Abstract

In this work, we present an efficient quantitative phase imaging (QPI) approach using programmable annular LED illumination. As a new type of coded light source, the LED array provides flexible illumination control for noninterferometric QPI based on a traditional microscopic configurations. The proposed method modulates the transfer function of system by changing the LED illumination pattern, which provides noise-robust response of transfer function and achieves twice resolution limit of objective NA. The quantitative phase can be recovered from slightly defocused intensity images through inversion of transfer function. Moreover, the weak object transfer function (WOTF) of axis-symmetric oblique source is derived, and the noise-free and noisy simulation results validate the predicted theory. Finally, we experimentally confirm accurate and repeatable performance of our method by imaging calibrated phase samples and cellular specimens with different NA objectives.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimal illumination pattern for transport-of-intensity quantitative phase microscopy

Jiaji Li, Qian Chen, Jiasong Sun, Jialin Zhang, Xiangpeng Pan, and Chao Zuo
Opt. Express 26(21) 27599-27614 (2018)

Wide-field anti-aliased quantitative differential phase contrast microscopy

Yao Fan, Jiasong Sun, Qian Chen, Jianqin Zhang, and Chao Zuo
Opt. Express 26(19) 25129-25146 (2018)

Quantitative phase microscopy via optimized inversion of the phase optical transfer function

