polarimeter: performance and applications,” P. Soc Photo-Opt. Ins 9099, 909903 (2014).

S. Alali, K. J. Aitken, A. Schröder, A. Gribble, D. J. Bagli, and I. A. Vitkin, “Assessment of local structural disorders of the bladder wall in partial bladder outlet obstruction using polarized light imaging,” Biomed. Opt. Express 5(2), 621–629 (2014).
[PubMed]

N. T. Clancy, S. Arya, J. Qi, D. Stoyanov, G. B. Hanna, and D. S. Elson, “Polarised stereo endoscope and narrowband detection for minimal access surgery,” Biomed. Opt. Express 5(12), 4108–4117 (2014).
[PubMed]

2013 (5)

2012 (3)

2011 (2)

A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
[PubMed]

Y. A. Ushenko, “Investigation of formation and interrelations of polarization singular structure and Mueller-matrix images of biological tissues and diagnostics of their cancer changes,” J. Biomed. Opt. 16, 066006 (2011).

2010 (2)

2008 (1)

N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
[PubMed]

2006 (2)

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11, 041117 (2006).

P. J. Wu and J. J. T. Walsh, “Stokes polarimetry imaging of rat tail tissue in a turbid medium: degree of linear polarization image maps using incident linearly polarized light,” J. Biomed. Opt. 11, 014031 (2006).

2005 (1)

P. J. Wu and J. T. Walsh., “Stokes polarimetry imaging of rat-tail tissue in a turbid medium using incident circularly polarized light,” Lasers Surg. Med. 37(5), 396–406 (2005).
[PubMed]

2004 (1)

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).

2002 (1)

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[PubMed]

1999 (1)

1996 (1)

Ahmad, M.

M. Ahmad, S. Ali, M. S. Mehmood, H. Ali, A. Khurshid, S. Firdous, S. Muhammad, and M. Ikram, “Ex Vivo Assessment of Carbon Tetrachloride (CCl(4))-Induced Chronic Injury Using Polarized Light Spectroscopy,” Appl. Spectrosc. 67(12), 1382–1389 (2013).
[PubMed]

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004 (2012).
[PubMed]

Aitken, K. J.

Alali, S.

Ali, H.

Ali, S.

Antonelli, M.-R.

Arya, S.

Babilotte, P.

Bagli, D. J.

Balakrishnan, K.

Barrière, C.

Benali, A.

Bermak, A.

Bluemke, E.

A. Tata, A. Gribble, M. Ventura, M. Ganguly, E. Bluemke, H. J. Ginsberg, D. A. Jaffray, D. R. Ifa, A. Vitkin, and A. Zarrine-Afsar, “Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues,” Chem. Sci. (Camb.) 7(3), 2162–2169 (2016).

Bodnar, G. B.

Y. A. Ushenko, M. I. Sidor, G. B. Bodnar, and G. D. Koval, “Mueller-matrix mapping of optically anisotropic fluorophores of biological tissues in the diagnosis of cancer,” Quantum Electron. 44, 785–790 (2014).

Bok-Yan So, J.

W. Wang, L. G. Lim, S. Srivastava, J. Bok-Yan So, A. Shabbir, and Q. Liu, “Investigation on the potential of Mueller matrix imaging for digital staining,” J. Biophotonics 9, 364–375 (2015).

Boussaid, F.

Brock, N.

Brock, N. J.

N. J. Brock, C. Crandall, and J. E. Millerd, “Snap-shot imaging polarimeter: performance and applications,” P. Soc Photo-Opt. Ins 9099, 909903 (2014).

Campos, J.

Chang, J.

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[PubMed]

C. He, H. He, J. Chang, Y. Dong, S. Liu, N. Zeng, Y. He, and H. Ma, “Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters,” Biomed. Opt. Express 6(8), 2934–2945 (2015).
[PubMed]

Chigrinov, V. G.

Chipman, R. A.

Clancy, N. T.

Cohen, H.

Compain, E.

Crandall, C.

