Abstract

Characterizing the mechanical behavior of living tissue presents an interesting challenge because the elasticity varies by eight orders of magnitude, from 50Pa to 5GPa. In the present work, a non-destructive optical fiber photoelastic polarimetry system is used to analyze the mechanical properties of resected samples from porcine liver, kidney, and pancreas. Using a quasi-linear viscoelastic fit, the elastic modulus values of the different organ systems are determined. They are in agreement with previous work. In addition, a histological assessment of compressed and uncompressed tissues confirms that the tissue is not damaged during testing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Noninvasive depth estimation using tissue optical properties and a dual-wavelength fluorescent molecular probe in vivo

Jessica P. Miller, Dolonchampa Maji, Jesse Lam, Bruce J. Tromberg, and Samuel Achilefu
Biomed. Opt. Express 8(6) 3095-3109 (2017)

Multiphoton in vivo imaging with a femtosecond semiconductor disk laser

Fabian F. Voigt, Florian Emaury, Philipp Bethge, Dominik Waldburger, Sandro M. Link, Stefano Carta, Alexander van der Bourg, Fritjof Helmchen, and Ursula Keller
Biomed. Opt. Express 8(7) 3213-3231 (2017)

Differentiation of fibrotic liver tissue using laser-induced breakdown spectroscopy

E. Teran-Hinojosa, H. Sobral, C. Sánchez-Pérez, A. Pérez-García, N. Alemán-García, and J. Hernández-Ruiz
Biomed. Opt. Express 8(8) 3816-3827 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Rosen, J. D. Brown, S. De, M. Sinanan, and B. Hannaford, “Biomechanical Properties of Abdominal Organs In Vivo and Postmortem Under Compression Loads,” J. Biomech. Eng. 130, 021020 (2008).
  2. D. C. Stewart, A. Rubiano, M. M. Santisteban, V. Shenoy, Y. Qi, C. J. Pepine, M. K. Raizada, and C. S. Simmons, “Hypertension-linked mechanical changes of rat gut,” Acta Biomater. 45, 296–302 (2016).
    [Crossref] [PubMed]
  3. A. Calzado-Martín, M. Encinar, J. Tamayo, M. Calleja, and A. San Paulo, “Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy,” ACS Nano 10(3), 3365–3374 (2016).
    [Crossref] [PubMed]
  4. S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
    [Crossref] [PubMed]
  5. M. E. Grady, R. J. Composto, and D. M. Eckmann, “Cell elasticity with altered cytoskeletal architectures across multiple cell types,” J. Mech. Behav. Biomed. Mater. 61, 197–207 (2016).
    [Crossref] [PubMed]
  6. K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
    [Crossref] [PubMed]
  7. E. A. Corbin, O. O. Adeniba, R. H. Ewoldt, and R. Bashir, “Dynamic mechanical measurement of the viscoelasticity of single adherent cells,” Appl. Phys. Lett. 108(9), 093701 (2016).
    [Crossref]
  8. W. J. Eldridge, Z. A. Steelman, B. Loomis, and A. Wax, “Optical Phase Measurements of Disorder Strength Link Microstructure to Cell Stiffness,” Biophys. J. 112(4), 692–702 (2017).
    [Crossref] [PubMed]
  9. D. Qi, N. Kaur Gill, C. Santiskulvong, J. Sifuentes, O. Dorigo, J. Rao, B. Taylor-Harding, W. Ruprecht Wiedemeyer, and A. C. Rowat, “Screening cell mechanotype by parallel microfiltration,” Sci. Rep. 5(1), 17595 (2015).
    [Crossref] [PubMed]
  10. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
    [Crossref] [PubMed]
  11. T. H. Chua and C.-L. Chen, “Fiber polarimetric stress sensors,” Appl. Opt. 28(15), 3158–3165 (1989).
    [Crossref] [PubMed]
  12. A. Barlow and D. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. 19(5), 834–839 (1983).
    [Crossref]
  13. A. W. Hudnut and A. M. Armani, “High-resolution analysis of the mechanical behavior of tissue,” Appl. Phys. Lett. 110(24), 243701 (2017).
    [Crossref]
  14. M. C. Harrison and A. M. Armani, “Portable polarimetric fiber stress sensor system for visco-elastic and biomimetic material analysis,” Appl. Phys. Lett. 106(19), 191105 (2015).
    [Crossref]
  15. Y.-c. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer Science & Business Media, 1981).
  16. B. Babaei, S. D. Abramowitch, E. L. Elson, S. Thomopoulos, and G. M. Genin, “A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials,” J. R. Soc. Interface 12(113), 20150707 (2015).
    [Crossref] [PubMed]
  17. S. Thomopoulos, G. R. Williams, J. A. Gimbel, M. Favata, and L. J. Soslowsky, “Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site,” J. Orthop. Res. 21(3), 413–419 (2003).
    [Crossref] [PubMed]
  18. S. Goenezen, J. F. Dord, Z. Sink, P. E. Barbone, J. Jiang, T. J. Hall, and A. A. Oberai, “Linear and Nonlinear Elastic Modulus Imaging: An Application to Breast Cancer Diagnosis,” IEEE Trans. Med. Imaging 31(8), 1628–1637 (2012).
    [Crossref] [PubMed]
  19. D. Kasper, A. Fauci, S. Hauser, D. Longo, and J. Jameson, Harrison's Principles of Internal Medicine (McGraw-Hill Education, 2015).
  20. M. Perepelyuk, L. Chin, X. Cao, A. van Oosten, V. B. Shenoy, P. A. Janmey, and R. G. Wells, “Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics,” PLoS One 11(1), e0146588 (2016).
    [Crossref] [PubMed]
  21. C. Chui, E. Kobayashi, X. Chen, T. Hisada, and I. Sakuma, “Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling,” Med. Biol. Eng. Comput. 45(1), 99–106 (2007).
    [Crossref] [PubMed]
  22. K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative Assessment of Normal Soft-Tissue Elasticity Using Shear-Wave Ultrasound Elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
    [Crossref] [PubMed]
  23. J. M. Mattice, A. G. Lau, M. L. Oyen, and R. W. Kent, “Spherical indentation load-relaxation of soft biological tissues,” J. Mater. Res. 21(08), 2003–2010 (2006).
    [Crossref]
  24. S. Nasseri, L. E. Bilston, and N. Phan-Thien, “Viscoelastic properties of pig kidney in shear, experimental results and modelling,” Rheol. Acta 41(1-2), 180–192 (2002).
    [Crossref]
  25. A. Anssari-Benam, D. L. Bader, and H. R. C. Screen, “A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation,” J. Mater. Sci. Mater. Med. 22(2), 253–262 (2011).
    [Crossref] [PubMed]
  26. J. Vincent, Structural Biomaterials Third Edition (Princeton University Press, 2012).