Micah H. Jenkins and Thomas K. Gaylord
Appl. Opt. 54(28) 8566-8579 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Barone-Nugent, A. Barty, and K. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206, 194–203 (2002).
    [Crossref] [PubMed]
  2. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
    [Crossref] [PubMed]
  3. D. Paganin, T. Gureyev, S. Mayo, A. Stevenson, Y. I. Nesterets, and S. Wilkins, “X-ray omni microscopy,” J. Microsc. 214, 315–327 (2004).
    [Crossref] [PubMed]
  4. S. Bajt, A. Barty, K. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).
    [Crossref] [PubMed]
  5. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. 295, C538–C544 (2008).
    [Crossref]
  6. Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. 107, 6731–6736 (2010).
    [Crossref] [PubMed]
  7. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
    [Crossref]
  8. G. Nomarski and A. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall 2, 121–128 (1955).
    [Crossref]
  9. M. K. Kim, Digital Holographic Microscopy (Springer, New York2011).
    [Crossref]
  10. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31, 1405–1407 (2006).
    [Crossref] [PubMed]
  11. A. Ahmad, V. Dubey, G. Singh, V. Singh, and D. S. Mehta, “Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source,” Opt. Lett. 41, 1554–1557 (2016).
    [Crossref] [PubMed]
  12. J. Dohet-Eraly, C. Yourassowsky, A. El Mallahi, and F. Dubois, “Quantitative assessment of noise reduction with partial spatial coherence illumination in digital holographic microscopy,” Opt. Lett. 41, 111–114 (2016).
    [Crossref]
  13. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
    [Crossref] [PubMed]
  14. Basanta Bhaduri, Hoa Pham, Mustafa Mir, and Gabriel Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
    [Crossref] [PubMed]
  15. M. R. Teague, “Deterministic phase retrieval: a Greens function solution,” J. Opt. Soc. Am. 73(11), 1434–1441 (1983).
    [Crossref]
  16. N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).
    [Crossref]
  17. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
    [Crossref]
  18. C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38, 3538–3541 (2013).
    [Crossref] [PubMed]
  19. M. H. Jenkins and T. K. Gaylord, “Quantitative phase microscopy via optimized inversion of the phase optical transfer function,” Appl. Opt. 54, 8566–8579 (2015).
    [Crossref] [PubMed]
  20. J. Li, Q. Chen, J. Sun, J. Zhang, and C. Zuo, “Multimodal computational microscopy based on transport of intensity equation,” J. Biomed. Opt. 21, 126003 (2016).
    [Crossref] [PubMed]
  21. T. E. Gureyev, A. Roberts, and K. A. Nugent, “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12, 1942–1946 (1995).
    [Crossref]
  22. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586 (1998).
    [Crossref]
  23. J. C. Petruccelli, L. Tian, and G. Barbastathis, “The transport of intensity equation for optical path length recovery using partially coherent illumination,” Opt. Express 21, 14430–14441 (2013).
    [Crossref] [PubMed]
  24. M. H. Jenkins, J. M. Long, and T. K. Gaylord, “Multifilter phase imaging with partially coherent light,” Appl. Opt. 53, D29–D39 (2014).
    [Crossref] [PubMed]
  25. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
  26. T. H. Nguyen, C. Edwards, L. L. Goddard, and G. Popescu, “Quantitative phase imaging of weakly scattering objects using partially coherent illumination,” Opt. Express 24, 11683–11693 (2016).
    [Crossref] [PubMed]
  27. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985).
    [Crossref]
  28. C. J. Sheppard, “Defocused transfer function for a partially coherent microscope and application to phase retrieval,” J. Opt. Soc. Am. A 21, 828–831 (2004).
    [Crossref]
  29. S. S. Kou, L. Waller, G. Barbastathis, P. Marquet, C. Depeursinge, and C. J. Sheppard, “Quantitative phase restoration by direct inversion using the optical transfer function,” Opt. Lett. 36, 2671–2673 (2011).
    [Crossref] [PubMed]
  30. C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications,” Opt. Express 21, 5346–5362 (2013).
    [Crossref] [PubMed]
  31. A. Pogany, D. Gao, and S. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68, 2774–2782 (1997).
    [Crossref]
  32. J. P. Guigay, M. Langer, R. Boistel, and P. Cloetens, “Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region,” Opt. Lett. 32, 1617–1619 (2007).
    [Crossref] [PubMed]
  33. A. M. Zysk, R. W. Schoonover, P. S. Carney, and M. A. Anastasio, “Transport of intensity and spectrum for partially coherent fields,” Opt. Lett. 35, 2239–2241 (2010).
    [Crossref] [PubMed]
  34. C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective,” Opt. Laser Eng. 71, 20–32 (2015).
    [Crossref]
  35. C. J. Sheppard, “Three-dimensional phase imaging with the intensity transport equation,” Appl. Opt. 41, 5951–5955 (2002).
    [Crossref] [PubMed]
  36. C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
    [Crossref] [PubMed]
  37. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
    [Crossref]
  38. J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
    [Crossref] [PubMed]
  39. L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,” Opt. Express 23, 11394–11403 (2015).
    [Crossref] [PubMed]
  40. C. Zuo, J. Sun, J. Zhang, Y. Hu, and Q. Chen, “Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix,” Opt. Express 23, 14314–14328 (2015).
    [Crossref] [PubMed]
  41. J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
    [Crossref]
  42. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
    [Crossref]
  43. K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 22 (2016).
  44. S. B. Mehta and C. J. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. Lett. 34, 1924–1926 (2009).
    [Crossref] [PubMed]
  45. A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37, 4062–4064 (2012).
    [Crossref] [PubMed]
  46. C. Zuo, J. Sun, S. Feng, M. Zhang, and Q. Chen, “Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging,” Opt. Laser Eng. 80, 24–31 (2016).
    [Crossref]
  47. J. M. Cowley, Diffraction Physics (Elsevier, 1995).
  48. H. Hopkins, “On the diffraction theory of optical images,” Proc. Phys. Soc. London A 217, 408–432 (1953).
    [Crossref]
  49. M. Born and E. Wolf, Principles of Optics, 7th edition, (Pergamon, 1999), chap. 9.
    [Crossref]

2017 (3)

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref] [PubMed]

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref] [PubMed]

J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
[Crossref]

2016 (6)

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 22 (2016).

C. Zuo, J. Sun, S. Feng, M. Zhang, and Q. Chen, “Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging,” Opt. Laser Eng. 80, 24–31 (2016).
[Crossref]

J. Li, Q. Chen, J. Sun, J. Zhang, and C. Zuo, “Multimodal computational microscopy based on transport of intensity equation,” J. Biomed. Opt. 21, 126003 (2016).
[Crossref] [PubMed]

J. Dohet-Eraly, C. Yourassowsky, A. El Mallahi, and F. Dubois, “Quantitative assessment of noise reduction with partial spatial coherence illumination in digital holographic microscopy,” Opt. Lett. 41, 111–114 (2016).
[Crossref]

