Abstract

Ytterbium-doped fiber lasers (YDFLs) working in the near-infrared (NIR) spectral window and capable of high-power operation are popular in recent years. They have been broadly used in a variety of scientific and industrial research areas, including light bullet generation, optical frequency comb formation, materials fabrication, free-space laser communication, and biomedical diagnostics as well. The growing interest in YDFLs has also been cultivated for the generation of high-power femtosecond (fs) pulses. Unfortunately, the operating wavelengths of fs YDFLs have mostly been confined to two spectral bands, i.e., 970-980 nm through the three-level energy transition and 1030-1100 nm through the quasi three-level energy transition, leading to a spectral gap (990-1020 nm) in between, which is attributed to an intrinsically weak gain in this wavelength range. Here we demonstrate a high-power mode-locked fs YDFL operating at 1010 nm, which is accomplished in a compact and cost-effective package. It exhibits superior performance in terms of both short-term and long-term stability, i.e., <0.3% (peak intensity over 2.4 μs) and <4.0% (average power over 24 hours), respectively. To illustrate the practical applications, it is subsequently employed as a versatile fs laser for high-quality nonlinear imaging of biological samples, including two-photon excited fluorescence microscopy of mouse kidney and brain sections, as well as polarization-sensitive second-harmonic generation microscopy of potato starch granules and mouse tail muscle. It is anticipated that these efforts will largely extend the capability of fs YDFLs which is continuously tunable over 970-1100 nm wavelength range for wideband hyperspectral operations, serving as a promising complement to the gold-standard Ti:sapphire fs lasers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stokes vector based polarization resolved second harmonic microscopy of starch granules

Nirmal Mazumder, Jianjun Qiu, Matthew R. Foreman, Carlos Macías Romero, Peter Török, and Fu-Jen Kao
Biomed. Opt. Express 4(4) 538-547 (2013)

Multimodal CARS microscopy of structured carbohydrate biopolymers

Aaron D. Slepkov, Andrew Ridsdale, Adrian F. Pegoraro, Douglas J. Moffatt, and Albert Stolow
Biomed. Opt. Express 1(5) 1347-1357 (2010)

In vivo two-photon imaging of mouse hippocampal neurons in dentate gyrus using a light source based on a high-peak power gain-switched laser diode

