Abstract

An adaptive optics scanning laser ophthalmoscope (AO-SLO) set-up with two deformable mirrors (DM) is presented. It allows high resolution imaging of the retina on a 4°×4° field of view (FoV), considering a 7 mm pupil diameter at the entrance of the eye. Imaging on such a FoV, which is larger compared to classical AO-SLO instruments, is allowed by the use of the two DMs. The first DM is located in a plane that is conjugated to the pupil of the eye and corrects for aberrations that are constant in the FoV. The second DM is conjugated to a plane that is located ∼0.7 mm anterior to the retina. This DM corrects for anisoplanatism effects within the FoV. The control of the DMs is performed by combining the classical AO technique, using a Shack-Hartmann wave-front sensor, and sensorless AO, which uses a criterion characterizing the image quality. The retinas of four healthy volunteers were imaged in-vivo with the developed instrument. In order to assess the performance of the set-up and to demonstrate the benefits of the 2 DM configuration, the acquired images were compared with images taken in conventional conditions, on a smaller FoV and with only one DM. Moreover, an image of a larger patch of the retina was obtained by stitching of 9 images acquired with a 4°×4° FoV, resulting in a total FoV of 10°×10°. Finally, different retinal layers were imaged by shifting the focal plane.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lens based adaptive optics scanning laser ophthalmoscope

Franz Felberer, Julia-Sophie Kroisamer, Christoph K. Hitzenberger, and Michael Pircher
Opt. Express 20(16) 17297-17310 (2012)

Influence of wave-front sampling in adaptive optics retinal imaging

Marie Laslandes, Matthias Salas, Christoph K. Hitzenberger, and Michael Pircher
Biomed. Opt. Express 8(2) 1083-1100 (2017)

Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging

Robert J. Zawadzki, Steven M. Jones, Suman Pilli, Sandra Balderas-Mata, Dae Yu Kim, Scot S. Olivier, and John S. Werner
Biomed. Opt. Express 2(6) 1674-1686 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Liang and D. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [Crossref]
  2. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
    [Crossref]
  3. L. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. 19, 2329–2348 (2002).
    [Crossref]
  4. A. Mira-Agudelo, L. Lundstroem, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Ophthalmic and Physiological Optics 29, 256–263 (2009).
    [Crossref] [PubMed]
  5. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
    [Crossref] [PubMed]
  6. J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, Hoboken, 2006).
    [Crossref]
  7. M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors 13, 334–366 (2013).
    [Crossref]
  8. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [Crossref]
  9. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
    [Crossref] [PubMed]
  10. B. Hermann, E. Fernández, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, P. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
    [Crossref] [PubMed]
  11. A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optometry and Vis. Sci. 87, 260–268 (2010).
  12. A. Roorda and J. Duncan, “Adaptive optics ophthalmoscopy,” Annual review of vision science 1, 19–50 (2015).
    [Crossref]
  13. R. Jonnal, O. Kocaoglu, R. Zawadzki, Z. Liu, D. Miller, and J. Werner, “A review of adaptive optics optical coherence tomography: Technical advances, scientific applications, and the future,” IOVS 57, OCT51–OCT68 (2016).
  14. M. Pircher and R. J. Zawadzki, “Review of adaptive optics oct (ao-oct): principles and applications for retinal imaging,” Biomed. Opt. Express 8, 2536–2562 (2017).
    [Crossref] [PubMed]
  15. C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
    [Crossref] [PubMed]
  16. J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive Optics Retinal Imaging. Clinical Opportunities and Challenges,” Curr. Eye Res. 38, 709–721 (2013).
    [Crossref] [PubMed]
  17. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive Optics Retinal Imaging: Emerging Clinical Applications,” Optom. and Vis. Sci. 87, 930–941 (2012).
    [Crossref]
  18. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J Biomed Opt. 13, 024008 (2008).
    [Crossref] [PubMed]
  19. D. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72, 52–61 (1982).
    [Crossref]
  20. A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16, 1692–1703 (2008).
    [Crossref] [PubMed]
  21. M. Nowakowski, M. Sheehan, D. Neal, and A. V. Goncharov, “Investigation of the isoplanatic patch and wavefront aberration along the pupillary axis compared to the line of sight in the eye,” Biomed. Opt. Express 3, 240–258 (2012).
    [Crossref] [PubMed]
  22. A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Isoplanatism of the optical system of the human eye,” J. Opt. Technol. 75, 172–174 (2008).
    [Crossref]
  23. J. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” Proceedings of a ESO Conference on Very Large Telescopes and their Instrumentation 1, 693 (1988).
  24. M. Langlois, C. D. Saunter, C. N. Dunlop, R. Myers, and G. D. Love, “Multiconjugate adaptive optics: laboratory experience,” Opt. Express 12, 1689–1699 (2004).
    [Crossref] [PubMed]
  25. E. Marchetti, R. Brast, B. Delabre, R. Donaldson, and The CAMCAO Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” The Messenger 129, 8–13 (2007).
  26. T. Fusco, J. M. Conan, G. Rousset, L. Mugnier, and V. Michau, “Optimal wave-front reconstruction strategies for multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2527–2538 (2001).
    [Crossref]
  27. A. V. Goncharov, J. C. Dainty, S. Esposito, and A. Puglisi, “Laboratory mcao test-bed for developing wavefront sensing concepts,” Opt. Express 13, 5580–5590 (2005).
    [Crossref] [PubMed]
  28. R. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC Press, Boca Raton, 2010).
    [Crossref]
  29. F. Rigaut, B. Neichel, M. Boccas, C. d’Orgeville, F. Vidal, M. V. Dam, and et al., “Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration,” MNRAS 437, 2361–2375 (2014).
    [Crossref]
  30. A. V. Goncharov, J. C. Dainty, and S. Esposito, “Compact multireference wavefront sensor design,” Opt. Lett. 30, 2721–2723 (2005).
    [Crossref]
  31. S. Bonora, R. Zawadzki, G. Naletto, U. Bortolozzo, and S. Residori, “Devices and techniques for sensorless adaptive optics,” in Adaptive Optics Progress, R. K. Tyson, ed. (InTech, Rijeka, 2012), chap. 3.
    [Crossref]
  32. H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19, 14160–14171 (2011).
    [Crossref] [PubMed]
  33. P. Bedggood, R. Ashman, G. Smith, and A. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14, 8019–8030 (2006).
    [Crossref] [PubMed]
  34. J. Thaung, P. Knutsson, Z. Popovic, and M. Owner-Petersen, “Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging,” Opt. Express 17, 4454–4467 (2009).
    [Crossref] [PubMed]
  35. Z. Popovic, J. Thaung, P. Knutsson, and M. Owner-Petersen, “Dual conjugate adaptive optics prototype for wide field high resolution retinal imaging,” in “Adaptive Optics Progress,” R. K. Tyson, ed. (InTech, Rijeka, 2012), chap. 1.
    [Crossref]
  36. F. Felberer, J. S. Kroisamer, C. K. Hitzenberger, and M. Pircher, “Lens based adaptive optics scanning laser ophthalmoscope,” Opt. Express 20, 17297–17310 (2012).
    [Crossref] [PubMed]
  37. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2, 1864–1876 (2011).
    [Crossref] [PubMed]
  38. H. Liou and N. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A. 14, 1684–1695 (1997).
    [Crossref]
  39. “Safety of laser products. part 1: Equipment classification, requirements and user’s guide,” Standard EN 60825-1/A2.
  40. C. Paterson, I. Munro, and J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6, 175–185 (2000).
    [Crossref] [PubMed]
  41. M. Laslandes, M. Salas, C. K. Hitzenberger, and M. Pircher, “Influence of wave-front sampling in adaptive optics retinal imaging,” Biomed. Opt. Express 8, 1083–1100 (2017).
    [Crossref] [PubMed]
  42. A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using b-spline-based elastic image registration,” Plos One 8, e80106 (2013).
    [Crossref] [PubMed]
  43. C. Sanchez Sorzano, P. Thevenaz, and M. Unser, “Elastic registration of biological images using vector-spline regularization,” IEEE Transactions on Biomedical Engineering 52, 652–663 (2005).
    [Crossref]
  44. P. Thevenaz and M. Unser, “User-friendly semiautomated assembly of accurate image mosaics in microscopy,” Microscopy Research and Technique 70, 135–146 (2007).
    [Crossref]
  45. A. Marechal, “Etude des effets combines de la diffraction et des aberrations geometriques sur l’image d’un point lumineux,” Rev. Opt. 2, 257–277 (1947).
  46. J. Yellot, “Spectral analysis of spatial sampling by photoreceptor topological disorder prevents aliasing,” Vision Res. 22, 1205–1210 (1982).
    [Crossref]
  47. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11, 2597–2605 (2003).
    [Crossref] [PubMed]
  48. Y. Yu, T. Zhang, A. Meadway, X. Wang, and Y. Zhang, “High-speed adaptive optics for imaging of the living human eye,” Opt. Express 23, 23035–23052 (2015).
    [Crossref] [PubMed]

2017 (2)

2016 (1)

R. Jonnal, O. Kocaoglu, R. Zawadzki, Z. Liu, D. Miller, and J. Werner, “A review of adaptive optics optical coherence tomography: Technical advances, scientific applications, and the future,” IOVS 57, OCT51–OCT68 (2016).