A. Ahmad, V. Dubey, G. Singh, V. Singh, and D. S. Mehta, “Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source,” Opt. Lett. 41, 1554–1557 (2016).
[Crossref] [PubMed]

T. H. Nguyen, C. Edwards, L. L. Goddard, and G. Popescu, “Quantitative phase imaging of weakly scattering objects using partially coherent illumination,” Opt. Express 24, 11683–11693 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (1)

2013 (4)

2012 (2)

2011 (2)

2010 (2)

A. M. Zysk, R. W. Schoonover, P. S. Carney, and M. A. Anastasio, “Transport of intensity and spectrum for partially coherent fields,” Opt. Lett. 35, 2239–2241 (2010).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. 107, 6731–6736 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. 295, C538–C544 (2008).
[Crossref]

2007 (1)

2006 (2)

2004 (2)

C. J. Sheppard, “Defocused transfer function for a partially coherent microscope and application to phase retrieval,” J. Opt. Soc. Am. A 21, 828–831 (2004).
[Crossref]

D. Paganin, T. Gureyev, S. Mayo, A. Stevenson, Y. I. Nesterets, and S. Wilkins, “X-ray omni microscopy,” J. Microsc. 214, 315–327 (2004).
[Crossref] [PubMed]

2002 (2)

E. Barone-Nugent, A. Barty, and K. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206, 194–203 (2002).
[Crossref] [PubMed]

C. J. Sheppard, “Three-dimensional phase imaging with the intensity transport equation,” Appl. Opt. 41, 5951–5955 (2002).
[Crossref] [PubMed]

2000 (1)

S. Bajt, A. Barty, K. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).
[Crossref] [PubMed]

1998 (2)

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586 (1998).
[Crossref]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[Crossref]

1997 (1)

A. Pogany, D. Gao, and S. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68, 2774–2782 (1997).
[Crossref]

1995 (1)

1985 (1)

1984 (1)

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).
[Crossref]

1983 (1)

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

1955 (1)

G. Nomarski and A. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall 2, 121–128 (1955).
[Crossref]

1953 (1)

H. Hopkins, “On the diffraction theory of optical images,” Proc. Phys. Soc. London A 217, 408–432 (1953).
[Crossref]

1942 (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
[Crossref]

Ahmad, A.

Alferi, D.

Anastasio, M. A.

Asundi, A.

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref] [PubMed]

C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective,” Opt. Laser Eng. 71, 20–32 (2015).
[Crossref]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38, 3538–3541 (2013).
[Crossref] [PubMed]

C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications,” Opt. Express 21, 5346–5362 (2013).
[Crossref] [PubMed]

Badizadegan, K.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. 107, 6731–6736 (2010).
[Crossref] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. 295, C538–C544 (2008).
[Crossref]

Bajt, S.

S. Bajt, A. Barty, K. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).
[Crossref] [PubMed]

Barbastathis, G.

Barone-Nugent, E.

E. Barone-Nugent, A. Barty, and K. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206, 194–203 (2002).
[Crossref] [PubMed]

Barty, A.

E. Barone-Nugent, A. Barty, and K. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206, 194–203 (2002).
[Crossref] [PubMed]

S. Bajt, A. Barty, K. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).
[Crossref] [PubMed]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[Crossref]

Best, C. A.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. 107, 6731–6736 (2010).
[Crossref] [PubMed]

Best-Popescu, C.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. 295, C538–C544 (2008).
[Crossref]

Bhaduri, Basanta

Boistel, R.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th edition, (Pergamon, 1999), chap. 9.
[Crossref]

Carney, P. S.

Chen, Q.

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref] [PubMed]

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref] [PubMed]

J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
[Crossref]

J. Li, Q. Chen, J. Sun, J. Zhang, and C. Zuo, “Multimodal computational microscopy based on transport of intensity equation,” J. Biomed. Opt. 21, 126003 (2016).
[Crossref] [PubMed]

C. Zuo, J. Sun, S. Feng, M. Zhang, and Q. Chen, “Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging,” Opt. Laser Eng. 80, 24–31 (2016).
[Crossref]

C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective,” Opt. Laser Eng. 71, 20–32 (2015).
[Crossref]

C. Zuo, J. Sun, J. Zhang, Y. Hu, and Q. Chen, “Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix,” Opt. Express 23, 14314–14328 (2015).
[Crossref] [PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38, 3538–3541 (2013).
[Crossref] [PubMed]

C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications,” Opt. Express 21, 5346–5362 (2013).
[Crossref] [PubMed]

Chu, K. K.