Ryosuke Kawakami, Kazuaki Sawada, Yuta Kusama, Yi-Cheng Fang, Shinya Kanazawa, Yuichi Kozawa, Shunichi Sato, Hiroyuki Yokoyama, and Tomomi Nemoto
Biomed. Opt. Express 6(3) 891-901 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fibre amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
  3. M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 µm,” Opt. Lett. 32(8), 897–899 (2007).
    [PubMed]
  4. Y. Ma, X. Wang, J. Leng, H. Xiao, X. Dong, J. Zhu, W. Du, P. Zhou, X. Xu, L. Si, Z. Liu, and Y. Zhao, “Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique,” Opt. Lett. 36(6), 951–953 (2011).
    [PubMed]
  5. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. Fuchs, E. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10(14), 628–638 (2002).
    [PubMed]
  6. Y. Jeong, J. Nilsson, J. Sahu, D. Payne, R. Horley, L. Hickey, and P. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
  7. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=336
  8. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
  9. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
  10. C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
    [PubMed]
  11. J. R. Armitage, R. Wyatt, B. J. Ainsly, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of an Yb-doped silica fiber laser,” Electron. Lett. 25(5), 298–299 (1989).
  12. F. Röser, C. Jauregui, J. Limpert, and A. Tünnermann, “94 W 980 nm high brightness Yb-doped fiber laser,” Opt. Express 16(22), 17310–17318 (2008).
    [PubMed]
  13. J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High power ytterbium-doped rod-type three-level photonic crystal fiber laser,” Opt. Express 16(22), 17891–17902 (2008).
    [PubMed]
  14. Á. Krolopp, A. Csákányi, D. Haluszka, D. Csáti, L. Vass, A. Kolonics, N. Wikonkál, and R. Szipőcs, “Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for in vivo biomedical imaging,” Biomed. Opt. Express 7(9), 3531–3542 (2016).
    [PubMed]
  15. P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
    [PubMed]
  16. D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
    [PubMed]
  17. S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
    [PubMed]
  18. S. Mo, S. Xu, X. Huang, W. Zhang, Z. Feng, D. Chen, T. Yang, and Z. Yang, “A 1014 nm linearly polarized low noise narrow-linewidth single-frequency fiber laser,” Opt. Express 21(10), 12419–12423 (2013).
    [PubMed]
  19. R. Steinborn, A. Koglbauer, P. Bachor, T. Diehl, D. Kolbe, M. Stappel, and J. Walz, “A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm,” Opt. Express 21(19), 22693–22698 (2013).
    [PubMed]
  20. H. Xiao, J. Leng, H. Zhang, L. Huang, J. Xu, and P. Zhou, “High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump,” Appl. Opt. 54(27), 8166–8169 (2015).
    [PubMed]
  21. X. Qi, S. P. Chen, H. Y. Sun, B. K. Yang, and J. Hou, “1016nm all fiber picosecond MOPA laser with 50W output,” Opt. Express 24(15), 16874–16883 (2016).
    [PubMed]
  22. M. Jiang, P. Zhou, H. Xiao, R. Tao, and X. Wang, “Pulsed Yb3+-doped fiber laser operating at 1011 nm by intra-cavity phase modulation,” Appl. Opt. 53(10), 1990–1993 (2014).
    [PubMed]
  23. T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
  24. A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).
  25. S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
  26. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
  27. K. König, “Multiphoton Microscopy in Life Sciences,” J. Microsc. 200(Pt 2), 83–104 (2000).
    [PubMed]
  28. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [PubMed]
  29. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [PubMed]
  30. M. Göppert-Maier, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 9(3), 273–294 (1931).
  31. W. Kaiser and C. G. B. Garrett, “Two-Photon Excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
  32. E. P. Perillo, J. E. McCracken, D. C. Fernée, J. R. Goldak, F. A. Medina, D. R. Miller, H. C. Yeh, and A. K. Dunn, “Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser,” Biomed. Opt. Express 7(2), 324–334 (2016).
    [PubMed]
  33. W. Liu, S. H. Chia, H. Y. Chung, R. Greinert, F. X. Kärtner, and G. Chang, “Energetic ultrafast fiber laser sources tunable in 1030-1215 nm for deep tissue multi-photon microscopy,” Opt. Express 25(6), 6822–6831 (2017).
    [PubMed]
  34. H. Yang, “High energy femtosecond fiber laser at 1018 nm and high power Cherenkov radiation generation,” (Massachusetts Institute of Technology, 2014).
  35. Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tünnermann, and F. X. Kaertner, “87-W, 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: YLF amplifier,” in CLEO: Science and Innovations (Optical Society of America, 2016), pp. SM4Q. 5.
  36. R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “fs Mode-locked fiber laser continuously tunable from 976 nm to 1070 nm,” 2013Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, DOI: .
    [Crossref]
  37. O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt. Lett. 28(17), 1522–1524 (2003).
    [PubMed]
  38. A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).
  39. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
    [PubMed]
  40. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
    [PubMed]
  41. T. A. Pologruto, B. L. Sabatini, and K. Svoboda, ScanImage: Flexible software for operating laser scanning microscopes.
  42. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
  43. https://www.thermofisher.com/order/catalog/product/F24630 .
  44. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
    [PubMed]
  45. C. S. W. Lai, T. F. Franke, and W. B. Gan, “Opposite effects of fear conditioning and extinction on dendritic spine remodelling,” Nature 483(7387), 87–91 (2012).
    [PubMed]
  46. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
    [PubMed]

2017 (1)

2016 (3)

2015 (2)

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[PubMed]

H. Xiao, J. Leng, H. Zhang, L. Huang, J. Xu, and P. Zhou, “High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump,” Appl. Opt. 54(27), 8166–8169 (2015).
[PubMed]

2014 (1)

2013 (6)

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[PubMed]

S. Mo, S. Xu, X. Huang, W. Zhang, Z. Feng, D. Chen, T. Yang, and Z. Yang, “A 1014 nm linearly polarized low noise narrow-linewidth single-frequency fiber laser,” Opt. Express 21(10), 12419–12423 (2013).
[PubMed]

R. Steinborn, A. Koglbauer, P. Bachor, T. Diehl, D. Kolbe, M. Stappel, and J. Walz, “A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm,” Opt. Express 21(19), 22693–22698 (2013).
[PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[PubMed]

2012 (3)

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[PubMed]

A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).