2015 (2)

2014 (1)

F. Rigaut, B. Neichel, M. Boccas, C. d’Orgeville, F. Vidal, M. V. Dam, and et al., “Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration,” MNRAS 437, 2361–2375 (2014).
[Crossref]

2013 (3)

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using b-spline-based elastic image registration,” Plos One 8, e80106 (2013).
[Crossref] [PubMed]

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors 13, 334–366 (2013).
[Crossref]

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive Optics Retinal Imaging. Clinical Opportunities and Challenges,” Curr. Eye Res. 38, 709–721 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

2010 (1)

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optometry and Vis. Sci. 87, 260–268 (2010).

2009 (2)

A. Mira-Agudelo, L. Lundstroem, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Ophthalmic and Physiological Optics 29, 256–263 (2009).
[Crossref] [PubMed]

J. Thaung, P. Knutsson, Z. Popovic, and M. Owner-Petersen, “Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging,” Opt. Express 17, 4454–4467 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (2)

P. Thevenaz and M. Unser, “User-friendly semiautomated assembly of accurate image mosaics in microscopy,” Microscopy Research and Technique 70, 135–146 (2007).
[Crossref]

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, and The CAMCAO Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” The Messenger 129, 8–13 (2007).

2006 (1)

2005 (3)

2004 (2)

2003 (1)

2002 (2)

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[Crossref] [PubMed]

L. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. 19, 2329–2348 (2002).
[Crossref]

2001 (3)

2000 (1)

1997 (3)

1990 (1)

C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

1988 (1)

J. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” Proceedings of a ESO Conference on Very Large Telescopes and their Instrumentation 1, 693 (1988).

1982 (2)

D. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72, 52–61 (1982).
[Crossref]

J. Yellot, “Spectral analysis of spatial sampling by photoreceptor topological disorder prevents aliasing,” Vision Res. 22, 1205–1210 (1982).
[Crossref]

1947 (1)

A. Marechal, “Etude des effets combines de la diffraction et des aberrations geometriques sur l’image d’un point lumineux,” Rev. Opt. 2, 257–277 (1947).

Aragon, J. L.

Arichika, S.

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using b-spline-based elastic image registration,” Plos One 8, e80106 (2013).
[Crossref] [PubMed]

Artal, P.

Ashman, R.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J Biomed Opt. 13, 024008 (2008).
[Crossref] [PubMed]

P. Bedggood, R. Ashman, G. Smith, and A. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14, 8019–8030 (2006).
[Crossref] [PubMed]

Awwal, A. A. S.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, Hoboken, 2006).
[Crossref]

Beckers, J.

J. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” Proceedings of a ESO Conference on Very Large Telescopes and their Instrumentation 1, 693 (1988).

Bedggood, P.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J Biomed Opt. 13, 024008 (2008).
[Crossref] [PubMed]

P. Bedggood, R. Ashman, G. Smith, and A. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14, 8019–8030 (2006).
[Crossref] [PubMed]

Belyakov, A.

Boccas, M.

F. Rigaut, B. Neichel, M. Boccas, C. d’Orgeville, F. Vidal, M. V. Dam, and et al., “Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration,” MNRAS 437, 2361–2375 (2014).
[Crossref]

Bonora, S.

S. Bonora, R. Zawadzki, G. Naletto, U. Bortolozzo, and S. Residori, “Devices and techniques for sensorless adaptive optics,” in Adaptive Optics Progress, R. K. Tyson, ed. (InTech, Rijeka, 2012), chap. 3.
[Crossref]

Bortolozzo, U.

S. Bonora, R. Zawadzki, G. Naletto, U. Bortolozzo, and S. Residori, “Devices and techniques for sensorless adaptive optics,” in Adaptive Optics Progress, R. K. Tyson, ed. (InTech, Rijeka, 2012), chap. 3.
[Crossref]

Bradley, A.

L. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. 19, 2329–2348 (2002).
[Crossref]

Brast, R.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, and The CAMCAO Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” The Messenger 129, 8–13 (2007).

Brennan, N.

H. Liou and N. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A. 14, 1684–1695 (1997).
[Crossref]

Campbell, M. C.

Carroll, J.

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive Optics Retinal Imaging. Clinical Opportunities and Challenges,” Curr. Eye Res. 38, 709–721 (2013).
[Crossref] [PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive Optics Retinal Imaging: Emerging Clinical Applications,” Optom. and Vis. Sci. 87, 930–941 (2012).
[Crossref]

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2, 1864–1876 (2011).
[Crossref] [PubMed]

Chen, L.

Cheng, X.

L. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. 19, 2329–2348 (2002).
[Crossref]

Cherezova, T.

Conan, J. M.

Cooper, R. F.

Curcio, C.

C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

d’Orgeville, C.

