Abstract

The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Image quality improvement in optical coherence tomography using Lucy–Richardson deconvolution algorithm

S. A. Hojjatoleslami, M. R. N. Avanaki, and A. Gh. Podoleanu
Appl. Opt. 52(23) 5663-5670 (2013)

Segmentation guided registration of wide field-of-view retinal optical coherence tomography volumes

José Lezama, Dibyendu Mukherjee, Ryan P. McNabb, Guillermo Sapiro, Anthony N. Kuo, and Sina Farsiu
Biomed. Opt. Express 7(12) 4827-4846 (2016)

AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data

Erik F. Y. Hom, Franck Marchis, Timothy K. Lee, Sebastian Haase, David A. Agard, and John W. Sedat
J. Opt. Soc. Am. A 24(6) 1580-1600 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008).
  3. O. Babalola, A. Mamalis, H. Lev-Tov, and J. Jagdeo, “Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis,” Arch. Dermatol. Res. 306(1), 1–9 (2014).
    [Crossref] [PubMed]
  4. E. Dalimier and D. Salomon, “Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging,” Dermatology (Basel) 224(1), 84–92 (2012).
    [Crossref] [PubMed]
  5. A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107(1), 193–200 (2006).
    [Crossref] [PubMed]
  6. M. Crisan, D. Crisan, G. Sannino, M. Lupsor, R. Badea, and F. Amzica, “Ultrasonographic staging of cutaneous malignant tumors: an ultrasonographic depth index,” Arch. Dermatol. Res. 305(4), 305–313 (2013).
    [Crossref] [PubMed]
  7. M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105(2), 360–370 (1998).
    [Crossref] [PubMed]
  8. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
    [Crossref] [PubMed]
  9. M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
    [Crossref] [PubMed]
  10. M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol. 160(5), 1026–1033 (2009).
    [Crossref] [PubMed]
  11. K. Shen, H. Lu, and M. R. Wang, “Improving lateral resolution of optical coherence tomography for imaging of skins,” Proc. SPIE 9713, 97130N (2016).
  12. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121(2), 235–239 (2003).
    [Crossref] [PubMed]
  13. C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12, 051703 (2007).
  14. C. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 101(20), 7516–7521 (2004).
    [Crossref] [PubMed]
  15. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
    [Crossref]
  16. K. Shen, H. Lu, J. H. Wang, and M. R. Wang, “Improved resolution of optical coherence tomography for imaging of microstructures,” Proc. SPIE 9334, 93340X (2015).
  17. J. H. Wang and M. R. Wang, “Handheld non-contact evaluation of fastener flushness and countersink surface profiles using optical coherence tomography,” Opt. Commun. 371, 206–212 (2016).
    [Crossref]
  18. A. S. Nam, B. Vakoc, D. Blauvelt, and I. Chico-Calero, “Optical coherence tomography in cancer imaging,” Optical Coherence Tomography: Technology and Applications, 1399–1412 (2015).
  19. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28(3), 182–184 (2003).
    [Crossref] [PubMed]
  20. V. R. Shidlovski, “Superluminescent diode light sources for OCT,” Optical Coherence Tomography: Technology and Applications, 505–526 (2015).
  21. J. A. Izatt and M. A. Choma, “Theory of Optical Coherence Tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008), pp. 47–72.
  22. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  23. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in Optical Coherence Tomography,” Opt. Express 20(2), 1337–1359 (2012).
    [Crossref] [PubMed]
  24. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
    [Crossref] [PubMed]
  25. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
    [Crossref] [PubMed]
  26. Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4(12), 3007–3029 (2013).
    [Crossref] [PubMed]
  27. B. Wang, R. Lu, Q. Zhang, and X. Yao, “Breaking diffraction limit of lateral resolution in optical coherence tomography,” Quant. Imaging Med. Surg. 3(5), 243–248 (2013).
    [PubMed]
  28. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
    [Crossref] [PubMed]
  29. M. D. Robinson, S. J. Chiu, J. Lo, C. Toth, J. Izatt, and S. Farsiu, “New applications of super-resolution in medical imaging,” Super-Resolution Imaging, 384–412 (2010).
  30. A. Agrawal, M. Connors, A. Beylin, C.-P. Liang, D. Barton, Y. Chen, R. A. Drezek, and T. J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” Biomed. Opt. Express 3(5), 1116–1126 (2012).
    [Crossref] [PubMed]
  31. T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
    [Crossref] [PubMed]
  32. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
    [Crossref] [PubMed]
  33. S. A. Hojjatoleslami, M. R. N. Avanaki, and A. G. Podoleanu, “Image quality improvement in optical coherence tomography using Lucy-Richardson deconvolution algorithm,” Appl. Opt. 52(23), 5663–5670 (2013).
    [Crossref] [PubMed]
  34. B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89(2), 207–212 (2005).
    [Crossref] [PubMed]
  35. J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002).
    [Crossref] [PubMed]
  36. M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007).
    [Crossref]
  37. M. F. Kraus and J. Hornegger, “OCT motion correction,” Optical Coherence Tomography: Technology and Applications, 459–476 (2015).
  38. J. Yang and T. Huang, “Image super-resolution: Historical overview and future challenges,” Super-resolution imaging, 1–34 (2010).
  39. S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004).
    [Crossref] [PubMed]
  40. S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
    [Crossref]
  41. Z. Wang and F. Qi, Digital Image Processing (Pearson Education, 2002).
  42. W. Zhaozhong and Q. Feihu, “On ambiguities in super-resolution modeling,” IEEE Signal Process. Lett. 11(8), 678–681 (2004).
    [Crossref]
  43. T. Q. Pham, L. J. Van Vliet, and K. Schutte, “Robust fusion of irregularly sampled data using adaptive normalized convolution,” EURASIP J. Adv. Signal Process. 2006, 1–13 (2006).
    [Crossref]
  44. M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur,” IEEE Trans. Image Process. 10(8), 1187–1193 (2001).
    [Crossref] [PubMed]
  45. W. H. Richardson, “Bayesian-Based Iterative Method of Image Restoration,” J. Opt. Soc. Am. 62(1), 55–59 (1972).
    [Crossref]
  46. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745 (1974).
    [Crossref]
  47. R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” in ACM transactions on graphics (TOG), (ACM, 2006), 787–794.
  48. D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a normalized sparsity measure,” in Computer Vision and Pattern Recognition (CVPR),2011IEEE Conference on, (IEEE, 2011), 233–240.
    [Crossref]
  49. E. Hecht, “Optics 4th edition,” Optics, 4th Edition, Addison Wesley Longman Inc, 1998 (1998).
  50. H. Knutsson and C.-F. Westin, “Normalized and differential convolution,” in Computer Vision and Pattern Recognition,1993. Proceedings CVPR'93., 1993 IEEE Computer Society Conference on, (IEEE, 1993), 515–523.
    [Crossref]
  51. G. Farnebäck, Polynomial Expansion for Orientation and Motion Estimation (Linköping University Electronic Press, 2002).
  52. W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, “Multi-modal volume registration by maximization of mutual information,” Med. Image Anal. 1(1), 35–51 (1996).
    [Crossref] [PubMed]
  53. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis (Wiley New York, 1973), Vol. 3.
  54. A. Papoulis, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1990).
  55. Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Opt. Express 18(2), 1024–1032 (2010).
    [Crossref] [PubMed]
  56. T. Kuroda, Essential Principles of Image Sensors (CRC press, 2014).
  57. A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding Blind Deconvolution Algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2354–2367 (2011).
    [Crossref] [PubMed]
  58. Q. Li, M. L. Onozato, P. M. Andrews, C.-W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
    [Crossref] [PubMed]
  59. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
    [Crossref] [PubMed]
  60. Y. Zhu, W. Gao, Y. Zhou, Y. Guo, F. Guo, and Y. He, “Rapid and high-resolution imaging of human liver specimens by full-field optical coherence tomography,” J. Biomed. Opt. 20(11), 116010 (2015).
    [Crossref] [PubMed]
  61. A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the Infant Retina with a Hand-held Spectral-Domain Optical Coherence Tomography Device,” Am. J. Ophthalmol. 147(2), 364–373 (2009).
    [Crossref] [PubMed]
  62. M. D. Robinson, C. A. Toth, J. Y. Lo, and S. Farsiu, “Effcient Fourier-Wavelet Super-Resolution,” IEEE Trans. Image Process. 19(10), 2669–2681 (2010).
    [Crossref] [PubMed]