Cloetens, P.

Cowley, J. M.

J. M. Cowley, Diffraction Physics (Elsevier, 1995).

Dasari, R. R.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. 107, 6731–6736 (2010).
[Crossref] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. 295, C538–C544 (2008).
[Crossref]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[Crossref] [PubMed]

De Nicola, S.

De Petrocellis, L.

Deflores, L.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. 295, C538–C544 (2008).
[Crossref]

Depeursinge, C.

Ding, H.

Dohet-Eraly, J.

Dubey, V.

Dubois, F.

Edwards, C.

El Mallahi, A.

Feld, M. S.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. 107, 6731–6736 (2010).
[Crossref] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. 295, C538–C544 (2008).
[Crossref]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[Crossref] [PubMed]

Feng, S.

C. Zuo, J. Sun, S. Feng, M. Zhang, and Q. Chen, “Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging,” Opt. Laser Eng. 80, 24–31 (2016).
[Crossref]

Ferraro, P.

Finizio, A.

Ford, T. N.

Gao, D.

A. Pogany, D. Gao, and S. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68, 2774–2782 (1997).
[Crossref]

Gaylord, T. K.

Gillette, M. U.

Goddard, L. L.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

Guigay, J. P.

Gureyev, T.

D. Paganin, T. Gureyev, S. Mayo, A. Stevenson, Y. I. Nesterets, and S. Wilkins, “X-ray omni microscopy,” J. Microsc. 214, 315–327 (2004).
[Crossref] [PubMed]

Gureyev, T. E.

Henle, M. L.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. 107, 6731–6736 (2010).
[Crossref] [PubMed]

Hopkins, H.

H. Hopkins, “On the diffraction theory of optical images,” Proc. Phys. Soc. London A 217, 408–432 (1953).
[Crossref]

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Hu, Y.

Ikeda, T.

Jenkins, M. H.

Kim, K.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 22 (2016).

Kim, M. K.

M. K. Kim, Digital Holographic Microscopy (Springer, New York2011).
[Crossref]

Kou, S. S.

Kuriabova, T.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. 107, 6731–6736 (2010).
[Crossref] [PubMed]

Langer, M.

Lee, S.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 22 (2016).

Levine, A. J.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. 107, 6731–6736 (2010).
[Crossref] [PubMed]

Li, J.

J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
[Crossref]

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref] [PubMed]

J. Li, Q. Chen, J. Sun, J. Zhang, and C. Zuo, “Multimodal computational microscopy based on transport of intensity equation,” J. Biomed. Opt. 21, 126003 (2016).
[Crossref] [PubMed]

Long, J. M.

Lue, N.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. 295, C538–C544 (2008).
[Crossref]

Marquet, P.

Mayo, S.

D. Paganin, T. Gureyev, S. Mayo, A. Stevenson, Y. I. Nesterets, and S. Wilkins, “X-ray omni microscopy,” J. Microsc. 214, 315–327 (2004).
[Crossref] [PubMed]

McCartney, M.

S. Bajt, A. Barty, K. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).
[Crossref] [PubMed]

Mehta, D. S.

Mehta, S. B.

Mertz, J.

Millet, L.

Mir, M.

Mir, Mustafa

Nesterets, Y. I.

D. Paganin, T. Gureyev, S. Mayo, A. Stevenson, Y. I. Nesterets, and S. Wilkins, “X-ray omni microscopy,” J. Microsc. 214, 315–327 (2004).
[Crossref] [PubMed]

Nguyen, T. H.

Nomarski, G.

G. Nomarski and A. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall 2, 121–128 (1955).
[Crossref]

Nugent, K.

E. Barone-Nugent, A. Barty, and K. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206, 194–203 (2002).
[Crossref] [PubMed]

S. Bajt, A. Barty, K. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).
[Crossref] [PubMed]

Nugent, K. A.

Paganin, D.