C. S. W. Lai, T. F. Franke, and W. B. Gan, “Opposite effects of fear conditioning and extinction on dendritic spine remodelling,” Nature 483(7387), 87–91 (2012).
[PubMed]

2011 (1)

2010 (2)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).

2009 (2)

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[PubMed]

2008 (2)

2007 (3)

Y. Jeong, J. Nilsson, J. Sahu, D. Payne, R. Horley, L. Hickey, and P. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).

M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 µm,” Opt. Lett. 32(8), 897–899 (2007).
[PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
[PubMed]

2003 (3)

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).

O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt. Lett. 28(17), 1522–1524 (2003).
[PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[PubMed]

2002 (1)

2000 (2)

K. König, “Multiphoton Microscopy in Life Sciences,” J. Microsc. 200(Pt 2), 83–104 (2000).
[PubMed]

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).

1997 (2)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fibre amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).

1993 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[PubMed]

1989 (1)

J. R. Armitage, R. Wyatt, B. J. Ainsly, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of an Yb-doped silica fiber laser,” Electron. Lett. 25(5), 298–299 (1989).

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).

1961 (1)

W. Kaiser and C. G. B. Garrett, “Two-Photon Excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).

1931 (1)

M. Göppert-Maier, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 9(3), 273–294 (1931).

Agnesi, A.

A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).

Ainsly, B. J.

J. R. Armitage, R. Wyatt, B. J. Ainsly, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of an Yb-doped silica fiber laser,” Electron. Lett. 25(5), 298–299 (1989).

Armitage, J. R.

J. R. Armitage, R. Wyatt, B. J. Ainsly, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of an Yb-doped silica fiber laser,” Electron. Lett. 25(5), 298–299 (1989).

Bachor, P.

Barzda, V.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Beaurepaire, E.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[PubMed]

Bello-Doua, R.

Boullet, J.

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).

Carrà, L.

A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).

Carriles, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Cazaux, M.

Chang, G.

Chen, D.

Chen, S. P.

Chia, S. H.

Chong, A.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
[PubMed]

Christodoulides, D. N.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).

Chung, H. Y.

Cisek, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Clarkson, W. A.

Clausnitzer, T.

Cormier, E.

J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High power ytterbium-doped rod-type three-level photonic crystal fiber laser,” Opt. Express 16(22), 17891–17902 (2008).
[PubMed]

R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “fs Mode-locked fiber laser continuously tunable from 976 nm to 1070 nm,” 2013Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, DOI: .
[Crossref]

Craig-Ryan, S. P.

J. R. Armitage, R. Wyatt, B. J. Ainsly, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of an Yb-doped silica fiber laser,” Electron. Lett. 25(5), 298–299 (1989).

Csákányi, A.

Csáti, D.

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).

Débarre, D.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[PubMed]

Desmarchelier, R.

Di Marco, C.

A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).

Diehl, T.

Dong, X.

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).

Du, W.

Dunn, A. K.

Durst, M. E.

Eibl, M.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[PubMed]

Feng, Z.

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).

Fernée, D. C.

Field, J. J.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Franke, T. F.

C. S. W. Lai, T. F. Franke, and W. B. Gan, “Opposite effects of fear conditioning and extinction on dendritic spine remodelling,” Nature 483(7387), 87–91 (2012).
[PubMed]

Freudiger, C.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[PubMed]

Fu, D.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[PubMed]

Fuchs, H.

Gan, W. B.

C. S. W. Lai, T. F. Franke, and W. B. Gan, “Opposite effects of fear conditioning and extinction on dendritic spine remodelling,” Nature 483(7387), 87–91 (2012).
[PubMed]

Garrett, C. G. B.