2017 (2)

W. J. Eldridge, Z. A. Steelman, B. Loomis, and A. Wax, “Optical Phase Measurements of Disorder Strength Link Microstructure to Cell Stiffness,” Biophys. J. 112(4), 692–702 (2017).
[Crossref] [PubMed]

A. W. Hudnut and A. M. Armani, “High-resolution analysis of the mechanical behavior of tissue,” Appl. Phys. Lett. 110(24), 243701 (2017).
[Crossref]

2016 (5)

E. A. Corbin, O. O. Adeniba, R. H. Ewoldt, and R. Bashir, “Dynamic mechanical measurement of the viscoelasticity of single adherent cells,” Appl. Phys. Lett. 108(9), 093701 (2016).
[Crossref]

M. Perepelyuk, L. Chin, X. Cao, A. van Oosten, V. B. Shenoy, P. A. Janmey, and R. G. Wells, “Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics,” PLoS One 11(1), e0146588 (2016).
[Crossref] [PubMed]

D. C. Stewart, A. Rubiano, M. M. Santisteban, V. Shenoy, Y. Qi, C. J. Pepine, M. K. Raizada, and C. S. Simmons, “Hypertension-linked mechanical changes of rat gut,” Acta Biomater. 45, 296–302 (2016).
[Crossref] [PubMed]

A. Calzado-Martín, M. Encinar, J. Tamayo, M. Calleja, and A. San Paulo, “Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy,” ACS Nano 10(3), 3365–3374 (2016).
[Crossref] [PubMed]

M. E. Grady, R. J. Composto, and D. M. Eckmann, “Cell elasticity with altered cytoskeletal architectures across multiple cell types,” J. Mech. Behav. Biomed. Mater. 61, 197–207 (2016).
[Crossref] [PubMed]

2015 (3)

D. Qi, N. Kaur Gill, C. Santiskulvong, J. Sifuentes, O. Dorigo, J. Rao, B. Taylor-Harding, W. Ruprecht Wiedemeyer, and A. C. Rowat, “Screening cell mechanotype by parallel microfiltration,” Sci. Rep. 5(1), 17595 (2015).
[Crossref] [PubMed]

M. C. Harrison and A. M. Armani, “Portable polarimetric fiber stress sensor system for visco-elastic and biomimetic material analysis,” Appl. Phys. Lett. 106(19), 191105 (2015).
[Crossref]

B. Babaei, S. D. Abramowitch, E. L. Elson, S. Thomopoulos, and G. M. Genin, “A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials,” J. R. Soc. Interface 12(113), 20150707 (2015).
[Crossref] [PubMed]

2012 (1)

S. Goenezen, J. F. Dord, Z. Sink, P. E. Barbone, J. Jiang, T. J. Hall, and A. A. Oberai, “Linear and Nonlinear Elastic Modulus Imaging: An Application to Breast Cancer Diagnosis,” IEEE Trans. Med. Imaging 31(8), 1628–1637 (2012).
[Crossref] [PubMed]

2011 (3)

A. Anssari-Benam, D. L. Bader, and H. R. C. Screen, “A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation,” J. Mater. Sci. Mater. Med. 22(2), 253–262 (2011).
[Crossref] [PubMed]

K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative Assessment of Normal Soft-Tissue Elasticity Using Shear-Wave Ultrasound Elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
[Crossref] [PubMed]

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref] [PubMed]

2010 (1)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

2008 (1)

J. Rosen, J. D. Brown, S. De, M. Sinanan, and B. Hannaford, “Biomechanical Properties of Abdominal Organs In Vivo and Postmortem Under Compression Loads,” J. Biomech. Eng. 130, 021020 (2008).