N. J. Brock, C. Crandall, and J. E. Millerd, “Snap-shot imaging polarimeter: performance and applications,” P. Soc Photo-Opt. Ins 9099, 909903 (2014).

Davis, J.

De Martino, A.

A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
[PubMed]

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).

Diller, K. R.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11, 041117 (2006).

Dong, Y.

Doronin, A.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[PubMed]

Drevillon, B.

Drévillon, B.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).

Du, E.

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[PubMed]

Dubreuil, M.

Eccles, M.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[PubMed]

Elson, D. S.

Fallet, C.

Firdous, S.

Ganguly, M.

A. Tata, A. Gribble, M. Ventura, M. Ganguly, E. Bluemke, H. J. Ginsberg, D. A. Jaffray, D. R. Ifa, A. Vitkin, and A. Zarrine-Afsar, “Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues,” Chem. Sci. (Camb.) 7(3), 2162–2169 (2016).

Garcia-Caurel, E.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).

Gayet, B.

Ghosh, N.

N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
[PubMed]

Ginsberg, H. J.

A. Tata, A. Gribble, M. Ventura, M. Ganguly, E. Bluemke, H. J. Ginsberg, D. A. Jaffray, D. R. Ifa, A. Vitkin, and A. Zarrine-Afsar, “Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues,” Chem. Sci. (Camb.) 7(3), 2162–2169 (2016).

Gribble, A.

Guo, Y.

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[PubMed]

Hanna, G. B.

He, C.

He, H.

He, Y.

Hsu, W.-L.

Ibn-Elhaj, M.

Ibrahim, B. H.

Iemmi, C.

Ifa, D. R.

A. Tata, A. Gribble, M. Ventura, M. Ganguly, E. Bluemke, H. J. Ginsberg, D. A. Jaffray, D. R. Ifa, A. Vitkin, and A. Zarrine-Afsar, “Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues,” Chem. Sci. (Camb.) 7(3), 2162–2169 (2016).

Ikram, M.

Jacques, S.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[PubMed]

Jaffray, D. A.

A. Tata, A. Gribble, M. Ventura, M. Ganguly, E. Bluemke, H. J. Ginsberg, D. A. Jaffray, D. R. Ifa, A. Vitkin, and A. Zarrine-Afsar, “Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues,” Chem. Sci. (Camb.) 7(3), 2162–2169 (2016).

Kemp, N. J.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11, 041117 (2006).

Khurshid, A.

Kim, A.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004 (2012).
[PubMed]

Koval, G. D.

Y. A. Ushenko, M. I. Sidor, G. B. Bodnar, and G. D. Koval, “Mueller-matrix mapping of optically anisotropic fluorophores of biological tissues in the diagnosis of cancer,” Quantum Electron. 44, 785–790 (2014).

Kroto, S.

Kunnen, B.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[PubMed]

Larin, K. V.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[PubMed]

Laude, B.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).

Le Brun, G.

Le Grand, Y.

Le Jeune, B.

Li, M.

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[PubMed]

Lim, L. G.

W. Wang, L. G. Lim, S. Srivastava, J. Bok-Yan So, A. Shabbir, and Q. Liu, “Investigation on the potential of Mueller matrix imaging for digital staining,” J. Biophotonics 9, 364–375 (2015).

Liu, Q.

W. Wang, L. G. Lim, S. Srivastava, J. Bok-Yan So, A. Shabbir, and Q. Liu, “Investigation on the potential of Mueller matrix imaging for digital staining,” J. Biophotonics 9, 364–375 (2015).

Liu, S.

Lizana, A.

Lu, S.-Y.

Luo, Q.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[PubMed]

Ma, H.

Macdonald, C.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[PubMed]

Manhas, S.

Martin, L.

Martino, A.-D.

Meglinski, I.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[PubMed]

Mehmood, M. S.

Mendenhall, J. M.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11, 041117 (2006).

Millerd, J. E.