W. Kaiser and C. G. B. Garrett, “Two-Photon Excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).

Goldak, J. R.

Gomes, L.

Göppert-Maier, M.

M. Göppert-Maier, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 9(3), 273–294 (1931).

Greinert, R.

Grudinin, A. B.

Haluszka, D.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fibre amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).

Haus, H. A.

Hickey, L.

Y. Jeong, J. Nilsson, J. Sahu, D. Payne, R. Horley, L. Hickey, and P. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).

Holtom, G.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[PubMed]

Horley, R.

Y. Jeong, J. Nilsson, J. Sahu, D. Payne, R. Horley, L. Hickey, and P. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).

Hou, J.

Huang, L.

Huang, X.

Huber, R.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[PubMed]

Ippen, E. P.

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).

F. Röser, C. Jauregui, J. Limpert, and A. Tünnermann, “94 W 980 nm high brightness Yb-doped fiber laser,” Opt. Express 16(22), 17310–17318 (2008).
[PubMed]

Jeong, Y.

Y. Jeong, J. Nilsson, J. Sahu, D. Payne, R. Horley, L. Hickey, and P. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).

Jiang, M.

Jiang, S.

Jouhti, T.

Kaiser, W.

W. Kaiser and C. G. B. Garrett, “Two-Photon Excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).

Karpf, S.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[PubMed]

Kärtner, F. X.

Klein, T.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[PubMed]

Kley, E.

Kobat, D.

Koglbauer, A.

Kolbe, D.

Kolonics, A.

König, K.

K. König, “Multiphoton Microscopy in Life Sciences,” J. Microsc. 200(Pt 2), 83–104 (2000).
[PubMed]

Krausz, F.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).

Krolopp, Á.

Labroille, G.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[PubMed]

Lai, C. S. W.

C. S. W. Lai, T. F. Franke, and W. B. Gan, “Opposite effects of fear conditioning and extinction on dendritic spine remodelling,” Nature 483(7387), 87–91 (2012).
[PubMed]

Leigh, M.

Leng, J.

Lhermite, J.

R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “fs Mode-locked fiber laser continuously tunable from 976 nm to 1070 nm,” 2013Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, DOI: .
[Crossref]

Limpert, J.

Liu, W.

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).

Liu, Z.

Livet, J.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[PubMed]

Loulier, K.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[PubMed]

Ma, Y.

Mahou, P.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[PubMed]

Matho, K. S.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[PubMed]

McCracken, J. E.

Medina, F. A.

Miller, D. R.

Mo, S.

Morin, X.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[PubMed]

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).

Nelson, L. E.

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).

Y. Jeong, J. Nilsson, J. Sahu, D. Payne, R. Horley, L. Hickey, and P. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fibre amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).

Nishimura, N.

Okhotnikov, O. G.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fibre amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).

Payne, D.

Y. Jeong, J. Nilsson, J. Sahu, D. Payne, R. Horley, L. Hickey, and P. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).

Perillo, E. P.

Peyghambarian, N.

Piccoli, R.

A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).

Qi, X.

Reali, G.

A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).

Renninger, W. H.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
[PubMed]

Richardson, D. J.

Röser, F.

Royon, R.

R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “fs Mode-locked fiber laser continuously tunable from 976 nm to 1070 nm,” 2013Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, DOI: .
[Crossref]

Saby, J.

Sahu, J.

Y. Jeong, J. Nilsson, J. Sahu, D. Payne, R. Horley, L. Hickey, and P. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).

Salin, F.

Sarger, L.

R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “fs Mode-locked fiber laser continuously tunable from 976 nm to 1070 nm,” 2013Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, DOI: .
[Crossref]

Schafer, D. N.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Schaffer, C. B.

Schreiber, T.

Sheetz, K. E.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Shi, W.

Si, L.

Squier, J. A.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Stappel, M.

Steinborn, R.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[PubMed]

Sun, H. Y.

Supatto, W.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[PubMed]

Sylvester, A. W.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Szipocs, R.

Tamura, K.

Tao, R.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fibre amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).

Tünnermann, A.

Turner, P.

Y. Jeong, J. Nilsson, J. Sahu, D. Payne, R. Horley, L. Hickey, and P. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).