2007 (2)

C. Chui, E. Kobayashi, X. Chen, T. Hisada, and I. Sakuma, “Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling,” Med. Biol. Eng. Comput. 45(1), 99–106 (2007).
[Crossref] [PubMed]

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

2006 (1)

J. M. Mattice, A. G. Lau, M. L. Oyen, and R. W. Kent, “Spherical indentation load-relaxation of soft biological tissues,” J. Mater. Res. 21(08), 2003–2010 (2006).
[Crossref]

2003 (1)

S. Thomopoulos, G. R. Williams, J. A. Gimbel, M. Favata, and L. J. Soslowsky, “Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site,” J. Orthop. Res. 21(3), 413–419 (2003).
[Crossref] [PubMed]

2002 (1)

S. Nasseri, L. E. Bilston, and N. Phan-Thien, “Viscoelastic properties of pig kidney in shear, experimental results and modelling,” Rheol. Acta 41(1-2), 180–192 (2002).
[Crossref]

1989 (1)

1983 (1)

A. Barlow and D. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. 19(5), 834–839 (1983).
[Crossref]

Abramowitch, S. D.

B. Babaei, S. D. Abramowitch, E. L. Elson, S. Thomopoulos, and G. M. Genin, “A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials,” J. R. Soc. Interface 12(113), 20150707 (2015).
[Crossref] [PubMed]

Adeniba, O. O.

E. A. Corbin, O. O. Adeniba, R. H. Ewoldt, and R. Bashir, “Dynamic mechanical measurement of the viscoelasticity of single adherent cells,” Appl. Phys. Lett. 108(9), 093701 (2016).
[Crossref]

Aktas, E.

K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative Assessment of Normal Soft-Tissue Elasticity Using Shear-Wave Ultrasound Elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
[Crossref] [PubMed]

Anssari-Benam, A.

A. Anssari-Benam, D. L. Bader, and H. R. C. Screen, “A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation,” J. Mater. Sci. Mater. Med. 22(2), 253–262 (2011).
[Crossref] [PubMed]

Arda, K.

K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative Assessment of Normal Soft-Tissue Elasticity Using Shear-Wave Ultrasound Elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
[Crossref] [PubMed]

Aribas, B. K.

K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative Assessment of Normal Soft-Tissue Elasticity Using Shear-Wave Ultrasound Elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
[Crossref] [PubMed]

Armani, A. M.

A. W. Hudnut and A. M. Armani, “High-resolution analysis of the mechanical behavior of tissue,” Appl. Phys. Lett. 110(24), 243701 (2017).
[Crossref]

M. C. Harrison and A. M. Armani, “Portable polarimetric fiber stress sensor system for visco-elastic and biomimetic material analysis,” Appl. Phys. Lett. 106(19), 191105 (2015).
[Crossref]

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Babaei, B.

B. Babaei, S. D. Abramowitch, E. L. Elson, S. Thomopoulos, and G. M. Genin, “A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials,” J. R. Soc. Interface 12(113), 20150707 (2015).
[Crossref] [PubMed]

Bader, D. L.

A. Anssari-Benam, D. L. Bader, and H. R. C. Screen, “A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation,” J. Mater. Sci. Mater. Med. 22(2), 253–262 (2011).
[Crossref] [PubMed]

Barbone, P. E.

S. Goenezen, J. F. Dord, Z. Sink, P. E. Barbone, J. Jiang, T. J. Hall, and A. A. Oberai, “Linear and Nonlinear Elastic Modulus Imaging: An Application to Breast Cancer Diagnosis,” IEEE Trans. Med. Imaging 31(8), 1628–1637 (2012).
[Crossref] [PubMed]

Barlow, A.

A. Barlow and D. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. 19(5), 834–839 (1983).
[Crossref]

Bashir, R.

E. A. Corbin, O. O. Adeniba, R. H. Ewoldt, and R. Bashir, “Dynamic mechanical measurement of the viscoelasticity of single adherent cells,” Appl. Phys. Lett. 108(9), 093701 (2016).
[Crossref]

Bilston, L. E.

S. Nasseri, L. E. Bilston, and N. Phan-Thien, “Viscoelastic properties of pig kidney in shear, experimental results and modelling,” Rheol. Acta 41(1-2), 180–192 (2002).
[Crossref]

Brown, J. D.

J. Rosen, J. D. Brown, S. De, M. Sinanan, and B. Hannaford, “Biomechanical Properties of Abdominal Organs In Vivo and Postmortem Under Compression Loads,” J. Biomech. Eng. 130, 021020 (2008).

Calleja, M.

A. Calzado-Martín, M. Encinar, J. Tamayo, M. Calleja, and A. San Paulo, “Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy,” ACS Nano 10(3), 3365–3374 (2016).
[Crossref] [PubMed]

Calzado-Martín, A.

A. Calzado-Martín, M. Encinar, J. Tamayo, M. Calleja, and A. San Paulo, “Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy,” ACS Nano 10(3), 3365–3374 (2016).
[Crossref] [PubMed]

Cao, X.

M. Perepelyuk, L. Chin, X. Cao, A. van Oosten, V. B. Shenoy, P. A. Janmey, and R. G. Wells, “Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics,” PLoS One 11(1), e0146588 (2016).
[Crossref] [PubMed]

Chen, C.-L.

Chen, X.

C. Chui, E. Kobayashi, X. Chen, T. Hisada, and I. Sakuma, “Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling,” Med. Biol. Eng. Comput. 45(1), 99–106 (2007).
[Crossref] [PubMed]

Chin, L.