F. Rigaut, B. Neichel, M. Boccas, C. d’Orgeville, F. Vidal, M. V. Dam, and et al., “Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration,” MNRAS 437, 2361–2375 (2014).
[Crossref]

Daaboul, M.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J Biomed Opt. 13, 024008 (2008).
[Crossref] [PubMed]

Dainty, C.

Dainty, J. C.

Dam, M. V.

F. Rigaut, B. Neichel, M. Boccas, C. d’Orgeville, F. Vidal, M. V. Dam, and et al., “Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration,” MNRAS 437, 2361–2375 (2014).
[Crossref]

Delabre, B.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, and The CAMCAO Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” The Messenger 129, 8–13 (2007).

Devaney, N.

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors 13, 334–366 (2013).
[Crossref]

Diaz-Santana, L.

Donaldson, R.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, and The CAMCAO Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” The Messenger 129, 8–13 (2007).

Donnelly, W. J.

Drexler, W.

Dubinin, A.

Dubis, A. M.

Dubra, A.

Duncan, J.

A. Roorda and J. Duncan, “Adaptive optics ophthalmoscopy,” Annual review of vision science 1, 19–50 (2015).
[Crossref]

Duncan, J. L.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive Optics Retinal Imaging: Emerging Clinical Applications,” Optom. and Vis. Sci. 87, 930–941 (2012).
[Crossref]

Dunlop, C. N.

Esposito, S.

Felberer, F.

Fercher, A.

Fernández, E.

Fried, D.

Fusco, T.

Gasson, P.

Godara, P.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive Optics Retinal Imaging: Emerging Clinical Applications,” Optom. and Vis. Sci. 87, 930–941 (2012).
[Crossref]

Goncharov, A. V.

Hangai, M.

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using b-spline-based elastic image registration,” Plos One 8, e80106 (2013).
[Crossref] [PubMed]

Hebert, T. J.

Hendrickson, A.

C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

Hermann, B.

Hitzenberger, C. K.

Hofer, H.

Hong, X.

L. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. 19, 2329–2348 (2002).
[Crossref]

Jonnal, R.

R. Jonnal, O. Kocaoglu, R. Zawadzki, Z. Liu, D. Miller, and J. Werner, “A review of adaptive optics optical coherence tomography: Technical advances, scientific applications, and the future,” IOVS 57, OCT51–OCT68 (2016).

Kalina, R.

C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

Kay, D. B.

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive Optics Retinal Imaging. Clinical Opportunities and Challenges,” Curr. Eye Res. 38, 709–721 (2013).
[Crossref] [PubMed]

Knutsson, P.

J. Thaung, P. Knutsson, Z. Popovic, and M. Owner-Petersen, “Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging,” Opt. Express 17, 4454–4467 (2009).
[Crossref] [PubMed]

Z. Popovic, J. Thaung, P. Knutsson, and M. Owner-Petersen, “Dual conjugate adaptive optics prototype for wide field high resolution retinal imaging,” in “Adaptive Optics Progress,” R. K. Tyson, ed. (InTech, Rijeka, 2012), chap. 1.
[Crossref]

Kocaoglu, O.

R. Jonnal, O. Kocaoglu, R. Zawadzki, Z. Liu, D. Miller, and J. Werner, “A review of adaptive optics optical coherence tomography: Technical advances, scientific applications, and the future,” IOVS 57, OCT51–OCT68 (2016).

Kroisamer, J. S.

Kudryashov, A.

Langlois, M.

Laslandes, M.

Li, C.

Liang, J.

Lin, J.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, Hoboken, 2006).
[Crossref]

Liou, H.

H. Liou and N. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A. 14, 1684–1695 (1997).
[Crossref]

Liu, Z.

R. Jonnal, O. Kocaoglu, R. Zawadzki, Z. Liu, D. Miller, and J. Werner, “A review of adaptive optics optical coherence tomography: Technical advances, scientific applications, and the future,” IOVS 57, OCT51–OCT68 (2016).

Lombardo, G.

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors 13, 334–366 (2013).
[Crossref]

Lombardo, M.

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors 13, 334–366 (2013).
[Crossref]

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive Optics Retinal Imaging. Clinical Opportunities and Challenges,” Curr. Eye Res. 38, 709–721 (2013).
[Crossref] [PubMed]

Love, G. D.

Lundstroem, L.

A. Mira-Agudelo, L. Lundstroem, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Ophthalmic and Physiological Optics 29, 256–263 (2009).
[Crossref] [PubMed]

Marchetti, E.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, and The CAMCAO Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” The Messenger 129, 8–13 (2007).

Marechal, A.

A. Marechal, “Etude des effets combines de la diffraction et des aberrations geometriques sur l’image d’un point lumineux,” Rev. Opt. 2, 257–277 (1947).