2016 (2)

K. Shen, H. Lu, and M. R. Wang, “Improving lateral resolution of optical coherence tomography for imaging of skins,” Proc. SPIE 9713, 97130N (2016).

J. H. Wang and M. R. Wang, “Handheld non-contact evaluation of fastener flushness and countersink surface profiles using optical coherence tomography,” Opt. Commun. 371, 206–212 (2016).
[Crossref]

2015 (2)

K. Shen, H. Lu, J. H. Wang, and M. R. Wang, “Improved resolution of optical coherence tomography for imaging of microstructures,” Proc. SPIE 9334, 93340X (2015).

Y. Zhu, W. Gao, Y. Zhou, Y. Guo, F. Guo, and Y. He, “Rapid and high-resolution imaging of human liver specimens by full-field optical coherence tomography,” J. Biomed. Opt. 20(11), 116010 (2015).
[Crossref] [PubMed]

2014 (1)

O. Babalola, A. Mamalis, H. Lev-Tov, and J. Jagdeo, “Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis,” Arch. Dermatol. Res. 306(1), 1–9 (2014).
[Crossref] [PubMed]

2013 (4)

M. Crisan, D. Crisan, G. Sannino, M. Lupsor, R. Badea, and F. Amzica, “Ultrasonographic staging of cutaneous malignant tumors: an ultrasonographic depth index,” Arch. Dermatol. Res. 305(4), 305–313 (2013).
[Crossref] [PubMed]

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4(12), 3007–3029 (2013).
[Crossref] [PubMed]

B. Wang, R. Lu, Q. Zhang, and X. Yao, “Breaking diffraction limit of lateral resolution in optical coherence tomography,” Quant. Imaging Med. Surg. 3(5), 243–248 (2013).
[PubMed]

S. A. Hojjatoleslami, M. R. N. Avanaki, and A. G. Podoleanu, “Image quality improvement in optical coherence tomography using Lucy-Richardson deconvolution algorithm,” Appl. Opt. 52(23), 5663–5670 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[Crossref] [PubMed]

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding Blind Deconvolution Algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2354–2367 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (5)

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the Infant Retina with a Hand-held Spectral-Domain Optical Coherence Tomography Device,” Am. J. Ophthalmol. 147(2), 364–373 (2009).
[Crossref] [PubMed]

Q. Li, M. L. Onozato, P. M. Andrews, C.-W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref] [PubMed]

Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
[Crossref] [PubMed]

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol. 160(5), 1026–1033 (2009).
[Crossref] [PubMed]

2007 (4)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12, 051703 (2007).

L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
[Crossref] [PubMed]

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007).
[Crossref]

2006 (2)

T. Q. Pham, L. J. Van Vliet, and K. Schutte, “Robust fusion of irregularly sampled data using adaptive normalized convolution,” EURASIP J. Adv. Signal Process. 2006, 1–13 (2006).
[Crossref]

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107(1), 193–200 (2006).
[Crossref] [PubMed]

2005 (3)

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89(2), 207–212 (2005).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

2004 (4)

S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004).
[Crossref] [PubMed]

W. Zhaozhong and Q. Feihu, “On ambiguities in super-resolution modeling,” IEEE Signal Process. Lett. 11(8), 678–681 (2004).
[Crossref]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
[Crossref] [PubMed]

C. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 101(20), 7516–7521 (2004).
[Crossref] [PubMed]

2003 (4)

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121(2), 235–239 (2003).
[Crossref] [PubMed]

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28(3), 182–184 (2003).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

2002 (1)

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002).
[Crossref] [PubMed]

2001 (1)

M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur,” IEEE Trans. Image Process. 10(8), 1187–1193 (2001).
[Crossref] [PubMed]

1998 (1)

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105(2), 360–370 (1998).
[Crossref] [PubMed]

1996 (1)

W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, “Multi-modal volume registration by maximization of mutual information,” Med. Image Anal. 1(1), 35–51 (1996).
[Crossref] [PubMed]

1995 (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1974 (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745 (1974).
[Crossref]

1972 (1)

Agrawal, A.