M. Perepelyuk, L. Chin, X. Cao, A. van Oosten, V. B. Shenoy, P. A. Janmey, and R. G. Wells, “Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics,” PLoS One 11(1), e0146588 (2016).
[Crossref] [PubMed]

Chua, T. H.

Chui, C.

C. Chui, E. Kobayashi, X. Chen, T. Hisada, and I. Sakuma, “Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling,” Med. Biol. Eng. Comput. 45(1), 99–106 (2007).
[Crossref] [PubMed]

Ciledag, N.

K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative Assessment of Normal Soft-Tissue Elasticity Using Shear-Wave Ultrasound Elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
[Crossref] [PubMed]

Composto, R. J.

M. E. Grady, R. J. Composto, and D. M. Eckmann, “Cell elasticity with altered cytoskeletal architectures across multiple cell types,” J. Mech. Behav. Biomed. Mater. 61, 197–207 (2016).
[Crossref] [PubMed]

Corbin, E. A.

E. A. Corbin, O. O. Adeniba, R. H. Ewoldt, and R. Bashir, “Dynamic mechanical measurement of the viscoelasticity of single adherent cells,” Appl. Phys. Lett. 108(9), 093701 (2016).
[Crossref]

Cross, S. E.

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

De, S.

J. Rosen, J. D. Brown, S. De, M. Sinanan, and B. Hannaford, “Biomechanical Properties of Abdominal Organs In Vivo and Postmortem Under Compression Loads,” J. Biomech. Eng. 130, 021020 (2008).

Dord, J. F.

S. Goenezen, J. F. Dord, Z. Sink, P. E. Barbone, J. Jiang, T. J. Hall, and A. A. Oberai, “Linear and Nonlinear Elastic Modulus Imaging: An Application to Breast Cancer Diagnosis,” IEEE Trans. Med. Imaging 31(8), 1628–1637 (2012).
[Crossref] [PubMed]

Dorigo, O.

D. Qi, N. Kaur Gill, C. Santiskulvong, J. Sifuentes, O. Dorigo, J. Rao, B. Taylor-Harding, W. Ruprecht Wiedemeyer, and A. C. Rowat, “Screening cell mechanotype by parallel microfiltration,” Sci. Rep. 5(1), 17595 (2015).
[Crossref] [PubMed]

Doyley, M. M.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref] [PubMed]

Eckmann, D. M.

M. E. Grady, R. J. Composto, and D. M. Eckmann, “Cell elasticity with altered cytoskeletal architectures across multiple cell types,” J. Mech. Behav. Biomed. Mater. 61, 197–207 (2016).
[Crossref] [PubMed]

Eldridge, W. J.

W. J. Eldridge, Z. A. Steelman, B. Loomis, and A. Wax, “Optical Phase Measurements of Disorder Strength Link Microstructure to Cell Stiffness,” Biophys. J. 112(4), 692–702 (2017).
[Crossref] [PubMed]

Elson, E. L.

B. Babaei, S. D. Abramowitch, E. L. Elson, S. Thomopoulos, and G. M. Genin, “A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials,” J. R. Soc. Interface 12(113), 20150707 (2015).
[Crossref] [PubMed]

Encinar, M.

A. Calzado-Martín, M. Encinar, J. Tamayo, M. Calleja, and A. San Paulo, “Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy,” ACS Nano 10(3), 3365–3374 (2016).
[Crossref] [PubMed]

Ewoldt, R. H.

E. A. Corbin, O. O. Adeniba, R. H. Ewoldt, and R. Bashir, “Dynamic mechanical measurement of the viscoelasticity of single adherent cells,” Appl. Phys. Lett. 108(9), 093701 (2016).
[Crossref]

Favata, M.

S. Thomopoulos, G. R. Williams, J. A. Gimbel, M. Favata, and L. J. Soslowsky, “Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site,” J. Orthop. Res. 21(3), 413–419 (2003).
[Crossref] [PubMed]

Genin, G. M.

B. Babaei, S. D. Abramowitch, E. L. Elson, S. Thomopoulos, and G. M. Genin, “A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials,” J. R. Soc. Interface 12(113), 20150707 (2015).
[Crossref] [PubMed]

Gimbel, J. A.

S. Thomopoulos, G. R. Williams, J. A. Gimbel, M. Favata, and L. J. Soslowsky, “Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site,” J. Orthop. Res. 21(3), 413–419 (2003).
[Crossref] [PubMed]

Gimzewski, J. K.

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Goenezen, S.

S. Goenezen, J. F. Dord, Z. Sink, P. E. Barbone, J. Jiang, T. J. Hall, and A. A. Oberai, “Linear and Nonlinear Elastic Modulus Imaging: An Application to Breast Cancer Diagnosis,” IEEE Trans. Med. Imaging 31(8), 1628–1637 (2012).
[Crossref] [PubMed]

Grady, M. E.

M. E. Grady, R. J. Composto, and D. M. Eckmann, “Cell elasticity with altered cytoskeletal architectures across multiple cell types,” J. Mech. Behav. Biomed. Mater. 61, 197–207 (2016).
[Crossref] [PubMed]

Hall, T. J.

S. Goenezen, J. F. Dord, Z. Sink, P. E. Barbone, J. Jiang, T. J. Hall, and A. A. Oberai, “Linear and Nonlinear Elastic Modulus Imaging: An Application to Breast Cancer Diagnosis,” IEEE Trans. Med. Imaging 31(8), 1628–1637 (2012).
[Crossref] [PubMed]

Hannaford, B.