Meadway, A.

Metha, A.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J Biomed Opt. 13, 024008 (2008).
[Crossref] [PubMed]

P. Bedggood, R. Ashman, G. Smith, and A. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14, 8019–8030 (2006).
[Crossref] [PubMed]

Michau, V.

Miller, D.

R. Jonnal, O. Kocaoglu, R. Zawadzki, Z. Liu, D. Miller, and J. Werner, “A review of adaptive optics optical coherence tomography: Technical advances, scientific applications, and the future,” IOVS 57, OCT51–OCT68 (2016).

Miller, D. T.

Mira-Agudelo, A.

A. Mira-Agudelo, L. Lundstroem, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Ophthalmic and Physiological Optics 29, 256–263 (2009).
[Crossref] [PubMed]

Mugnier, L.

Munro, I.

Myers, R.

Naletto, G.

S. Bonora, R. Zawadzki, G. Naletto, U. Bortolozzo, and S. Residori, “Devices and techniques for sensorless adaptive optics,” in Adaptive Optics Progress, R. K. Tyson, ed. (InTech, Rijeka, 2012), chap. 3.
[Crossref]

Neal, D.

Neichel, B.

F. Rigaut, B. Neichel, M. Boccas, C. d’Orgeville, F. Vidal, M. V. Dam, and et al., “Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration,” MNRAS 437, 2361–2375 (2014).
[Crossref]

Norris, J. L.

Nowakowski, M.

Ooto, S.

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using b-spline-based elastic image registration,” Plos One 8, e80106 (2013).
[Crossref] [PubMed]

Owner-Petersen, M.

J. Thaung, P. Knutsson, Z. Popovic, and M. Owner-Petersen, “Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging,” Opt. Express 17, 4454–4467 (2009).
[Crossref] [PubMed]

Z. Popovic, J. Thaung, P. Knutsson, and M. Owner-Petersen, “Dual conjugate adaptive optics prototype for wide field high resolution retinal imaging,” in “Adaptive Optics Progress,” R. K. Tyson, ed. (InTech, Rijeka, 2012), chap. 1.
[Crossref]

Parravano, M.

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors 13, 334–366 (2013).
[Crossref]

Paterson, C.

Pircher, M.

Popovic, Z.

J. Thaung, P. Knutsson, Z. Popovic, and M. Owner-Petersen, “Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging,” Opt. Express 17, 4454–4467 (2009).
[Crossref] [PubMed]

Z. Popovic, J. Thaung, P. Knutsson, and M. Owner-Petersen, “Dual conjugate adaptive optics prototype for wide field high resolution retinal imaging,” in “Adaptive Optics Progress,” R. K. Tyson, ed. (InTech, Rijeka, 2012), chap. 1.
[Crossref]

Porter, J.

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19, 14160–14171 (2011).
[Crossref] [PubMed]

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, Hoboken, 2006).
[Crossref]

Prieto, P.

Puglisi, A.

Queener, H.

Residori, S.

S. Bonora, R. Zawadzki, G. Naletto, U. Bortolozzo, and S. Residori, “Devices and techniques for sensorless adaptive optics,” in Adaptive Optics Progress, R. K. Tyson, ed. (InTech, Rijeka, 2012), chap. 3.
[Crossref]

Rigaut, F.

F. Rigaut, B. Neichel, M. Boccas, C. d’Orgeville, F. Vidal, M. V. Dam, and et al., “Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration,” MNRAS 437, 2361–2375 (2014).
[Crossref]

Romero-Borja, F.

Roorda, A.

A. Roorda and J. Duncan, “Adaptive optics ophthalmoscopy,” Annual review of vision science 1, 19–50 (2015).
[Crossref]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive Optics Retinal Imaging: Emerging Clinical Applications,” Optom. and Vis. Sci. 87, 930–941 (2012).
[Crossref]

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optometry and Vis. Sci. 87, 260–268 (2010).

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[Crossref] [PubMed]

Rousset, G.

Salas, M.

Sanchez Sorzano, C.

C. Sanchez Sorzano, P. Thevenaz, and M. Unser, “Elastic registration of biological images using vector-spline regularization,” IEEE Transactions on Biomedical Engineering 52, 652–663 (2005).
[Crossref]

Sattmann, H.

Saunter, C. D.

Scoles, D.

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive Optics Retinal Imaging. Clinical Opportunities and Challenges,” Curr. Eye Res. 38, 709–721 (2013).
[Crossref] [PubMed]

Serrao, S.

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors 13, 334–366 (2013).
[Crossref]

Sheehan, M.

Sheehan, M. T.

Singer, B.

Sloan, K.