D. Paganin, T. Gureyev, S. Mayo, A. Stevenson, Y. I. Nesterets, and S. Wilkins, “X-ray omni microscopy,” J. Microsc. 214, 315–327 (2004).
[Crossref] [PubMed]

S. Bajt, A. Barty, K. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).
[Crossref] [PubMed]

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586 (1998).
[Crossref]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[Crossref]

Park, Y.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 22 (2016).

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. 107, 6731–6736 (2010).
[Crossref] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. 295, C538–C544 (2008).
[Crossref]

Parthasarathy, A. B.

Petruccelli, J. C.

Pham, Hoa

Pierattini, G.

Pogany, A.

A. Pogany, D. Gao, and S. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68, 2774–2782 (1997).
[Crossref]

Popescu, G.

T. H. Nguyen, C. Edwards, L. L. Goddard, and G. Popescu, “Quantitative phase imaging of weakly scattering objects using partially coherent illumination,” Opt. Express 24, 11683–11693 (2016).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. 107, 6731–6736 (2010).
[Crossref] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. 295, C538–C544 (2008).
[Crossref]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[Crossref] [PubMed]

Popescu, Gabriel

Qu, W.

Roberts, A.

Rogers, J.

Schoonover, R. W.

Sheppard, C. J.

Shin, S.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 22 (2016).

Singh, G.

Singh, V.

Stevenson, A.

D. Paganin, T. Gureyev, S. Mayo, A. Stevenson, Y. I. Nesterets, and S. Wilkins, “X-ray omni microscopy,” J. Microsc. 214, 315–327 (2004).
[Crossref] [PubMed]

Streibl, N.

N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985).
[Crossref]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).
[Crossref]

Sun, J.

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref] [PubMed]

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref] [PubMed]

J. Li, Q. Chen, J. Sun, J. Zhang, and C. Zuo, “Multimodal computational microscopy based on transport of intensity equation,” J. Biomed. Opt. 21, 126003 (2016).
[Crossref] [PubMed]

C. Zuo, J. Sun, S. Feng, M. Zhang, and Q. Chen, “Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging,” Opt. Laser Eng. 80, 24–31 (2016).
[Crossref]

C. Zuo, J. Sun, J. Zhang, Y. Hu, and Q. Chen, “Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix,” Opt. Express 23, 14314–14328 (2015).
[Crossref] [PubMed]

Teague, M. R.

Tian, L.

Unarunotai, S.

Wall, M.

S. Bajt, A. Barty, K. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).
[Crossref] [PubMed]

Waller, L.

Wang, Z.

Weill, A.

G. Nomarski and A. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall 2, 121–128 (1955).
[Crossref]

Wilkins, S.

D. Paganin, T. Gureyev, S. Mayo, A. Stevenson, Y. I. Nesterets, and S. Wilkins, “X-ray omni microscopy,” J. Microsc. 214, 315–327 (2004).
[Crossref] [PubMed]

A. Pogany, D. Gao, and S. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68, 2774–2782 (1997).
[Crossref]

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

M. Born and E. Wolf, Principles of Optics, 7th edition, (Pergamon, 1999), chap. 9.
[Crossref]

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Yang, S.-A.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 22 (2016).

Yoon, J.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 22 (2016).

Yourassowsky, C.

Yu, Y.

Zernike, F.

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
[Crossref]

Zhang, J.

J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
[Crossref]

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref] [PubMed]

J. Li, Q. Chen, J. Sun, J. Zhang, and C. Zuo, “Multimodal computational microscopy based on transport of intensity equation,” J. Biomed. Opt. 21, 126003 (2016).
[Crossref] [PubMed]

C. Zuo, J. Sun, J. Zhang, Y. Hu, and Q. Chen, “Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix,” Opt. Express 23, 14314–14328 (2015).
[Crossref] [PubMed]

Zhang, L.

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref] [PubMed]

Zhang, M.

C. Zuo, J. Sun, S. Feng, M. Zhang, and Q. Chen, “Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging,” Opt. Laser Eng. 80, 24–31 (2016).
[Crossref]

Zhang, Y.

J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
[Crossref]

Zhang, Z.

J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
[Crossref]

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Zuo, C.