J. Rosen, J. D. Brown, S. De, M. Sinanan, and B. Hannaford, “Biomechanical Properties of Abdominal Organs In Vivo and Postmortem Under Compression Loads,” J. Biomech. Eng. 130, 021020 (2008).

Harrison, M. C.

M. C. Harrison and A. M. Armani, “Portable polarimetric fiber stress sensor system for visco-elastic and biomimetic material analysis,” Appl. Phys. Lett. 106(19), 191105 (2015).
[Crossref]

Hisada, T.

C. Chui, E. Kobayashi, X. Chen, T. Hisada, and I. Sakuma, “Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling,” Med. Biol. Eng. Comput. 45(1), 99–106 (2007).
[Crossref] [PubMed]

Hudnut, A. W.

A. W. Hudnut and A. M. Armani, “High-resolution analysis of the mechanical behavior of tissue,” Appl. Phys. Lett. 110(24), 243701 (2017).
[Crossref]

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Janmey, P. A.

M. Perepelyuk, L. Chin, X. Cao, A. van Oosten, V. B. Shenoy, P. A. Janmey, and R. G. Wells, “Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics,” PLoS One 11(1), e0146588 (2016).
[Crossref] [PubMed]

Jiang, J.

S. Goenezen, J. F. Dord, Z. Sink, P. E. Barbone, J. Jiang, T. J. Hall, and A. A. Oberai, “Linear and Nonlinear Elastic Modulus Imaging: An Application to Breast Cancer Diagnosis,” IEEE Trans. Med. Imaging 31(8), 1628–1637 (2012).
[Crossref] [PubMed]

Jin, Y. S.

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Kaur Gill, N.

D. Qi, N. Kaur Gill, C. Santiskulvong, J. Sifuentes, O. Dorigo, J. Rao, B. Taylor-Harding, W. Ruprecht Wiedemeyer, and A. C. Rowat, “Screening cell mechanotype by parallel microfiltration,” Sci. Rep. 5(1), 17595 (2015).
[Crossref] [PubMed]

Kent, R. W.

J. M. Mattice, A. G. Lau, M. L. Oyen, and R. W. Kent, “Spherical indentation load-relaxation of soft biological tissues,” J. Mater. Res. 21(08), 2003–2010 (2006).
[Crossref]

Kobayashi, E.

C. Chui, E. Kobayashi, X. Chen, T. Hisada, and I. Sakuma, “Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling,” Med. Biol. Eng. Comput. 45(1), 99–106 (2007).
[Crossref] [PubMed]

Köse, K.

K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative Assessment of Normal Soft-Tissue Elasticity Using Shear-Wave Ultrasound Elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
[Crossref] [PubMed]

Lau, A. G.

J. M. Mattice, A. G. Lau, M. L. Oyen, and R. W. Kent, “Spherical indentation load-relaxation of soft biological tissues,” J. Mater. Res. 21(08), 2003–2010 (2006).
[Crossref]

Loomis, B.

W. J. Eldridge, Z. A. Steelman, B. Loomis, and A. Wax, “Optical Phase Measurements of Disorder Strength Link Microstructure to Cell Stiffness,” Biophys. J. 112(4), 692–702 (2017).
[Crossref] [PubMed]

Mattice, J. M.

J. M. Mattice, A. G. Lau, M. L. Oyen, and R. W. Kent, “Spherical indentation load-relaxation of soft biological tissues,” J. Mater. Res. 21(08), 2003–2010 (2006).
[Crossref]

Nasseri, S.

S. Nasseri, L. E. Bilston, and N. Phan-Thien, “Viscoelastic properties of pig kidney in shear, experimental results and modelling,” Rheol. Acta 41(1-2), 180–192 (2002).
[Crossref]

Oberai, A. A.

S. Goenezen, J. F. Dord, Z. Sink, P. E. Barbone, J. Jiang, T. J. Hall, and A. A. Oberai, “Linear and Nonlinear Elastic Modulus Imaging: An Application to Breast Cancer Diagnosis,” IEEE Trans. Med. Imaging 31(8), 1628–1637 (2012).
[Crossref] [PubMed]

Oyen, M. L.

J. M. Mattice, A. G. Lau, M. L. Oyen, and R. W. Kent, “Spherical indentation load-relaxation of soft biological tissues,” J. Mater. Res. 21(08), 2003–2010 (2006).
[Crossref]

Parker, K. J.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref] [PubMed]

Payne, D.

A. Barlow and D. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. 19(5), 834–839 (1983).
[Crossref]

Pepine, C. J.

D. C. Stewart, A. Rubiano, M. M. Santisteban, V. Shenoy, Y. Qi, C. J. Pepine, M. K. Raizada, and C. S. Simmons, “Hypertension-linked mechanical changes of rat gut,” Acta Biomater. 45, 296–302 (2016).
[Crossref] [PubMed]

Perepelyuk, M.

M. Perepelyuk, L. Chin, X. Cao, A. van Oosten, V. B. Shenoy, P. A. Janmey, and R. G. Wells, “Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics,” PLoS One 11(1), e0146588 (2016).
[Crossref] [PubMed]

Phan-Thien, N.