C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

Smith, G.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J Biomed Opt. 13, 024008 (2008).
[Crossref] [PubMed]

P. Bedggood, R. Ashman, G. Smith, and A. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14, 8019–8030 (2006).
[Crossref] [PubMed]

Sredar, N.

Sulai, Y.

Thaung, J.

J. Thaung, P. Knutsson, Z. Popovic, and M. Owner-Petersen, “Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging,” Opt. Express 17, 4454–4467 (2009).
[Crossref] [PubMed]

Z. Popovic, J. Thaung, P. Knutsson, and M. Owner-Petersen, “Dual conjugate adaptive optics prototype for wide field high resolution retinal imaging,” in “Adaptive Optics Progress,” R. K. Tyson, ed. (InTech, Rijeka, 2012), chap. 1.
[Crossref]

Thevenaz, P.

P. Thevenaz and M. Unser, “User-friendly semiautomated assembly of accurate image mosaics in microscopy,” Microscopy Research and Technique 70, 135–146 (2007).
[Crossref]

C. Sanchez Sorzano, P. Thevenaz, and M. Unser, “Elastic registration of biological images using vector-spline regularization,” IEEE Transactions on Biomedical Engineering 52, 652–663 (2005).
[Crossref]

Thibos, L.

L. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. 19, 2329–2348 (2002).
[Crossref]

Thorn, K.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, Hoboken, 2006).
[Crossref]

Torti, C.

Tyson, R.

R. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC Press, Boca Raton, 2010).
[Crossref]

Uji, A.

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using b-spline-based elastic image registration,” Plos One 8, e80106 (2013).
[Crossref] [PubMed]

Unser, M.

P. Thevenaz and M. Unser, “User-friendly semiautomated assembly of accurate image mosaics in microscopy,” Microscopy Research and Technique 70, 135–146 (2007).
[Crossref]

C. Sanchez Sorzano, P. Thevenaz, and M. Unser, “Elastic registration of biological images using vector-spline regularization,” IEEE Transactions on Biomedical Engineering 52, 652–663 (2005).
[Crossref]

Unterhuber, A.

Vidal, F.

F. Rigaut, B. Neichel, M. Boccas, C. d’Orgeville, F. Vidal, M. V. Dam, and et al., “Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration,” MNRAS 437, 2361–2375 (2014).
[Crossref]

Wang, X.

Werner, J.

R. Jonnal, O. Kocaoglu, R. Zawadzki, Z. Liu, D. Miller, and J. Werner, “A review of adaptive optics optical coherence tomography: Technical advances, scientific applications, and the future,” IOVS 57, OCT51–OCT68 (2016).

Williams, D.

Williams, D. R.

Yamauchi, Y.

Yellot, J.

J. Yellot, “Spectral analysis of spatial sampling by photoreceptor topological disorder prevents aliasing,” Vision Res. 22, 1205–1210 (1982).
[Crossref]

Yoon, G. Y.

Yoshimura, N.

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using b-spline-based elastic image registration,” Plos One 8, e80106 (2013).
[Crossref] [PubMed]

Yu, Y.

Zawadzki, R.

R. Jonnal, O. Kocaoglu, R. Zawadzki, Z. Liu, D. Miller, and J. Werner, “A review of adaptive optics optical coherence tomography: Technical advances, scientific applications, and the future,” IOVS 57, OCT51–OCT68 (2016).

S. Bonora, R. Zawadzki, G. Naletto, U. Bortolozzo, and S. Residori, “Devices and techniques for sensorless adaptive optics,” in Adaptive Optics Progress, R. K. Tyson, ed. (InTech, Rijeka, 2012), chap. 3.
[Crossref]

Zawadzki, R. J.

Zhang, T.

Zhang, Y.

Annual review of vision science (1)

A. Roorda and J. Duncan, “Adaptive optics ophthalmoscopy,” Annual review of vision science 1, 19–50 (2015).
[Crossref]

Biomed. Opt. Express (4)

Curr. Eye Res. (1)

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive Optics Retinal Imaging. Clinical Opportunities and Challenges,” Curr. Eye Res. 38, 709–721 (2013).
[Crossref] [PubMed]

IEEE Transactions on Biomedical Engineering (1)

C. Sanchez Sorzano, P. Thevenaz, and M. Unser, “Elastic registration of biological images using vector-spline regularization,” IEEE Transactions on Biomedical Engineering 52, 652–663 (2005).
[Crossref]

IOVS (1)

R. Jonnal, O. Kocaoglu, R. Zawadzki, Z. Liu, D. Miller, and J. Werner, “A review of adaptive optics optical coherence tomography: Technical advances, scientific applications, and the future,” IOVS 57, OCT51–OCT68 (2016).