N. J. Brock, C. Crandall, and J. E. Millerd, “Snap-shot imaging polarimeter: performance and applications,” P. Soc Photo-Opt. Ins 9099, 909903 (2014).

Milner, T. E.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11, 041117 (2006).

Muhammad, S.

Myhre, G.

Nazac, A.

Novikova, T.

Pau, S.

Peinado, A.

Pierangelo, A.

Poirier, S.

Qi, J.

Rivet, S.

Rylander, C. G.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11, 041117 (2006).

Schröder, A.

Sevrain, D.

Shabbir, A.

W. Wang, L. G. Lim, S. Srivastava, J. Bok-Yan So, A. Shabbir, and Q. Liu, “Investigation on the potential of Mueller matrix imaging for digital staining,” J. Biophotonics 9, 364–375 (2015).

Sidor, M. I.

Y. A. Ushenko, M. I. Sidor, G. B. Bodnar, and G. D. Koval, “Mueller-matrix mapping of optically anisotropic fluorophores of biological tissues in the diagnosis of cancer,” Quantum Electron. 44, 785–790 (2014).

Singh, M.

Srivastava, S.

W. Wang, L. G. Lim, S. Srivastava, J. Bok-Yan So, A. Shabbir, and Q. Liu, “Investigation on the potential of Mueller matrix imaging for digital staining,” J. Biophotonics 9, 364–375 (2015).

Stoyanov, D.

Stumpp, O. F.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11, 041117 (2006).

Sun, M.

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[PubMed]

Tata, A.

A. Tata, A. Gribble, M. Ventura, M. Ganguly, E. Bluemke, H. J. Ginsberg, D. A. Jaffray, D. R. Ifa, A. Vitkin, and A. Zarrine-Afsar, “Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues,” Chem. Sci. (Camb.) 7(3), 2162–2169 (2016).

Tuchin, V. V.

V. V. Tuchin, “Polarized light interaction with tissues,” J. Biomed. Opt. 21(7), 071114 (2016).
[PubMed]

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[PubMed]

Turlin, B.

Ushenko, Y. A.

Y. A. Ushenko, M. I. Sidor, G. B. Bodnar, and G. D. Koval, “Mueller-matrix mapping of optically anisotropic fluorophores of biological tissues in the diagnosis of cancer,” Quantum Electron. 44, 785–790 (2014).

Y. A. Ushenko, “Investigation of formation and interrelations of polarization singular structure and Mueller-matrix images of biological tissues and diagnostics of their cancer changes,” J. Biomed. Opt. 16, 066006 (2011).

Validire, P.

Ventura, M.

A. Tata, A. Gribble, M. Ventura, M. Ganguly, E. Bluemke, H. J. Ginsberg, D. A. Jaffray, D. R. Ifa, A. Vitkin, and A. Zarrine-Afsar, “Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues,” Chem. Sci. (Camb.) 7(3), 2162–2169 (2016).

Vidal, J.

Vitkin, A.

A. Tata, A. Gribble, M. Ventura, M. Ganguly, E. Bluemke, H. J. Ginsberg, D. A. Jaffray, D. R. Ifa, A. Vitkin, and A. Zarrine-Afsar, “Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues,” Chem. Sci. (Camb.) 7(3), 2162–2169 (2016).

Vitkin, I. A.

S. Alali, A. Gribble, and I. A. Vitkin, “Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts,” Opt. Lett. 41(5), 1038–1041 (2016).
[PubMed]

S. Alali, K. J. Aitken, A. Schröder, A. Gribble, D. J. Bagli, and I. A. Vitkin, “Assessment of local structural disorders of the bladder wall in partial bladder outlet obstruction using polarized light imaging,” Biomed. Opt. Express 5(2), 621–629 (2014).
[PubMed]

S. Alali, T. Yang, and I. A. Vitkin, “Rapid time-gated polarimetric Stokes imaging using photoelastic modulators,” Opt. Lett. 38(16), 2997–3000 (2013).
[PubMed]

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004 (2012).
[PubMed]

N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
[PubMed]

Vurgun, N.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004 (2012).
[PubMed]

Walsh, J. J. T.