S. Nasseri, L. E. Bilston, and N. Phan-Thien, “Viscoelastic properties of pig kidney in shear, experimental results and modelling,” Rheol. Acta 41(1-2), 180–192 (2002).
[Crossref]

Qi, D.

D. Qi, N. Kaur Gill, C. Santiskulvong, J. Sifuentes, O. Dorigo, J. Rao, B. Taylor-Harding, W. Ruprecht Wiedemeyer, and A. C. Rowat, “Screening cell mechanotype by parallel microfiltration,” Sci. Rep. 5(1), 17595 (2015).
[Crossref] [PubMed]

Qi, Y.

D. C. Stewart, A. Rubiano, M. M. Santisteban, V. Shenoy, Y. Qi, C. J. Pepine, M. K. Raizada, and C. S. Simmons, “Hypertension-linked mechanical changes of rat gut,” Acta Biomater. 45, 296–302 (2016).
[Crossref] [PubMed]

Raizada, M. K.

D. C. Stewart, A. Rubiano, M. M. Santisteban, V. Shenoy, Y. Qi, C. J. Pepine, M. K. Raizada, and C. S. Simmons, “Hypertension-linked mechanical changes of rat gut,” Acta Biomater. 45, 296–302 (2016).
[Crossref] [PubMed]

Rao, J.

D. Qi, N. Kaur Gill, C. Santiskulvong, J. Sifuentes, O. Dorigo, J. Rao, B. Taylor-Harding, W. Ruprecht Wiedemeyer, and A. C. Rowat, “Screening cell mechanotype by parallel microfiltration,” Sci. Rep. 5(1), 17595 (2015).
[Crossref] [PubMed]

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Rosen, J.

J. Rosen, J. D. Brown, S. De, M. Sinanan, and B. Hannaford, “Biomechanical Properties of Abdominal Organs In Vivo and Postmortem Under Compression Loads,” J. Biomech. Eng. 130, 021020 (2008).

Rowat, A. C.

D. Qi, N. Kaur Gill, C. Santiskulvong, J. Sifuentes, O. Dorigo, J. Rao, B. Taylor-Harding, W. Ruprecht Wiedemeyer, and A. C. Rowat, “Screening cell mechanotype by parallel microfiltration,” Sci. Rep. 5(1), 17595 (2015).
[Crossref] [PubMed]

Rubens, D. J.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref] [PubMed]

Rubiano, A.

D. C. Stewart, A. Rubiano, M. M. Santisteban, V. Shenoy, Y. Qi, C. J. Pepine, M. K. Raizada, and C. S. Simmons, “Hypertension-linked mechanical changes of rat gut,” Acta Biomater. 45, 296–302 (2016).
[Crossref] [PubMed]

Ruprecht Wiedemeyer, W.

D. Qi, N. Kaur Gill, C. Santiskulvong, J. Sifuentes, O. Dorigo, J. Rao, B. Taylor-Harding, W. Ruprecht Wiedemeyer, and A. C. Rowat, “Screening cell mechanotype by parallel microfiltration,” Sci. Rep. 5(1), 17595 (2015).
[Crossref] [PubMed]

Sakuma, I.

C. Chui, E. Kobayashi, X. Chen, T. Hisada, and I. Sakuma, “Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling,” Med. Biol. Eng. Comput. 45(1), 99–106 (2007).
[Crossref] [PubMed]

San Paulo, A.

A. Calzado-Martín, M. Encinar, J. Tamayo, M. Calleja, and A. San Paulo, “Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy,” ACS Nano 10(3), 3365–3374 (2016).
[Crossref] [PubMed]

Santiskulvong, C.

D. Qi, N. Kaur Gill, C. Santiskulvong, J. Sifuentes, O. Dorigo, J. Rao, B. Taylor-Harding, W. Ruprecht Wiedemeyer, and A. C. Rowat, “Screening cell mechanotype by parallel microfiltration,” Sci. Rep. 5(1), 17595 (2015).
[Crossref] [PubMed]

Santisteban, M. M.

D. C. Stewart, A. Rubiano, M. M. Santisteban, V. Shenoy, Y. Qi, C. J. Pepine, M. K. Raizada, and C. S. Simmons, “Hypertension-linked mechanical changes of rat gut,” Acta Biomater. 45, 296–302 (2016).
[Crossref] [PubMed]

Screen, H. R. C.

A. Anssari-Benam, D. L. Bader, and H. R. C. Screen, “A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation,” J. Mater. Sci. Mater. Med. 22(2), 253–262 (2011).
[Crossref] [PubMed]

Shenoy, V.

D. C. Stewart, A. Rubiano, M. M. Santisteban, V. Shenoy, Y. Qi, C. J. Pepine, M. K. Raizada, and C. S. Simmons, “Hypertension-linked mechanical changes of rat gut,” Acta Biomater. 45, 296–302 (2016).
[Crossref] [PubMed]

Shenoy, V. B.

M. Perepelyuk, L. Chin, X. Cao, A. van Oosten, V. B. Shenoy, P. A. Janmey, and R. G. Wells, “Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics,” PLoS One 11(1), e0146588 (2016).
[Crossref] [PubMed]

Sifuentes, J.

D. Qi, N. Kaur Gill, C. Santiskulvong, J. Sifuentes, O. Dorigo, J. Rao, B. Taylor-Harding, W. Ruprecht Wiedemeyer, and A. C. Rowat, “Screening cell mechanotype by parallel microfiltration,” Sci. Rep. 5(1), 17595 (2015).
[Crossref] [PubMed]

Simmons, C. S.