Amzica, F.

M. Crisan, D. Crisan, G. Sannino, M. Lupsor, R. Badea, and F. Amzica, “Ultrasonographic staging of cutaneous malignant tumors: an ultrasonographic depth index,” Arch. Dermatol. Res. 305(4), 305–313 (2013).
[Crossref] [PubMed]

Andersen, P. E.

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

Andrews, P. M.

Atsumi, H.

W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, “Multi-modal volume registration by maximization of mutual information,” Med. Image Anal. 1(1), 35–51 (1996).
[Crossref] [PubMed]

Avanaki, M. R. N.

Babalola, O.

O. Babalola, A. Mamalis, H. Lev-Tov, and J. Jagdeo, “Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis,” Arch. Dermatol. Res. 306(1), 1–9 (2014).
[Crossref] [PubMed]

Badea, R.

M. Crisan, D. Crisan, G. Sannino, M. Lupsor, R. Badea, and F. Amzica, “Ultrasonographic staging of cutaneous malignant tumors: an ultrasonographic depth index,” Arch. Dermatol. Res. 305(4), 305–313 (2013).
[Crossref] [PubMed]

Barton, D.

Beylin, A.

Biedermann, B. R.

Boppart, S. A.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

C. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 101(20), 7516–7521 (2004).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Bouma, B.

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Bower, B. A.

Brezinski, M. E.

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Brown, M.

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007).
[Crossref]

Cable, A.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, C.-W.

Chen, T.

Chen, Y.

Chen, Z.

Choi, S.

Chu, C. R.

C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12, 051703 (2007).

Coker, J. G.

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105(2), 360–370 (1998).
[Crossref] [PubMed]

Connors, M.

Crisan, D.

M. Crisan, D. Crisan, G. Sannino, M. Lupsor, R. Badea, and F. Amzica, “Ultrasonographic staging of cutaneous malignant tumors: an ultrasonographic depth index,” Arch. Dermatol. Res. 305(4), 305–313 (2013).
[Crossref] [PubMed]

Crisan, M.

M. Crisan, D. Crisan, G. Sannino, M. Lupsor, R. Badea, and F. Amzica, “Ultrasonographic staging of cutaneous malignant tumors: an ultrasonographic depth index,” Arch. Dermatol. Res. 305(4), 305–313 (2013).
[Crossref] [PubMed]

Dalimier, E.

E. Dalimier and D. Salomon, “Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging,” Dermatology (Basel) 224(1), 84–92 (2012).
[Crossref] [PubMed]

de Boer, J.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Drezek, R. A.

Duker, J. S.

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105(2), 360–370 (1998).
[Crossref] [PubMed]

Durand, F.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding Blind Deconvolution Algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2354–2367 (2011).
[Crossref] [PubMed]

Eigenwillig, C. M.

Elad, M.

S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004).
[Crossref] [PubMed]

M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur,” IEEE Trans. Image Process. 10(8), 1187–1193 (2001).
[Crossref] [PubMed]

Enyedi, L. B.

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the Infant Retina with a Hand-held Spectral-Domain Optical Coherence Tomography Device,” Am. J. Ophthalmol. 147(2), 364–373 (2009).
[Crossref] [PubMed]

Farsiu, S.

M. D. Robinson, C. A. Toth, J. Y. Lo, and S. Farsiu, “Effcient Fourier-Wavelet Super-Resolution,” IEEE Trans. Image Process. 19(10), 2669–2681 (2010).
[Crossref] [PubMed]

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the Infant Retina with a Hand-held Spectral-Domain Optical Coherence Tomography Device,” Am. J. Ophthalmol. 147(2), 364–373 (2009).
[Crossref] [PubMed]

S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004).
[Crossref] [PubMed]

Feihu, Q.

W. Zhaozhong and Q. Feihu, “On ambiguities in super-resolution modeling,” IEEE Signal Process. Lett. 11(8), 678–681 (2004).
[Crossref]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Ferretti, M.

C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12, 051703 (2007).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Forman, J. L.

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol. 160(5), 1026–1033 (2009).
[Crossref] [PubMed]

Freeman, W. T.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding Blind Deconvolution Algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2354–2367 (2011).
[Crossref] [PubMed]

Fujimoto, J. G.

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105(2), 360–370 (1998).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gao, W.

Y. Zhu, W. Gao, Y. Zhou, Y. Guo, F. Guo, and Y. He, “Rapid and high-resolution imaging of human liver specimens by full-field optical coherence tomography,” J. Biomed. Opt. 20(11), 116010 (2015).
[Crossref] [PubMed]

Gerger, A.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107(1), 193–200 (2006).
[Crossref] [PubMed]

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Guo, F.

Y. Zhu, W. Gao, Y. Zhou, Y. Guo, F. Guo, and Y. He, “Rapid and high-resolution imaging of human liver specimens by full-field optical coherence tomography,” J. Biomed. Opt. 20(11), 116010 (2015).
[Crossref] [PubMed]

Guo, S.

Guo, Y.

Y. Zhu, W. Gao, Y. Zhou, Y. Guo, F. Guo, and Y. He, “Rapid and high-resolution imaging of human liver specimens by full-field optical coherence tomography,” J. Biomed. Opt. 20(11), 116010 (2015).
[Crossref] [PubMed]

He, Y.

Y. Zhu, W. Gao, Y. Zhou, Y. Guo, F. Guo, and Y. He, “Rapid and high-resolution imaging of human liver specimens by full-field optical coherence tomography,” J. Biomed. Opt. 20(11), 116010 (2015).
[Crossref] [PubMed]

Hee, M. R.