P. J. Wu and J. J. T. Walsh, “Stokes polarimetry imaging of rat tail tissue in a turbid medium: degree of linear polarization image maps using incident linearly polarized light,” J. Biomed. Opt. 11, 014031 (2006).

Walsh, J. T.

P. J. Wu and J. T. Walsh., “Stokes polarimetry imaging of rat-tail tissue in a turbid medium using incident circularly polarized light,” Lasers Surg. Med. 37(5), 396–406 (2005).
[PubMed]

Wang, L. V.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[PubMed]

Wang, W.

W. Wang, L. G. Lim, S. Srivastava, J. Bok-Yan So, A. Shabbir, and Q. Liu, “Investigation on the potential of Mueller matrix imaging for digital staining,” J. Biophotonics 9, 364–375 (2015).

Wang, X.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[PubMed]

Wang, Y.

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[PubMed]

Welch, A. J.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11, 041117 (2006).

Wood, M. F.

N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
[PubMed]

Wood, M. F. G.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004 (2012).
[PubMed]

Wood, T. C.

Wu, J.

Y. Dong, J. Qi, H. He, C. He, S. Liu, J. Wu, D. S. Elson, and H. Ma, “Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope,” Biomed. Opt. Express 8(8), 3643–3655 (2017).
[PubMed]

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[PubMed]

Wu, P. J.

P. J. Wu and J. J. T. Walsh, “Stokes polarimetry imaging of rat tail tissue in a turbid medium: degree of linear polarization image maps using incident linearly polarized light,” J. Biomed. Opt. 11, 014031 (2006).

P. J. Wu and J. T. Walsh., “Stokes polarimetry imaging of rat-tail tissue in a turbid medium using incident circularly polarized light,” Lasers Surg. Med. 37(5), 396–406 (2005).
[PubMed]

Yang, T.

Ye, M.

Zarrine-Afsar, A.

A. Tata, A. Gribble, M. Ventura, M. Ganguly, E. Bluemke, H. J. Ginsberg, D. A. Jaffray, D. R. Ifa, A. Vitkin, and A. Zarrine-Afsar, “Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues,” Chem. Sci. (Camb.) 7(3), 2162–2169 (2016).

Zeng, N.

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[PubMed]

C. He, H. He, J. Chang, Y. Dong, S. Liu, N. Zeng, Y. He, and H. Ma, “Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters,” Biomed. Opt. Express 6(8), 2934–2945 (2015).
[PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[PubMed]

Zhao, X.

Zhu, D.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Biomed. Opt. Express (7)

C. He, H. He, J. Chang, Y. Dong, S. Liu, N. Zeng, Y. He, and H. Ma, “Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters,” Biomed. Opt. Express 6(8), 2934–2945 (2015).
[PubMed]

J. Qi, M. Ye, M. Singh, N. T. Clancy, and D. S. Elson, “Narrow band 3 × 3 Mueller polarimetric endoscopy,” Biomed. Opt. Express 4(11), 2433–2449 (2013).
[PubMed]

S. Alali, K. J. Aitken, A. Schröder, A. Gribble, D. J. Bagli, and I. A. Vitkin, “Assessment of local structural disorders of the bladder wall in partial bladder outlet obstruction using polarized light imaging,” Biomed. Opt. Express 5(2), 621–629 (2014).
[PubMed]

J. Qi, C. Barrière, T. C. Wood, and D. S. Elson, “Polarized multispectral imaging in a rigid endoscope based on elastic light scattering spectroscopy,” Biomed. Opt. Express 3(9), 2087–2099 (2012).
[PubMed]

N. T. Clancy, S. Arya, J. Qi, D. Stoyanov, G. B. Hanna, and D. S. Elson, “Polarised stereo endoscope and narrowband detection for minimal access surgery,” Biomed. Opt. Express 5(12), 4108–4117 (2014).
[PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[PubMed]

Y. Dong, J. Qi, H. He, C. He, S. Liu, J. Wu, D. S. Elson, and H. Ma, “Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope,” Biomed. Opt. Express 8(8), 3643–3655 (2017).
[PubMed]

Chem. Sci. (Camb.) (1)

A. Tata, A. Gribble, M. Ventura, M. Ganguly, E. Bluemke, H. J. Ginsberg, D. A. Jaffray, D. R. Ifa, A. Vitkin, and A. Zarrine-Afsar, “Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues,” Chem. Sci. (Camb.) 7(3), 2162–2169 (2016).