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref] [PubMed]

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref] [PubMed]

J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
[Crossref]

C. Zuo, J. Sun, S. Feng, M. Zhang, and Q. Chen, “Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging,” Opt. Laser Eng. 80, 24–31 (2016).
[Crossref]

J. Li, Q. Chen, J. Sun, J. Zhang, and C. Zuo, “Multimodal computational microscopy based on transport of intensity equation,” J. Biomed. Opt. 21, 126003 (2016).
[Crossref] [PubMed]

C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective,” Opt. Laser Eng. 71, 20–32 (2015).
[Crossref]

C. Zuo, J. Sun, J. Zhang, Y. Hu, and Q. Chen, “Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix,” Opt. Express 23, 14314–14328 (2015).
[Crossref] [PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38, 3538–3541 (2013).
[Crossref] [PubMed]

C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications,” Opt. Express 21, 5346–5362 (2013).
[Crossref] [PubMed]

Zysk, A. M.

Am. J. Physiol. (1)

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. 295, C538–C544 (2008).
[Crossref]

Appl. Opt. (3)

J. Biomed. Opt. (1)

J. Li, Q. Chen, J. Sun, J. Zhang, and C. Zuo, “Multimodal computational microscopy based on transport of intensity equation,” J. Biomed. Opt. 21, 126003 (2016).
[Crossref] [PubMed]

J. Biomed. Photon. Eng. (1)

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 22 (2016).

J. Microsc. (2)

E. Barone-Nugent, A. Barty, and K. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206, 194–203 (2002).
[Crossref] [PubMed]

D. Paganin, T. Gureyev, S. Mayo, A. Stevenson, Y. I. Nesterets, and S. Wilkins, “X-ray omni microscopy,” J. Microsc. 214, 315–327 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Nat. Photonics (1)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Opt. Commun. (2)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).
[Crossref]

Opt. Express (6)

Opt. Laser Eng. (3)

J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
[Crossref]

C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective,” Opt. Laser Eng. 71, 20–32 (2015).
[Crossref]

C. Zuo, J. Sun, S. Feng, M. Zhang, and Q. Chen, “Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging,” Opt. Laser Eng. 80, 24–31 (2016).
[Crossref]

Opt. Lett. (12)

S. B. Mehta and C. J. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. Lett. 34, 1924–1926 (2009).
[Crossref] [PubMed]

A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37, 4062–4064 (2012).
[Crossref] [PubMed]

S. S. Kou, L. Waller, G. Barbastathis, P. Marquet, C. Depeursinge, and C. J. Sheppard, “Quantitative phase restoration by direct inversion using the optical transfer function,” Opt. Lett. 36, 2671–2673 (2011).
[Crossref] [PubMed]

J. P. Guigay, M. Langer, R. Boistel, and P. Cloetens, “Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region,” Opt. Lett. 32, 1617–1619 (2007).
[Crossref] [PubMed]

A. M. Zysk, R. W. Schoonover, P. S. Carney, and M. A. Anastasio, “Transport of intensity and spectrum for partially coherent fields,” Opt. Lett. 35, 2239–2241 (2010).
[Crossref] [PubMed]

Basanta Bhaduri, Hoa Pham, Mustafa Mir, and Gabriel Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref] [PubMed]

P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31, 1405–1407 (2006).
[Crossref] [PubMed]

A. Ahmad, V. Dubey, G. Singh, V. Singh, and D. S. Mehta, “Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source,” Opt. Lett. 41, 1554–1557 (2016).
[Crossref] [PubMed]

J. Dohet-Eraly, C. Yourassowsky, A. El Mallahi, and F. Dubois, “Quantitative assessment of noise reduction with partial spatial coherence illumination in digital holographic microscopy,” Opt. Lett. 41, 111–114 (2016).
[Crossref]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[Crossref]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38, 3538–3541 (2013).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586 (1998).
[Crossref]

Physica (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
[Crossref]

Proc. Natl. Acad. Sci. (1)

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. 107, 6731–6736 (2010).
[Crossref] [PubMed]

Proc. Phys. Soc. London A (1)

H. Hopkins, “On the diffraction theory of optical images,” Proc. Phys. Soc. London A 217, 408–432 (1953).
[Crossref]

Rev. Metall (1)