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105(2), 360–370 (1998).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hel-Or, Y.

M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur,” IEEE Trans. Image Process. 10(8), 1187–1193 (2001).
[Crossref] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Hojjatoleslami, S. A.

Hougaard, J. L.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89(2), 207–212 (2005).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huber, R.

Irrgang, J. J.

C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12, 051703 (2007).

Izatt, J. A.

Izzo, N. J.

C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12, 051703 (2007).

Jagdeo, J.

O. Babalola, A. Mamalis, H. Lev-Tov, and J. Jagdeo, “Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis,” Arch. Dermatol. Res. 306(1), 1–9 (2014).
[Crossref] [PubMed]

Jemec, G. B.

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol. 160(5), 1026–1033 (2009).
[Crossref] [PubMed]

Jian, Z.

Jiang, J.

Jones, S. M.

Jørgensen, T. M.

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89(2), 207–212 (2005).
[Crossref] [PubMed]

Kamalabadi, F.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

Kang, M. G.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Kerl, H.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107(1), 193–200 (2006).
[Crossref] [PubMed]

Kikinis, R.

W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, “Multi-modal volume registration by maximization of mutual information,” Med. Image Anal. 1(1), 35–51 (1996).
[Crossref] [PubMed]

Klein, T.

Kocaoglu, O. P.

Koller, S.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107(1), 193–200 (2006).
[Crossref] [PubMed]

Kowalczyk, A.

Krippl, P.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107(1), 193–200 (2006).
[Crossref] [PubMed]

Larsen, M.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89(2), 207–212 (2005).
[Crossref] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Laut, S.

Levin, A.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding Blind Deconvolution Algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2354–2367 (2011).
[Crossref] [PubMed]

Lev-Tov, H.

O. Babalola, A. Mamalis, H. Lev-Tov, and J. Jagdeo, “Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis,” Arch. Dermatol. Res. 306(1), 1–9 (2014).
[Crossref] [PubMed]

Li, Q.

Liang, C.-P.

Liang, Y.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

Lo, J. Y.

M. D. Robinson, C. A. Toth, J. Y. Lo, and S. Farsiu, “Effcient Fourier-Wavelet Super-Resolution,” IEEE Trans. Image Process. 19(10), 2669–2681 (2010).
[Crossref] [PubMed]

Lowe, D. G.

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007).
[Crossref]

Lu, H.

K. Shen, H. Lu, and M. R. Wang, “Improving lateral resolution of optical coherence tomography for imaging of skins,” Proc. SPIE 9713, 97130N (2016).

K. Shen, H. Lu, J. H. Wang, and M. R. Wang, “Improved resolution of optical coherence tomography for imaging of microstructures,” Proc. SPIE 9334, 93340X (2015).

Lu, R.

B. Wang, R. Lu, Q. Zhang, and X. Yao, “Breaking diffraction limit of lateral resolution in optical coherence tomography,” Quant. Imaging Med. Surg. 3(5), 243–248 (2013).
[PubMed]

Lucy, L. B.

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745 (1974).
[Crossref]

Lupsor, M.

M. Crisan, D. Crisan, G. Sannino, M. Lupsor, R. Badea, and F. Amzica, “Ultrasonographic staging of cutaneous malignant tumors: an ultrasonographic depth index,” Arch. Dermatol. Res. 305(4), 305–313 (2013).
[Crossref] [PubMed]

Mamalis, A.

O. Babalola, A. Mamalis, H. Lev-Tov, and J. Jagdeo, “Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis,” Arch. Dermatol. Res. 306(1), 1–9 (2014).
[Crossref] [PubMed]

Marks, D. L.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

C. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 101(20), 7516–7521 (2004).
[Crossref] [PubMed]

Milanfar, P.

S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004).
[Crossref] [PubMed]

Miller, D. T.

Mogensen, M.

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol. 160(5), 1026–1033 (2009).
[Crossref] [PubMed]

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

Mu, G.

Nakajima, S.

W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, “Multi-modal volume registration by maximization of mutual information,” Med. Image Anal. 1(1), 35–51 (1996).
[Crossref] [PubMed]

Naphas, R.

Nassif, N.

Nelson, J. S.

Nürnberg, B. M.

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol. 160(5), 1026–1033 (2009).
[Crossref] [PubMed]

Olivier, S. S.

Onozato, M. L.

Paek, A.

Parikh, D. S.

C. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 101(20), 7516–7521 (2004).
[Crossref] [PubMed]

Park, B.

Park, M. K.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Park, S. C.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Pfefer, T. J.

Pham, T. Q.

T. Q. Pham, L. J. Van Vliet, and K. Schutte, “Robust fusion of irregularly sampled data using adaptive normalized convolution,” EURASIP J. Adv. Signal Process. 2006, 1–13 (2006).
[Crossref]

Pierce, M.

Podoleanu, A. G.

Puliafito, C. A.

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105(2), 360–370 (1998).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ralston, T. S.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

Rao, B.

Raskin, L.

C. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 101(20), 7516–7521 (2004).
[Crossref] [PubMed]

Reichel, E.

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105(2), 360–370 (1998).
[Crossref] [PubMed]

Richardson, W. H.

Richtig, E.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107(1), 193–200 (2006).
[Crossref] [PubMed]

Robinson, M. D.

M. D. Robinson, C. A. Toth, J. Y. Lo, and S. Farsiu, “Effcient Fourier-Wavelet Super-Resolution,” IEEE Trans. Image Process. 19(10), 2669–2681 (2010).
[Crossref] [PubMed]

S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004).
[Crossref] [PubMed]

Rogowska, J.

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002).
[Crossref] [PubMed]

Rollins, A. M.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121(2), 235–239 (2003).
[Crossref] [PubMed]

Salomon, D.

E. Dalimier and D. Salomon, “Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging,” Dermatology (Basel) 224(1), 84–92 (2012).
[Crossref] [PubMed]

Samonigg, H.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107(1), 193–200 (2006).
[Crossref] [PubMed]

Sander, B.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89(2), 207–212 (2005).
[Crossref] [PubMed]

Sannino, G.