J. Biomed. Opt. (9)

P. J. Wu and J. J. T. Walsh, “Stokes polarimetry imaging of rat tail tissue in a turbid medium: degree of linear polarization image maps using incident linearly polarized light,” J. Biomed. Opt. 11, 014031 (2006).

N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
[PubMed]

V. V. Tuchin, “Polarized light interaction with tissues,” J. Biomed. Opt. 21(7), 071114 (2016).
[PubMed]

Y. A. Ushenko, “Investigation of formation and interrelations of polarization singular structure and Mueller-matrix images of biological tissues and diagnostics of their cancer changes,” J. Biomed. Opt. 16, 066006 (2011).

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[PubMed]

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004 (2012).
[PubMed]

Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, and H. Ma, “Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21(7), 071112 (2016).
[PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[PubMed]

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11, 041117 (2006).

J. Biophotonics (3)

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics 8(4), 317–323 (2015).
[PubMed]

W. Wang, L. G. Lim, S. Srivastava, J. Bok-Yan So, A. Shabbir, and Q. Liu, “Investigation on the potential of Mueller matrix imaging for digital staining,” J. Biophotonics 9, 364–375 (2015).

J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10(8), 950–982 (2017).
[PubMed]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[PubMed]

Lasers Surg. Med. (1)

P. J. Wu and J. T. Walsh., “Stokes polarimetry imaging of rat-tail tissue in a turbid medium using incident circularly polarized light,” Lasers Surg. Med. 37(5), 396–406 (2005).
[PubMed]

Opt. Express (6)

Opt. Lett. (3)

P. Soc Photo-Opt. Ins (1)

N. J. Brock, C. Crandall, and J. E. Millerd, “Snap-shot imaging polarimeter: performance and applications,” P. Soc Photo-Opt. Ins 9099, 909903 (2014).

Quantum Electron. (1)

Y. A. Ushenko, M. I. Sidor, G. B. Bodnar, and G. D. Koval, “Mueller-matrix mapping of optically anisotropic fluorophores of biological tissues in the diagnosis of cancer,” Quantum Electron. 44, 785–790 (2014).

Sci. Rep. (1)

J. Qi and D. S. Elson, “A high definition Mueller polarimetric endoscope for tissue characterisation,” Sci. Rep. 6, 25953 (2016).
[PubMed]

Thin Solid Films (1)

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).

Other (3)

D. Goldstein and D. H. Goldstein, Polarized Light (CRC Press, 2011), Vol. 83.

A. Ambirajan and J. D. C. Look, “Optimum angles for a Mueller matrix polarimeter,” in 1994), 314–326.

X. Wen, T. Yu, Q. Luo, and D. Zhu, Mechanism for Tissue Optical Clearing: Physical and Physiological Research (2010), Vol. 7999.

Supplementary Material (5)