Vass, L.

Walz, J.

Wang, J.

Wang, X.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[PubMed]

Wieser, W.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[PubMed]

Wikonkál, N.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[PubMed]

Wise, F. W.

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[PubMed]

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
[PubMed]

Wong, A. W.

Wyatt, R.

J. R. Armitage, R. Wyatt, B. J. Ainsly, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of an Yb-doped silica fiber laser,” Electron. Lett. 25(5), 298–299 (1989).

Xiang, N.

Xiao, H.

Xie, X. S.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[PubMed]

Xu, C.

Xu, J.

Xu, S.

Xu, X.

Yang, B. K.

Yang, T.

Yang, Z.

Ye, J.

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).

Yeh, H. C.

Zaouter, Y.

Zellmer, H.

Zhang, H.

Zhang, W.

Zhang, X.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[PubMed]

Zhao, Y.

Zhou, P.

Zhu, J.

Zimmerley, M.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[PubMed]

Zöllner, K.

Zong, J.

Ann. Phys. (1)

M. Göppert-Maier, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 9(3), 273–294 (1931).

Appl. Opt. (2)

Biomed. Opt. Express (2)

Electron. Lett. (1)

J. R. Armitage, R. Wyatt, B. J. Ainsly, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of an Yb-doped silica fiber laser,” Electron. Lett. 25(5), 298–299 (1989).

IEEE J. Quantum Electron. (2)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fibre amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Jeong, J. Nilsson, J. Sahu, D. Payne, R. Horley, L. Hickey, and P. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).

IEEE Photonics Technol. Lett. (1)

A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).

J. Microsc. (1)

K. König, “Multiphoton Microscopy in Life Sciences,” J. Microsc. 200(Pt 2), 83–104 (2000).
[PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[PubMed]

Nat. Commun. (1)

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[PubMed]

Nat. Methods (1)

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).
[PubMed]

Nat. Photonics (4)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[PubMed]

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).

Nature (1)

C. S. W. Lai, T. F. Franke, and W. B. Gan, “Opposite effects of fear conditioning and extinction on dendritic spine remodelling,” Nature 483(7387), 87–91 (2012).
[PubMed]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).

Opt. Express (8)

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[PubMed]

X. Qi, S. P. Chen, H. Y. Sun, B. K. Yang, and J. Hou, “1016nm all fiber picosecond MOPA laser with 50W output,” Opt. Express 24(15), 16874–16883 (2016).
[PubMed]

J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. Fuchs, E. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10(14), 628–638 (2002).
[PubMed]

W. Liu, S. H. Chia, H. Y. Chung, R. Greinert, F. X. Kärtner, and G. Chang, “Energetic ultrafast fiber laser sources tunable in 1030-1215 nm for deep tissue multi-photon microscopy,” Opt. Express 25(6), 6822–6831 (2017).
[PubMed]

F. Röser, C. Jauregui, J. Limpert, and A. Tünnermann, “94 W 980 nm high brightness Yb-doped fiber laser,” Opt. Express 16(22), 17310–17318 (2008).
[PubMed]

J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High power ytterbium-doped rod-type three-level photonic crystal fiber laser,” Opt. Express 16(22), 17891–17902 (2008).
[PubMed]

S. Mo, S. Xu, X. Huang, W. Zhang, Z. Feng, D. Chen, T. Yang, and Z. Yang, “A 1014 nm linearly polarized low noise narrow-linewidth single-frequency fiber laser,” Opt. Express 21(10), 12419–12423 (2013).
[PubMed]

R. Steinborn, A. Koglbauer, P. Bachor, T. Diehl, D. Kolbe, M. Stappel, and J. Walz, “A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm,” Opt. Express 21(19), 22693–22698 (2013).
[PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

W. Kaiser and C. G. B. Garrett, “Two-Photon Excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).

Rev. Mod. Phys. (2)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).

S. T. Cundiff and J. Ye, “Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).

Rev. Sci. Instrum. (1)

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[PubMed]

Other (6)

H. Yang, “High energy femtosecond fiber laser at 1018 nm and high power Cherenkov radiation generation,” (Massachusetts Institute of Technology, 2014).

Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tünnermann, and F. X. Kaertner, “87-W, 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: YLF amplifier,” in CLEO: Science and Innovations (Optical Society of America, 2016), pp. SM4Q. 5.

R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “fs Mode-locked fiber laser continuously tunable from 976 nm to 1070 nm,” 2013Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, DOI: .
[Crossref]

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=336

T. A. Pologruto, B. L. Sabatini, and K. Svoboda, ScanImage: Flexible software for operating laser scanning microscopes.

https://www.thermofisher.com/order/catalog/product/F24630 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experiment setup with details of OIM provided. OIM: optical integrated module. BS: optical beam splitter. PS-ISO: polarization-sensitive isolator. WDM: wavelength division multiplexer. LD: laser diode. YDF: ytterbium-doped fiber. SF: spectral filtering. Col: fiber collimator. λ/2: half-wave plate. BPF: bandpass filter. SMF: single mode fiber. PC: inline polarization controller. ISO: polarization insensitive isolator. GP: grating pair. GM: XY-galvanometric scanning mirrors Tel: telescope. Obj: objective lens. Con: condenser lens. L: lens. PMT: photomultiplier tube.
Fig. 2
Fig. 2 (a) Optical spectrum of the mode-locked pulse, in log scale. (b) Pulse train over a time span of 1200 ns. Inset shows the close-up. (c) RF spectrum over a frequency span of 1 MHz, measured at a resolution bandwidth of 10 Hz. (d) Autocorrelation trace of the de-chirped pulse. The measurement was performed right after the master oscillator.
Fig. 3
Fig. 3 (a) Output power versus pump power of Amp1. (b) Output power versus pump power of Amp2. Bottom-right inset shows the 2D profile of the laser beam, while top-left inset shows the 1D profile (a horizontal line indicated by the black-dashed line) and the Gaussian fitting. (c) Optical spectra of oscillator (blue, original), Amp1 (red, 202 mW) and Amp2 (black, 501 mW). They were measured right after oscillator, Amp1 and Amp2, respectively. (d) Long-term average-power stability over 24 hours, at a typical output power of 100 mW.
Fig. 4
Fig. 4 (a) Transmission spectra of the optical filters respectively for Alexa Fluor 488 (green) and Alexa Fluor 568 (red) emissions. (b) Image of a mouse kidney section showing the fluorescence signal of Alexa Fluor 568. (c) Image of Alexa Fluor 488 emission. (d) Two-color two-photon excited fluorescence image of the mouse kidney section by simply overlaying (b) and (c). Data was collected at a focal power of ~20 mW (on sample). It is noted that the colors are false. FOV: 150 μm x 150 μm. Scale bar: 30 μm for (b), (c) and (d).
Fig. 5
Fig. 5 Two-photon excited fluorescence images of a mouse brain slice. (a) A 3D image sectioned at step sizes of 5 μm. (b) A typical 2D image. Data were collected at a focal power of ~50 mW. FOV: 225μm x 225 μm. Scale bars are 30 μm for both (a) and (b).
Fig. 6
Fig. 6 (a) Optical spectrum of the second-harmonic signal generated by the potato starch granules, captured by a sensitive OSA. (b) SHG image of the potato starch slide. Data was collected at a focal power of ~20 mW. FOV: 150 μm x 150 μm. Scale bar: 30 μm.
Fig. 7
Fig. 7 SHG images of a mouse tail slide at different illumination polarizations. (a) Bright-field image of the mouse tail slide. In between of the two red lines is a collagen-rich region (b) Polarization control. A linear polarizer (P), a half-wave plate (λ/2) and a quarter wave-plate (λ/4) were put into the light path right after the compression grating pair. (c)-(d) SHG images with orthogonal linear illumination polarizations. (e) SHG image with circular illumination polarization. (f) SHG signal intensities of two line-scans indicated in (c) and (d), respectively. Data was collected at a focal power of ~20 mW. FOV: 150 μm x 150 μm. Scale bar: 30 μm for (a), (c), (d) and (e).

Tables (1)

Tables Icon

Table 1 The cost of this homemade fiber laser.

Metrics