M. Crisan, D. Crisan, G. Sannino, M. Lupsor, R. Badea, and F. Amzica, “Ultrasonographic staging of cutaneous malignant tumors: an ultrasonographic depth index,” Arch. Dermatol. Res. 305(4), 305–313 (2013).
[Crossref] [PubMed]

Schuman, J. S.

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105(2), 360–370 (1998).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schutte, K.

T. Q. Pham, L. J. Van Vliet, and K. Schutte, “Robust fusion of irregularly sampled data using adaptive normalized convolution,” EURASIP J. Adv. Signal Process. 2006, 1–13 (2006).
[Crossref]

Scott, A. W.

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the Infant Retina with a Hand-held Spectral-Domain Optical Coherence Tomography Device,” Am. J. Ophthalmol. 147(2), 364–373 (2009).
[Crossref] [PubMed]

Shen, K.

K. Shen, H. Lu, and M. R. Wang, “Improving lateral resolution of optical coherence tomography for imaging of skins,” Proc. SPIE 9713, 97130N (2016).

K. Shen, H. Lu, J. H. Wang, and M. R. Wang, “Improved resolution of optical coherence tomography for imaging of microstructures,” Proc. SPIE 9334, 93340X (2015).

Smolle, J.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107(1), 193–200 (2006).
[Crossref] [PubMed]

Southern, J. F.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Studer, R. K.

C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12, 051703 (2007).

Su, J.

Swanson, E. A.

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105(2), 360–370 (1998).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sylwestrzak, M.

Szkulmowski, M.

Szlag, D.

Tearney, G.

Tearney, G. J.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Thomsen, J. B.

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol. 160(5), 1026–1033 (2009).
[Crossref] [PubMed]

Thrane, L.

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol. 160(5), 1026–1033 (2009).
[Crossref] [PubMed]

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89(2), 207–212 (2005).
[Crossref] [PubMed]

Toth, C. A.

M. D. Robinson, C. A. Toth, J. Y. Lo, and S. Farsiu, “Effcient Fourier-Wavelet Super-Resolution,” IEEE Trans. Image Process. 19(10), 2669–2681 (2010).
[Crossref] [PubMed]

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the Infant Retina with a Hand-held Spectral-Domain Optical Coherence Tomography Device,” Am. J. Ophthalmol. 147(2), 364–373 (2009).
[Crossref] [PubMed]

Tromberg, B. J.

Van Vliet, L. J.

T. Q. Pham, L. J. Van Vliet, and K. Schutte, “Robust fusion of irregularly sampled data using adaptive normalized convolution,” EURASIP J. Adv. Signal Process. 2006, 1–13 (2006).
[Crossref]

Viola, P.

W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, “Multi-modal volume registration by maximization of mutual information,” Med. Image Anal. 1(1), 35–51 (1996).
[Crossref] [PubMed]

Wallace, D. K.

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the Infant Retina with a Hand-held Spectral-Domain Optical Coherence Tomography Device,” Am. J. Ophthalmol. 147(2), 364–373 (2009).
[Crossref] [PubMed]

Wang, B.

B. Wang, R. Lu, Q. Zhang, and X. Yao, “Breaking diffraction limit of lateral resolution in optical coherence tomography,” Quant. Imaging Med. Surg. 3(5), 243–248 (2013).
[PubMed]

Wang, J. H.

J. H. Wang and M. R. Wang, “Handheld non-contact evaluation of fastener flushness and countersink surface profiles using optical coherence tomography,” Opt. Commun. 371, 206–212 (2016).
[Crossref]

K. Shen, H. Lu, J. H. Wang, and M. R. Wang, “Improved resolution of optical coherence tomography for imaging of microstructures,” Proc. SPIE 9334, 93340X (2015).

Wang, M. R.

J. H. Wang and M. R. Wang, “Handheld non-contact evaluation of fastener flushness and countersink surface profiles using optical coherence tomography,” Opt. Commun. 371, 206–212 (2016).
[Crossref]

K. Shen, H. Lu, and M. R. Wang, “Improving lateral resolution of optical coherence tomography for imaging of skins,” Proc. SPIE 9713, 97130N (2016).

K. Shen, H. Lu, J. H. Wang, and M. R. Wang, “Improved resolution of optical coherence tomography for imaging of microstructures,” Proc. SPIE 9334, 93340X (2015).

Wang, Q.

Wang, Y.

Weger, W.

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107(1), 193–200 (2006).
[Crossref] [PubMed]

Weiss, Y.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding Blind Deconvolution Algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2354–2367 (2011).
[Crossref] [PubMed]

Wells, W. M.

W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, “Multi-modal volume registration by maximization of mutual information,” Med. Image Anal. 1(1), 35–51 (1996).
[Crossref] [PubMed]

Werner, J. S.

Wieser, W.

Wilkins, J. R.

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105(2), 360–370 (1998).
[Crossref] [PubMed]

Windeler, R. S.

Wojtkowski, M.

Xi, C.

C. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 101(20), 7516–7521 (2004).
[Crossref] [PubMed]

Yao, X.

B. Wang, R. Lu, Q. Zhang, and X. Yao, “Breaking diffraction limit of lateral resolution in optical coherence tomography,” Quant. Imaging Med. Surg. 3(5), 243–248 (2013).
[PubMed]

Yazdanfar, S.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121(2), 235–239 (2003).
[Crossref] [PubMed]

Yu, L.

Yuan, S.

Yun, S.

Zawadzki, R. J.

Zhang, J.

Zhang, Q.

B. Wang, R. Lu, Q. Zhang, and X. Yao, “Breaking diffraction limit of lateral resolution in optical coherence tomography,” Quant. Imaging Med. Surg. 3(5), 243–248 (2013).
[PubMed]

Zhao, M.

Zhao, Y.

Zhaozhong, W.

W. Zhaozhong and Q. Feihu, “On ambiguities in super-resolution modeling,” IEEE Signal Process. Lett. 11(8), 678–681 (2004).
[Crossref]

Zhou, Y.