D. C. Stewart, A. Rubiano, M. M. Santisteban, V. Shenoy, Y. Qi, C. J. Pepine, M. K. Raizada, and C. S. Simmons, “Hypertension-linked mechanical changes of rat gut,” Acta Biomater. 45, 296–302 (2016).
[Crossref] [PubMed]

Sinanan, M.

J. Rosen, J. D. Brown, S. De, M. Sinanan, and B. Hannaford, “Biomechanical Properties of Abdominal Organs In Vivo and Postmortem Under Compression Loads,” J. Biomech. Eng. 130, 021020 (2008).

Sink, Z.

S. Goenezen, J. F. Dord, Z. Sink, P. E. Barbone, J. Jiang, T. J. Hall, and A. A. Oberai, “Linear and Nonlinear Elastic Modulus Imaging: An Application to Breast Cancer Diagnosis,” IEEE Trans. Med. Imaging 31(8), 1628–1637 (2012).
[Crossref] [PubMed]

Soslowsky, L. J.

S. Thomopoulos, G. R. Williams, J. A. Gimbel, M. Favata, and L. J. Soslowsky, “Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site,” J. Orthop. Res. 21(3), 413–419 (2003).
[Crossref] [PubMed]

Steelman, Z. A.

W. J. Eldridge, Z. A. Steelman, B. Loomis, and A. Wax, “Optical Phase Measurements of Disorder Strength Link Microstructure to Cell Stiffness,” Biophys. J. 112(4), 692–702 (2017).
[Crossref] [PubMed]

Stewart, D. C.

D. C. Stewart, A. Rubiano, M. M. Santisteban, V. Shenoy, Y. Qi, C. J. Pepine, M. K. Raizada, and C. S. Simmons, “Hypertension-linked mechanical changes of rat gut,” Acta Biomater. 45, 296–302 (2016).
[Crossref] [PubMed]

Tamayo, J.

A. Calzado-Martín, M. Encinar, J. Tamayo, M. Calleja, and A. San Paulo, “Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy,” ACS Nano 10(3), 3365–3374 (2016).
[Crossref] [PubMed]

Taylor-Harding, B.

D. Qi, N. Kaur Gill, C. Santiskulvong, J. Sifuentes, O. Dorigo, J. Rao, B. Taylor-Harding, W. Ruprecht Wiedemeyer, and A. C. Rowat, “Screening cell mechanotype by parallel microfiltration,” Sci. Rep. 5(1), 17595 (2015).
[Crossref] [PubMed]

Thomopoulos, S.

B. Babaei, S. D. Abramowitch, E. L. Elson, S. Thomopoulos, and G. M. Genin, “A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials,” J. R. Soc. Interface 12(113), 20150707 (2015).
[Crossref] [PubMed]

S. Thomopoulos, G. R. Williams, J. A. Gimbel, M. Favata, and L. J. Soslowsky, “Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site,” J. Orthop. Res. 21(3), 413–419 (2003).
[Crossref] [PubMed]

van Oosten, A.

M. Perepelyuk, L. Chin, X. Cao, A. van Oosten, V. B. Shenoy, P. A. Janmey, and R. G. Wells, “Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics,” PLoS One 11(1), e0146588 (2016).
[Crossref] [PubMed]

Wax, A.

W. J. Eldridge, Z. A. Steelman, B. Loomis, and A. Wax, “Optical Phase Measurements of Disorder Strength Link Microstructure to Cell Stiffness,” Biophys. J. 112(4), 692–702 (2017).
[Crossref] [PubMed]

Wells, R. G.

M. Perepelyuk, L. Chin, X. Cao, A. van Oosten, V. B. Shenoy, P. A. Janmey, and R. G. Wells, “Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics,” PLoS One 11(1), e0146588 (2016).
[Crossref] [PubMed]

Williams, G. R.

S. Thomopoulos, G. R. Williams, J. A. Gimbel, M. Favata, and L. J. Soslowsky, “Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site,” J. Orthop. Res. 21(3), 413–419 (2003).
[Crossref] [PubMed]

ACS Nano (1)

A. Calzado-Martín, M. Encinar, J. Tamayo, M. Calleja, and A. San Paulo, “Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy,” ACS Nano 10(3), 3365–3374 (2016).
[Crossref] [PubMed]

Acta Biomater. (1)

D. C. Stewart, A. Rubiano, M. M. Santisteban, V. Shenoy, Y. Qi, C. J. Pepine, M. K. Raizada, and C. S. Simmons, “Hypertension-linked mechanical changes of rat gut,” Acta Biomater. 45, 296–302 (2016).
[Crossref] [PubMed]

AJR Am. J. Roentgenol. (1)

K. Arda, N. Ciledag, E. Aktas, B. K. Aribas, and K. Köse, “Quantitative Assessment of Normal Soft-Tissue Elasticity Using Shear-Wave Ultrasound Elastography,” AJR Am. J. Roentgenol. 197(3), 532–536 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E. A. Corbin, O. O. Adeniba, R. H. Ewoldt, and R. Bashir, “Dynamic mechanical measurement of the viscoelasticity of single adherent cells,” Appl. Phys. Lett. 108(9), 093701 (2016).
[Crossref]