J Biomed Opt. (1)

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J Biomed Opt. 13, 024008 (2008).
[Crossref] [PubMed]

J. Comp. Neurol. (1)

C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

J. Opt. Soc. Am. (2)

L. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. 19, 2329–2348 (2002).
[Crossref]

D. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72, 52–61 (1982).
[Crossref]

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. A. (1)

H. Liou and N. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A. 14, 1684–1695 (1997).
[Crossref]

J. Opt. Technol. (1)

Microscopy Research and Technique (1)

P. Thevenaz and M. Unser, “User-friendly semiautomated assembly of accurate image mosaics in microscopy,” Microscopy Research and Technique 70, 135–146 (2007).
[Crossref]

MNRAS (1)

F. Rigaut, B. Neichel, M. Boccas, C. d’Orgeville, F. Vidal, M. V. Dam, and et al., “Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration,” MNRAS 437, 2361–2375 (2014).
[Crossref]

Ophthalmic and Physiological Optics (1)

A. Mira-Agudelo, L. Lundstroem, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Ophthalmic and Physiological Optics 29, 256–263 (2009).
[Crossref] [PubMed]

Opt. Express (12)

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
[Crossref] [PubMed]

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[Crossref] [PubMed]

F. Felberer, J. S. Kroisamer, C. K. Hitzenberger, and M. Pircher, “Lens based adaptive optics scanning laser ophthalmoscope,” Opt. Express 20, 17297–17310 (2012).
[Crossref] [PubMed]

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19, 14160–14171 (2011).
[Crossref] [PubMed]

P. Bedggood, R. Ashman, G. Smith, and A. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14, 8019–8030 (2006).
[Crossref] [PubMed]

J. Thaung, P. Knutsson, Z. Popovic, and M. Owner-Petersen, “Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging,” Opt. Express 17, 4454–4467 (2009).
[Crossref] [PubMed]

A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16, 1692–1703 (2008).
[Crossref] [PubMed]

A. V. Goncharov, J. C. Dainty, S. Esposito, and A. Puglisi, “Laboratory mcao test-bed for developing wavefront sensing concepts,” Opt. Express 13, 5580–5590 (2005).
[Crossref] [PubMed]

M. Langlois, C. D. Saunter, C. N. Dunlop, R. Myers, and G. D. Love, “Multiconjugate adaptive optics: laboratory experience,” Opt. Express 12, 1689–1699 (2004).
[Crossref] [PubMed]

L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11, 2597–2605 (2003).
[Crossref] [PubMed]

Y. Yu, T. Zhang, A. Meadway, X. Wang, and Y. Zhang, “High-speed adaptive optics for imaging of the living human eye,” Opt. Express 23, 23035–23052 (2015).
[Crossref] [PubMed]

C. Paterson, I. Munro, and J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6, 175–185 (2000).
[Crossref] [PubMed]

Opt. Lett. (2)

Optom. and Vis. Sci. (1)

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive Optics Retinal Imaging: Emerging Clinical Applications,” Optom. and Vis. Sci. 87, 930–941 (2012).
[Crossref]

Optometry and Vis. Sci. (1)

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optometry and Vis. Sci. 87, 260–268 (2010).

Plos One (1)

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using b-spline-based elastic image registration,” Plos One 8, e80106 (2013).
[Crossref] [PubMed]

Proceedings of a ESO Conference on Very Large Telescopes and their Instrumentation (1)

J. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” Proceedings of a ESO Conference on Very Large Telescopes and their Instrumentation 1, 693 (1988).

Rev. Opt. (1)

A. Marechal, “Etude des effets combines de la diffraction et des aberrations geometriques sur l’image d’un point lumineux,” Rev. Opt. 2, 257–277 (1947).

Sensors (1)

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors 13, 334–366 (2013).
[Crossref]

The Messenger (1)

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, and The CAMCAO Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” The Messenger 129, 8–13 (2007).

Vision Res. (1)

J. Yellot, “Spectral analysis of spatial sampling by photoreceptor topological disorder prevents aliasing,” Vision Res. 22, 1205–1210 (1982).
[Crossref]

Other (5)

“Safety of laser products. part 1: Equipment classification, requirements and user’s guide,” Standard EN 60825-1/A2.

R. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC Press, Boca Raton, 2010).
[Crossref]

S. Bonora, R. Zawadzki, G. Naletto, U. Bortolozzo, and S. Residori, “Devices and techniques for sensorless adaptive optics,” in Adaptive Optics Progress, R. K. Tyson, ed. (InTech, Rijeka, 2012), chap. 3.
[Crossref]

Z. Popovic, J. Thaung, P. Knutsson, and M. Owner-Petersen, “Dual conjugate adaptive optics prototype for wide field high resolution retinal imaging,” in “Adaptive Optics Progress,” R. K. Tyson, ed. (InTech, Rijeka, 2012), chap. 1.
[Crossref]

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, Hoboken, 2006).
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1       AO-SLO image recorded at the fovea of volunteer V1, with a 4°x4° FoV. One DM was used for the AO correction.
» Visualization 2       AO-SLO image recorded at the fovea of volunteer V1, with a 4°x4° FoV. Two DMs were used for the AO correction.
» Visualization 3       AO-SLO image of the fovea of volunteer V3, with a 10°x10° FoV. Nine images recorded with a 4°x4° FoV were stitched together.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Optical design of the MCAO-SLO set up. The different colors show the beam path for different scanning positions. LS: Light Source; FPC: fiber polarization controller; Col: collimator; Pol: polarizer; PBS: polarizing beam splitter; L1: 200 mm focal length lens; I: variable aperture iris; L2: 300 mm focal length lens; DM1: deformable mirror (DM69); L3: 200 mm focal length lens; L4: 100 mm focal length lens; RSM: resonant scanning mirror; L5&L6: 100 mm focal length lenses; GSM: galvanometer scanning mirror; L7: 100 mm focal length lens; DM2: deformable mirror (DM97); L8: 140 mm focal length lens; QWP: quarter wave plate; BS: cube beam splitter; L9: 50 mm focal length lens; P:Pinhole; L10: 50 mm focal length lens; APD: avalanche photo-diode; SH: Shack Hartmann wave-front sensor.
Fig. 2
Fig. 2 Simulations for finding the optimum position of the second DM within the set-up. (a) Diameter of the illuminated area during scanning. (b) Evolution of the required stroke. (c) Evolution of correction performance (bars represent the range of RMS within the entire FoV). The red crosses indicate locations that cannot be used because the diameter of the illuminated area is too large for the DM or the required stroke exceeds the maximum stroke provided by DM97.
Fig. 3
Fig. 3 (a) Spot diagrams on the image plane for the 13 considered points in the field, obtained with the 2 DMs correction. (b) WFE for these fields, in the 3 correction cases.
Fig. 4
Fig. 4 AO-SLO images of the model eye. (a) Image obtained without correction. (b) Image obtained by correcting only with DM69. (c) Image obtained with 2 DMs correction. The same grey scale is used for each image.
Fig. 5
Fig. 5 Characterization of the image quality of the three images from Fig. 4. (a) Histogram of the pixel values. The arrows indicate the maximum of the distributions. (b) Vertical section of the auto-correlation function.
Fig. 6
Fig. 6 Comparison of the AO-SLO image quality between a 1 DM and 2 DM configuration, for healthy volunteer V1. (a1) Image obtained by correcting only with DM69 (full resolution image available in Visualization 1). (a2) Image obtained with 2 DMs correction (full resolution image available in Visualization 2). (b1) Zoom from (a1): 1°×1° at the fovea. (b2) Zoom from (a2): 1°×1° at the fovea. (c1) Zoom from (a1): 1°×1° at 2.2° eccentricity. (c2) Zoom from (a2): 1°×1° at 2.2° eccentricity. The same grey scale is used for each image.
Fig. 7
Fig. 7 Comparison of the AO-SLO image quality between a large FoV and small FoV configuration, for healthy volunteer V2. (a) Image obtained on a 4°×4° FoV at the fovea. (b1) 1°×1° zoom from (a), at the fovea. (b2) Same area recorded with a 1°×1° FoV. (c1) 1°×1° zoom from (a), at 2.1° eccentricity from the fovea. (c2) Same area recorded with a 1°×1° FoV. The same grey scale is used for each image.
Fig. 8
Fig. 8 AO-SLO image of healthy volunteer V3, on a 10°×10° FoV (full resolution image available in Visualization 3). Nine 4°×4° FoV were stitched together for the final image.
Fig. 9
Fig. 9 (a1),(b1),(c1),(d1) Regions of interest of 0.7°×0.7° obtained from the full resolution image displayed in Fig. 8. The different regions are color coded in accordance with Fig. 8. (a2),(b2),(c2),(d2) FFT of these 4 regions. The arrows point to Yellot rings.
Fig. 10
Fig. 10 AO-SLO images obtained on a 4°×4° FoV at a 2.5° eccentricity from the fovea of healthy volunteer V4, for three different retinal layers. (a) Focus set to photoreceptor layer. (b) Focus set to anterior vasculature layer. (c) Focus set to retinal nerve fiber layer.

Tables (2)

Tables Icon

Table 1 Comparison of image quality characteristics of the 3 images shown in Fig. 4.

Tables Icon

Table 2 Image criterion c for the different correction conditions for the right eye of each volunteer (arbitrary unit).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

c = i = 1 4 σ i i = 1 3 j = i + 1 4 | σ i σ j | .

Metrics