Y. Zhu, W. Gao, Y. Zhou, Y. Guo, F. Guo, and Y. He, “Rapid and high-resolution imaging of human liver specimens by full-field optical coherence tomography,” J. Biomed. Opt. 20(11), 116010 (2015).
[Crossref] [PubMed]

Zhu, X.

Zhu, Y.

Y. Zhu, W. Gao, Y. Zhou, Y. Guo, F. Guo, and Y. He, “Rapid and high-resolution imaging of human liver specimens by full-field optical coherence tomography,” J. Biomed. Opt. 20(11), 116010 (2015).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, and C. A. Toth, “Imaging the Infant Retina with a Hand-held Spectral-Domain Optical Coherence Tomography Device,” Am. J. Ophthalmol. 147(2), 364–373 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

Arch. Dermatol. Res. (2)

O. Babalola, A. Mamalis, H. Lev-Tov, and J. Jagdeo, “Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis,” Arch. Dermatol. Res. 306(1), 1–9 (2014).
[Crossref] [PubMed]

M. Crisan, D. Crisan, G. Sannino, M. Lupsor, R. Badea, and F. Amzica, “Ultrasonographic staging of cutaneous malignant tumors: an ultrasonographic depth index,” Arch. Dermatol. Res. 305(4), 305–313 (2013).
[Crossref] [PubMed]

Arch. Ophthalmol. (1)

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121(2), 235–239 (2003).
[Crossref] [PubMed]

Astron. J. (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745 (1974).
[Crossref]

Biomed. Opt. Express (2)

Br. J. Dermatol. (1)

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol. 160(5), 1026–1033 (2009).
[Crossref] [PubMed]

Br. J. Ophthalmol. (1)

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89(2), 207–212 (2005).
[Crossref] [PubMed]

Cancer (1)

A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, “Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,” Cancer 107(1), 193–200 (2006).
[Crossref] [PubMed]

Dermatology (Basel) (1)

E. Dalimier and D. Salomon, “Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging,” Dermatology (Basel) 224(1), 84–92 (2012).
[Crossref] [PubMed]

EURASIP J. Adv. Signal Process. (1)

T. Q. Pham, L. J. Van Vliet, and K. Schutte, “Robust fusion of irregularly sampled data using adaptive normalized convolution,” EURASIP J. Adv. Signal Process. 2006, 1–13 (2006).
[Crossref]

IEEE Signal Process. Lett. (1)

W. Zhaozhong and Q. Feihu, “On ambiguities in super-resolution modeling,” IEEE Signal Process. Lett. 11(8), 678–681 (2004).
[Crossref]

IEEE Signal Process. Mag. (1)

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

IEEE Trans. Image Process. (4)

M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur,” IEEE Trans. Image Process. 10(8), 1187–1193 (2001).
[Crossref] [PubMed]

M. D. Robinson, C. A. Toth, J. Y. Lo, and S. Farsiu, “Effcient Fourier-Wavelet Super-Resolution,” IEEE Trans. Image Process. 19(10), 2669–2681 (2010).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding Blind Deconvolution Algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2354–2367 (2011).
[Crossref] [PubMed]

Int. J. Comput. Vis. (1)

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007).
[Crossref]

J. Biomed. Opt. (2)

C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12, 051703 (2007).

Y. Zhu, W. Gao, Y. Zhou, Y. Guo, F. Guo, and Y. He, “Rapid and high-resolution imaging of human liver specimens by full-field optical coherence tomography,” J. Biomed. Opt. 20(11), 116010 (2015).
[Crossref] [PubMed]

J. Biophotonics (1)

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Med. Image Anal. (1)

W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, “Multi-modal volume registration by maximization of mutual information,” Med. Image Anal. 1(1), 35–51 (1996).
[Crossref] [PubMed]

Nat. Med. (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Ophthalmology (1)

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105(2), 360–370 (1998).
[Crossref] [PubMed]

Opt. Commun. (1)

J. H. Wang and M. R. Wang, “Handheld non-contact evaluation of fastener flushness and countersink surface profiles using optical coherence tomography,” Opt. Commun. 371, 206–212 (2016).
[Crossref]

Opt. Express (7)

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
[Crossref] [PubMed]

L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
[Crossref] [PubMed]

M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in Optical Coherence Tomography,” Opt. Express 20(2), 1337–1359 (2012).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[Crossref] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[Crossref] [PubMed]

Q. Li, M. L. Onozato, P. M. Andrews, C.-W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref] [PubMed]

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Opt. Express 18(2), 1024–1032 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (1)

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 101(20), 7516–7521 (2004).
[Crossref] [PubMed]

Proc. SPIE (2)

K. Shen, H. Lu, and M. R. Wang, “Improving lateral resolution of optical coherence tomography for imaging of skins,” Proc. SPIE 9713, 97130N (2016).

K. Shen, H. Lu, J. H. Wang, and M. R. Wang, “Improved resolution of optical coherence tomography for imaging of microstructures,” Proc. SPIE 9334, 93340X (2015).

Quant. Imaging Med. Surg. (1)

B. Wang, R. Lu, Q. Zhang, and X. Yao, “Breaking diffraction limit of lateral resolution in optical coherence tomography,” Quant. Imaging Med. Surg. 3(5), 243–248 (2013).
[PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (16)

W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008).

A. S. Nam, B. Vakoc, D. Blauvelt, and I. Chico-Calero, “Optical coherence tomography in cancer imaging,” Optical Coherence Tomography: Technology and Applications, 1399–1412 (2015).

M. F. Kraus and J. Hornegger, “OCT motion correction,” Optical Coherence Tomography: Technology and Applications, 459–476 (2015).

J. Yang and T. Huang, “Image super-resolution: Historical overview and future challenges,” Super-resolution imaging, 1–34 (2010).

M. D. Robinson, S. J. Chiu, J. Lo, C. Toth, J. Izatt, and S. Farsiu, “New applications of super-resolution in medical imaging,” Super-Resolution Imaging, 384–412 (2010).

V. R. Shidlovski, “Superluminescent diode light sources for OCT,” Optical Coherence Tomography: Technology and Applications, 505–526 (2015).