G. Nomarski and A. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall 2, 121–128 (1955).
[Crossref]

Rev. Sci. Instrum. (1)

A. Pogany, D. Gao, and S. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68, 2774–2782 (1997).
[Crossref]

Sci. Rep. (2)

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref] [PubMed]

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref] [PubMed]

Ultramicroscopy (1)

S. Bajt, A. Barty, K. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).
[Crossref] [PubMed]

Other (4)

M. K. Kim, Digital Holographic Microscopy (Springer, New York2011).
[Crossref]

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

M. Born and E. Wolf, Principles of Optics, 7th edition, (Pergamon, 1999), chap. 9.
[Crossref]

J. M. Cowley, Diffraction Physics (Elsevier, 1995).

Supplementary Material (1)

NameDescription
» Visualization 1       A short video of switching process between two different objective lenses based on programmable LED illumination

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 2D images of PTF for different types axis-symmetric source under weak defocusing conditions and the line profiles of TIE and PTF for various defocus distances.
Fig. 2
Fig. 2 (a–c) 2D images of PTF and line profiles of three different types discrete annular illumination patterns for various defocus distances. (d) Traditional circular diaphragm aperture and corresponding PTF.
Fig. 3
Fig. 3 Various noise-free reconstruction results based on a simulated phase resolution target corresponding different illumination patterns. The parameters of optical system and pixel size of camera is set to satisfy the Nyquist sampling criterion, and the sampling frequency of camera equals twice imaging resolution of objective NA. Scale bar, 15 μm.
Fig. 4
Fig. 4 Phase reconstruction results under the Gaussian noise with standard deviation of 0.1. The response of transfer function rises slowly at low frequencies leading the over-amplification of noise, and there are cloud-like artifacts superimposed on the reconstructed phases for coherent illumination. While the values of WOTF of traditional circular aperture is too close to zero and leads to the over-amplification of noise at both low and high frequency. Scale bar, 15 μm.
Fig. 5
Fig. 5 (a) Magnitudes of PTF profiles for four different types different illumination patterns under weak defocusing. (b) Enlarged profiles of blue-boxed regions. The response of annular apertures rises faster than other two illumination patterns. (c) Further enlarged profiles of red-boxed regions. The magnitude of incoherent PTF is slightly larger than the coherent one near zero frequency.
Fig. 6
Fig. 6 (a) Schematic diagram of experimental setup. (b–c) The annular pattern is displayed on the LED array and the size of this annulus is matched with objective pupil in the back focal plane. (d) Photograph of whole imaging system. The LED array is placed beneath the sample and the crucial parts of setup in this photo are marked with the yellow boxes. Scale bar represents 300 μm.
Fig. 7
Fig. 7 (a1–b1) Reconstructed phase distributions of the micro polystyrene bead with 8 μm diameter and blazed transmission grating with 3.33 μm period. (a2–b2) Measured quantitative phase line profiles for a single bead and a few periods grating. Theoretical (90° groove angles for grating) line profiles are also plotted for reference. Scale bar denotes 10 μm and 3 μm, respectively.
Fig. 8
Fig. 8 (a) Quantitative reconstruction results of LC-06 with 0.4 NA objective and 6.5 μm pixel pitch camera for coherent and discrete annular illumination. (b–c) Three enlarged sub-regions of quantitative maps and simplified DIC images are illustrated as well. The white arrows shows line profiles taken at different positions in the cells. Scale bar equals 50μm, 10μm and 15μm, respectively.
Fig. 9
Fig. 9 (a) High resolution QPI of HeLa cell with 0.75 NA objective. (b) Simulated DIC image. (c–e) Three enlarged sub-regions of quantitative phase of HeLa cell under coherent and discrete annular source. Scale bar equals 20μm, 3μm and 5μm, respectively.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