A. W. Hudnut and A. M. Armani, “High-resolution analysis of the mechanical behavior of tissue,” Appl. Phys. Lett. 110(24), 243701 (2017).
[Crossref]

M. C. Harrison and A. M. Armani, “Portable polarimetric fiber stress sensor system for visco-elastic and biomimetic material analysis,” Appl. Phys. Lett. 106(19), 191105 (2015).
[Crossref]

Biophys. J. (1)

W. J. Eldridge, Z. A. Steelman, B. Loomis, and A. Wax, “Optical Phase Measurements of Disorder Strength Link Microstructure to Cell Stiffness,” Biophys. J. 112(4), 692–702 (2017).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

A. Barlow and D. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. 19(5), 834–839 (1983).
[Crossref]

IEEE Trans. Med. Imaging (1)

S. Goenezen, J. F. Dord, Z. Sink, P. E. Barbone, J. Jiang, T. J. Hall, and A. A. Oberai, “Linear and Nonlinear Elastic Modulus Imaging: An Application to Breast Cancer Diagnosis,” IEEE Trans. Med. Imaging 31(8), 1628–1637 (2012).
[Crossref] [PubMed]

J. Biomech. Eng. (1)

J. Rosen, J. D. Brown, S. De, M. Sinanan, and B. Hannaford, “Biomechanical Properties of Abdominal Organs In Vivo and Postmortem Under Compression Loads,” J. Biomech. Eng. 130, 021020 (2008).

J. Mater. Res. (1)

J. M. Mattice, A. G. Lau, M. L. Oyen, and R. W. Kent, “Spherical indentation load-relaxation of soft biological tissues,” J. Mater. Res. 21(08), 2003–2010 (2006).
[Crossref]

J. Mater. Sci. Mater. Med. (1)

A. Anssari-Benam, D. L. Bader, and H. R. C. Screen, “A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation,” J. Mater. Sci. Mater. Med. 22(2), 253–262 (2011).
[Crossref] [PubMed]

J. Mech. Behav. Biomed. Mater. (1)

M. E. Grady, R. J. Composto, and D. M. Eckmann, “Cell elasticity with altered cytoskeletal architectures across multiple cell types,” J. Mech. Behav. Biomed. Mater. 61, 197–207 (2016).
[Crossref] [PubMed]

J. Orthop. Res. (1)

S. Thomopoulos, G. R. Williams, J. A. Gimbel, M. Favata, and L. J. Soslowsky, “Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site,” J. Orthop. Res. 21(3), 413–419 (2003).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

B. Babaei, S. D. Abramowitch, E. L. Elson, S. Thomopoulos, and G. M. Genin, “A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials,” J. R. Soc. Interface 12(113), 20150707 (2015).
[Crossref] [PubMed]

Med. Biol. Eng. Comput. (1)

C. Chui, E. Kobayashi, X. Chen, T. Hisada, and I. Sakuma, “Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling,” Med. Biol. Eng. Comput. 45(1), 99–106 (2007).
[Crossref] [PubMed]

Nanoscale (1)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref] [PubMed]

PLoS One (1)

M. Perepelyuk, L. Chin, X. Cao, A. van Oosten, V. B. Shenoy, P. A. Janmey, and R. G. Wells, “Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics,” PLoS One 11(1), e0146588 (2016).
[Crossref] [PubMed]

Rheol. Acta (1)

S. Nasseri, L. E. Bilston, and N. Phan-Thien, “Viscoelastic properties of pig kidney in shear, experimental results and modelling,” Rheol. Acta 41(1-2), 180–192 (2002).
[Crossref]

Sci. Rep. (1)

D. Qi, N. Kaur Gill, C. Santiskulvong, J. Sifuentes, O. Dorigo, J. Rao, B. Taylor-Harding, W. Ruprecht Wiedemeyer, and A. C. Rowat, “Screening cell mechanotype by parallel microfiltration,” Sci. Rep. 5(1), 17595 (2015).
[Crossref] [PubMed]

Other (3)

Y.-c. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer Science & Business Media, 1981).

D. Kasper, A. Fauci, S. Hauser, D. Longo, and J. Jameson, Harrison's Principles of Internal Medicine (McGraw-Hill Education, 2015).

J. Vincent, Structural Biomaterials Third Edition (Princeton University Press, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Rendering of the testing setup demonstrating the position of the sample, optical fiber and compressive stage.

Fig. 2
Fig. 2

Histology images from each of the three organs: (a) uncompressed and (b) compressed liver sample, (c) uncompressed and (d) compressed kidney sample, (e) uncompressed and (f) compressed pancreas sample. The arrows indicate microstructures of interest.

Fig. 3
Fig. 3

(a) Loading-unloading curves from a liver sample. (b) Loading-unloading curves from a kidney sample. (c) Loading-unloading curves from a pancreas sample.

Fig. 4
Fig. 4

Plot of data from a single loading-unloading curve for (a) liver, (b) kidney, and (c) pancreas with the corresponding QLV fit. The data and fit are from Run 2 at 20% strain.

Fig. 5
Fig. 5

Summary of (a) coefficient A- elasticity parameter, (b) coefficient B - non-linearity parameter, (c) coefficient C - damping coefficient, and (d) energy loss.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ( ε, t )=  t G( tu ) δ σ e δε δε δu du
G( t )=  1+  τ 1 τ 2 ( C e t τ τ )dτ 1+ τ 1 τ 2 ( C τ )dτ

Metrics