J. A. Izatt and M. A. Choma, “Theory of Optical Coherence Tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008), pp. 47–72.

T. Kuroda, Essential Principles of Image Sensors (CRC press, 2014).

R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis (Wiley New York, 1973), Vol. 3.

A. Papoulis, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1990).

Z. Wang and F. Qi, Digital Image Processing (Pearson Education, 2002).

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” in ACM transactions on graphics (TOG), (ACM, 2006), 787–794.

D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a normalized sparsity measure,” in Computer Vision and Pattern Recognition (CVPR),2011IEEE Conference on, (IEEE, 2011), 233–240.
[Crossref]

E. Hecht, “Optics 4th edition,” Optics, 4th Edition, Addison Wesley Longman Inc, 1998 (1998).

H. Knutsson and C.-F. Westin, “Normalized and differential convolution,” in Computer Vision and Pattern Recognition,1993. Proceedings CVPR'93., 1993 IEEE Computer Society Conference on, (IEEE, 1993), 515–523.
[Crossref]

G. Farnebäck, Polynomial Expansion for Orientation and Motion Estimation (Linköping University Electronic Press, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic configuration of our SD-OCT system.

Fig. 2
Fig. 2

Example images of a high resolution target (a) and under a low density scan imaging (b). (c) 4-time high density scan imaging with the same scan matrix size as (b) but with half spot overlapping with adjacent ones yields high resolution image with a reduced FOV. Here, we apply four colors to show overlapping of adjacent scan spots.

Fig. 3
Fig. 3

We performed in vivo SD-OCT B-scan on a live human skin with 100 repeated times at (a) 128-spot density and (b) 512-spot density. The FOV is the same. We then overlapped the 1st and the 100th images with green and magenta colors to compare the differences between them. (a) Due to the fast 128-spot B-scan, the horizontal positions of the hair (in the yellow and green squares of (a)) in the 1st and the 100th images remain almost unchanged. (b) There are obvious differences between the two images due to slower 512-spot B-scan that is found more sensitive to tissue motion. (c) The yellow arrow indicates motion artifact line caused by eye motion that lead to discontinuities of the two micro-vessels. 100 mm focal length lens was used in these experiments. The scale bars in (a), (b), and (c) are 500 µm.

Fig. 4
Fig. 4

Conceptual illustration of image degrading effects during conventional camera image acquisition.

Fig. 5
Fig. 5

The sub-pixel shifts of multiple frames for superresolution processing. (a) The x-y plane image (such as 5 × 5 pixels) of the first image (C0) is set as position 0, as reference. (b) The second image, C1, shifts half-pixel to the right direction compared with C0. (c) C2 shifts half-pixel to the bottom direction. (d) C3 shifts half-pixel to the right-diagonal direction. (e) Apply superresolution processing to the four images with effective sub-pixel differences to reconstruct a 4 times pixel resolution improved (10 × 10 pixels) image.

Fig. 6
Fig. 6

(a) Define the first C-scan as the reference, position 0. (b) The traditional shift strategy for 4 times pixel resolution improvement. This is a simple illustration of Fig. 5 (a)-(d). (c) For better image quality, our shift strategy for 4 times pixel resolution improvement, which include additional gray shifts as indicated by yellow arrows. (d) For 16 times pixel resolution improvement, we use the 1/4-spot-spacing shifts.

Fig. 7
Fig. 7

The two images in (a) and (b) have slight spatial shifts between them. Simple overlapping images in (a) and (b) without motion estimator results in a blurred image in (c). After applying the multi-volume registration algorithm to estimate the lateral shifts and making an offset to image in (b), the offset image matched well with image in (a) as shown in (d) without introducing overlapped image blurring.

Fig. 8
Fig. 8

Extracting OCT images for generating high lateral resolution images. (a) Left: The original stack B-scan OCT images I(x,z) in y direction. Middle: Assemble these images to form a 3D image I(x,y,z). Right: Extract x-y image I(x,y) at different depth z forming a new image stack. (b) Left: Many of these new image stacks (labeled red A, B, C) obtained from the processing of (a). Middle: Exact x-y image I(x,y) from each stack at the same depth z. Right: Superresolution processing to these I(x,y) to generate a high lateral resolution image at depth z. Repeat process (b) for all z can yield a high lateral resolution 3D image stack not shown.

Fig. 9
Fig. 9

(a) Picture of Group 4~7 of a negative 1951 USAF test target taken by ZEISS SteREO Discovery.V20 microscope. The transparent patterns are bright white and the chrome portion is dark. (b) Picture of the enlarged small middle portion of (a) showing group 6~7.

Fig. 10
Fig. 10

A series of OCT lateral images (column 3) of resolution target (group 5~7 area) with a fixed FOV (~1 × 1 mm2) but different scan density and methods with scan matrix (column 1) and scan time (column 2). The spatial resolution of the blue square region showing the resolution and distinction ability is given in column 4. The background noise of the red square region with STD, PSNR, RMS and DR values is shown in column 5. The original low density scan with 64 × 64 close space spot array without overlapping is shown in row (A) with its scan time as reference unit 1. OCT images obtained with different scan matrixes are given in rows (B) to (F). The 1024 × 1024 matrix scan with 5 frames averaging is given in (G). Superresolution processed image with 961 shifted (1/16-spot-spacing step and maximum 15/16-spot-shift, forming a 31 × 31 shift matrix similar to Fig. 6(d)) low resolution 64 × 64 images without deconvolution processing (H) and with Lucy-Richardson deconvolution processing using an optimized Gaussian PSF (I) or blind deconvolution (J). We upsampled the same low resolution input images as (H) by bicubic interpolation and then averaged them with shift compensation as shown in (K). Both (H) and (K) have same translation shift parameters and same output image size. The blind deconvolution processed image from (K) is given in (L). The Gaussian PSF or estimated PSF from blind deconvolution is shown at the right bottom of resolution image in (I), (J), and (L). (M) The inverted x-axis intensity profiles at the yellow line of patterns G5E6 of (G) and (H) showing resolution improvement in (H). By visual comparison, the image resolutions in (I) and (J) are obviously better than that of (H). *The statistical values are for reference only since so few equivalent pixels in ROIs of (A) to (C) cannot be directly compared to that of (D) to (L). SR in (H) is short for superresolution. SR w LR de in (I) is short for superresolution with Lucy-Richardson deconvolution. SR w blind de in (J) and (L) is short for superresolution with blind deconvolution.