t ( r ) a ( r ) exp [ i ϕ ( r ) ] a ( r ) [ 1 + i ϕ ( r ) ] a ( r ) = a 0 + Δ a ( r ) a 0 + Δ a ( r ) + i a 0 ϕ ( r )
T ( u 1 ) T * ( u 2 ) = a 0 2 δ ( u 1 ) δ ( u 2 ) + a 0 δ ( u 2 ) [ Δ a ˜ ( u 1 ) + i a 0 ϕ ˜ ( u 1 ) ] + a 0 δ ( u 1 ) [ Δ a ˜ * ( u 2 ) i a 0 ϕ ˜ * ( u 2 ) ] .
I ( r ) = a 0 2 TCC ( 0 ; 0 ) + 2 a 0 Re { TCC ( u ; 0 ) [ Δ a ˜ ( u ) + i a 0 ϕ ˜ ( u ) ] exp ( i 2 π r u ) d u }
WOTF ( u ) TCC ( u ; 0 ) = S ( u ) P * ( u ) P ( u + u ) d u
P ( u ) = | P ( u ) | e i k z 1 λ 2 | u | 2 , λ | u | 1
WOTF ( u ) = S ( u ) | P * ( u ) | | P ( u + u ) | exp [ i k z ( 1 λ 2 | u | 2 + 1 λ 2 | u + u | 2 ) ] d u
H A ( u ) = 2 a 0 Re [ WOTF ( u ) ] H P ( u ) = 2 a 0 Im [ WOTF ( u ) ] .
S ( u ) = δ ( u ρ s ) + δ ( u + ρ s )
WOTF obl ( u ) = | P ( u ρ s ) | e i k z ( 1 λ 2 | ρ s | 2 + 1 λ 2 | u ρ s | 2 ) + | P ( u + ρ s ) | e i k z ( 1 λ 2 | ρ s | 2 + 1 λ 2 | u + ρ s | 2 )
| P ( u ) | = { 1 , if u ρ p 0 , if u > ρ p .
WOTF coh ( u ) = | P ( u ) | e i k z ( 1 + 1 λ 2 | u | 2 ) .
H p ( u ) TIE = | P ( u ) | sin ( π λ z | u | 2 ) | P ( u ) | π λ z | u | 2
H p ( u ) obl = 1 2 | P ( u ρ s ) | sin [ k z ( 1 λ 2 | u ρ s | 2 1 λ 2 | ρ s | 2 ) ] + 1 2 | P ( u + ρ s ) | sin [ k z ( 1 λ 2 | u + ρ s | 2 1 λ 2 | ρ s | 2 ) ]
S ( u ) = i = 0 N δ ( u u i ) , | u i | | ρ p |
k I ( r ) z = [ I ( r ) ϕ ( r ) ]
k I ( r ) z = 2 ψ
( I 1 ψ ) = 2 ϕ
k I ( r ) z = I ( r ) 2 ϕ ( r )
I ˜ 1 ( u ) I ˜ 2 ( u ) 4 I ˜ ( u ) = ( π λ z | u | 2 ) ϕ ˜ ( u )
I ˜ 1 ( u ) I ˜ 2 ( u ) 4 I ˜ ( u ) = Im [ WOTF ( u ) ] ϕ ˜ ( u )
ϕ ( u ) = 1 { I ˜ 1 ( u ) I ˜ 2 ( u ) 4 I ˜ ( u ) Im [ WOTF ( u ) ] | Im [ WOTF ( u ) ] | 2 + α }
E ( x , y ; f c , g c ) = t ( f , g ) h ( f + f c , g + g c ) exp [ i 2 π ( f x + g y ) ] d f d g
I ( x , y ) = S ( f c , g c ) | E ( x , y ; f c , g c ) | 2 d f c d g c = S ( f c , g c ) | [ t ( f , g ) h ( f + f c , g + g c ) ] | 2 d f c d g c
I ( x , y ) = S ( f c , g c ) P ( f + f c , g + g c ) P * ( f + f c , g + g c ) T ( f , g ) T * ( f , g ) exp [ i 2 π ( f f ) x i 2 π ( g g ) y ] d f d g d f d g
TCC ( f , g ; f , g ) = S ( f c , g c ) P ( f + f c , g + g c ) P * ( f + f c , g + g c ) d f c d g c
TCC ( u 1 ; u 2 ) = S ( u ) P ( u + u 1 ) P * ( u + u 2 ) d u
I ( u ) = TCC ( u 1 ; u 2 ) T ( u 1 ) T * ( u 2 ) exp [ i 2 π r ( u 1 u 2 ) ] d u 1 d u 2

Metrics