NameDescription
» Visualization 1       A Stokes polarimetric video of a moving sample with four linear and two circular polarisers
» Visualization 2       The video contains Mueller polarimetric images acquired every minute to monitor the change of polarization properties of the dehydrating bovine tissue sample.
» Visualization 3       The change of diattenuation properties of the dehydrating bovine tissue sample.
» Visualization 4       The change of retardance properties of the dehydrating bovine tissue sample.
» Visualization 5       The change of depolarization properties of the dehydrating bovine tissue sample.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Experimental set-up of the Stokes polarimetric imager including a handhold-able imager head and a benchtop imager console. The imager head consisted of a LPA camera with pixelated linear polarizer array on its focal plane, an objective lens and a temperature controlled LCVR. In the console, a DAQ card generated two synchronized signals - a LCVR control signal sent to the LCVR controller via Cable ‘1’ and a CCD trigger signal sent to the LPA camera via Cable ‘2’; A PC communicated with the LPA camera via Cable ‘3′ and the DAQ via Cable ‘4’. (b) Timing diagram of LCVR control signals, the LCVR retardance and CCD trigger signals. The time delay between the CCD trigger pulses and the LVCR control signal was set as 30 ms; (c) Photo of the Stokes polarimetric imager head.
Fig. 2
Fig. 2 The condition number map of the DRM of the Stokes polarimetric system. The horizontal axis represents ��1 and the vertical axis refers to ��2 of the LCVR. The map does not change with θ. The minimum condition number is obtained when the difference of ��1 and ��2 reaches 90°.
Fig. 3
Fig. 3 The retardance spectra of the LCVR with the drive voltages set to 8 V, 9 V, 10 V, 15 V, 20 V, 25 V. The horizontal axis and vertical axis represent the wavelength in nanometer and the retardance in degree respectively.
Fig. 4
Fig. 4 The variation in the four elements of Stokes vectors of a linear polarizer rotated from 0° to 180° with a step of 10°(a) 546 nm band and (b) 628 nm band. The squares and circles in (a) and (b) represent the data acquired using the Stokes polarimetric imager. The dash lines in (a) and (b) stand for the theoretically prediction of the Stokes vectors; (c) the Stokes polarimetric image of a linear polarizer at 546 nm band and (d) 628 nm band; (e,f) the Stokes polarized image of the sample with horizontal, vertical, + 45°, −45° linear polarizers and left and right circular polarizers on the top of a piece of paper under two narrow band light sources. A Stokes polarimetric video was also generated when this sample was moving, and was shown in Visualization 1.
Fig. 5
Fig. 5 (a-c) Mueller polarimetric images, (d-f) magnitude of diattenuation images, (g-i) total depolarization images, (j-l) magnitude of retardance images, (m-o) fast axis orientation images, (p-r) the degree of polarization images reconstructed from Stokes images with unpolarized illumination denoted by DOPS of the bovine tendon sample. The images in the first, second and third column were obtained at 0min, 8min and 16min respectively. (d-r) and all the element images in (a-c) share the same scale bar specified in (d). Visualization 2, Visualization 3, Visualization 4, and Visualization 5 recorded the change of Mueller polarimetric images, and the diattenuation, retardance and depolarization images in the 16 min.
Fig. 6
Fig. 6 (a-c) Stokes polarimetric images of another tendon sample acquired at 0min, 7min and 14min, (d-f) DOPS images of the sample at 0min, 7min and 14min respectively. (d-f) and all the element images in (a-c) share the same scale bar specified in (d).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S=[ S0 S1 S2 S3 ]=[ IH+IV IHIV I45I-45 ILIR ]
DOP= S 1 2 +S 2 2 +S 3 2 S0
Sout=MSin=[ m11 m12 m13 m14 m21 m22 m23 m24 m31 m32 m33 m34 m41 m42 m43 m44 ]Sin
DRMcam=[ 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 ]
MLCVR(θ,δ)=Rot(2θ)MWP0(δ)Rot(2θ) MWP0(δ)=[ 1 0 0 0 0 0 0 0 0 0 cosδ sinδ 0 0 sinδ cosδ ] Rot(X)=[ 1 0 0 0 0 cosX sinX 0 0 sinX cosX 0 0 0 0 1 ]
DRM=[ DRMcamMLCVR(θ,δ1) DRMcamMLCVR(θ,δ2) ]
S=DR M 1 In In= [ I(0,δ1),I(45,δ1),I(90,δ1),I(45,δ1),I(0,δ2),I(45,δ2),I(90,δ2),I(45,δ2) ] T
| δ1δ2 |=90°

Metrics