Fig. 11
Fig. 11

A list of superresolution processed images with fewer C-scans. Superresolution processed images (A) and (B) with scan strategies as in Fig. 6(b) and 6(c), respectively. Superresolution processed images (D) and (E) with scan strategies as in Fig. 6(d) without and with gray shifts, respectively. Superresolution processing with deconvolution using an optimized Gaussian PSF for image (B) is shown in (C) and the Gaussian PSF is shown at the right bottom of (C). Superresolution with blind deconvolution for image (E) is shown in (F) and the estimated PSF is shown at the right bottom of (F). *The values are for reference only due to low pixel numbers in ROIs. SR in (A) to (E) is short for superresolution. SR w LR de in (C) is short for superresolution with Lucy-Richardson deconvolution. SR w blind de in (F) is short for superresolution with blind deconvolution.

Fig. 12
Fig. 12

The lateral images of the resolution target (Group 6 and 7) were taken by a 30 mm focal length achromatic lens using (a) 64 × 64 scan matrix, (b) 2048 × 2048 scan matrix, (c) 1024 × 1024 scan matrix with 5 frame averaging, and (d) the superresolution technique using 64 × 64 scan matrix with 1/16-spot-spacing step and maximum 15/16-spot-shift, followed by blind deconvolution processing. The estimated PSF is shown at the right bottom of (d). All the four images have the same FOV of about 250 × 250 µm2.

Fig. 13
Fig. 13

Multi-frame superresolution processed SD-OCT 3D in vitro images (a) and (b) of a chicken wing skin at different observation angles. The right side shows the intensity color bar of the 3D image, with blue being low intensity and red being high intensity. (c) One original x-y image at about 600 µm under the skin surface, acquired by low density 256 × 256 C-scan without scanning spot overlapping. The scan FOV is about 4 × 4 mm2. (d) x-y image of the same subsurface layer acquired by 16 times higher scanning density than (c) using scanning matrix of 1024 × 1024. (e)(f) Superresolution processed x-y image of the same subsurface layer using 9 and 25 shifted image frames of same low density scanning as (c). The scan in (e) takes almost half scan time as in (d). The scale bars in (c), (d), (e), and (f) are 500 µm. 100 mm focal length lens was used.

Fig. 14
Fig. 14

(a) The average of upsampled images with shift compensation. (b) The superresolution processed image. Both (a) and (b) has the same input images, motion shift parameters, and output image size. The enlarged images of the yellow arrows (from top to bottom) in (a) and (b) are listed below the corresponding images. The scan FOV here is about 4 × 4 mm, and the scale bars in (a) and (b) are 500 µm. 100 mm focal length lens was used.

Fig. 15
Fig. 15

OCT in vivo imaging of a human skin. (a) Two SVP images from two in vivo C-scans. (b) Through image overlapping, we can see that there are obvious lateral shifts in the two images of (a). (c) After multi-volume registration estimation and lateral shift compensation, the two images can overlap well, showing an overlapping hair in the top right highlighted rectangle. (d) A lateral image in an 800 µm deep layer under the skin surface acquired from an original 128 × 128 low density C-scan. (e) The same layer image as (d) after superresolution processing of seven C-scan images. The superresolution processed high lateral resolution 3D images in (f) and (g) at different observation angles and with a different pseudo-color intensity map (hot and jet), respectively with the color scales shown at right. The scale bars from (a) to (e) are 250 µm. 100 mm focal length lens was used.

Fig. 16
Fig. 16

OCT in vivo imaging of a human finger print. (a) An original B-scan covered about 5 mm scan width of a thumb fingerprint. The yellow rectangle is the enlarged image of the yellow arrow position. The blue rectangle is the enlarged image of the blue arrow position. (b) One B-scan image extracted from a superresolution processed 3D image, at the same position of (a). (c) Side view of multi-layer fingerprint structure. (d) 3D image of the superresolution processed external fingerprint layer. (e) Top view of 3D eccrine sweat glands layer after superresolution processing. Each spot is an eccrine sweat gland. (f) Top view of the 3D internal fingerprint layer after superresolution processing. The scale bars in (a) and (b) are 500 µm. 100 mm focal length lens was used.

Fig. 17
Fig. 17

(a) An original low resolution lateral SVP image of a retinal layer in ten scans. (b) One bad quality SVP image with artifacts. (c) The superresolution processing improved lateral image from ten low resolution images like (a) and (b). (d) Remove the background of (c). The yellow and blue arrows show two examples of the unclear structures in (a) and (b). The pink arrow shows the artifacts in (b). The scale bars here are 500 µm.

Tables (3)

Tables Icon

Table 1 Four different lenses with their calculated beam sizes and axial depth range

Tables Icon

Table 2 Lookup Table of Negative 1951 USAF Test Target

Tables Icon

Table 3 Comparison of the lateral resolution and image quality of multi-frame superresolution, high density scanning, multi-frame averaging, and scan time

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

δx=0.37 λ 0 NA
DO F axial = 0.565 λ 0 sin 2 [ sin 1 ( NA ) 2 ] .
I[x, y]=[F(H (x,y)S(x,y))]+V[x,y] .
S ^ = ArgMin S [ k=1 N D F k HS I k p p ] .
G ^ = ArgMin G [ k=1 N D F k G I k p p ] .
S ^ m+1 (x,y)= S ^ m (x,y)[ H(x,y) G ^ (x,y) H(x,y) S m (x,y) ]
T ^ = ArgMax T  I(u( x ),v(T( x ))) .
PSNR=20 log 10 Ma x signal ST D noise .
DR=20 log 10 Ma x signal RM S noise .