Abstract

A micro-plenoptic system was designed to capture the three-dimensional (3D) topography of the anterior iris surface by simple single-shot imaging. Within a depth-of-field of 2.4 mm, depth resolution of 10 µm can be achieved with accuracy (systematic errors) and precision (random errors) below 20%. We demonstrated the application of our micro-plenoptic imaging system on two healthy irides, an iris with naevi, and an iris with melanoma. The ridges and folds, with height differences of 10~80 µm, on the healthy irides can be effectively captured. The front surface on the iris naevi was flat, and the iris melanoma was 50 ± 10 µm higher than the surrounding iris. The micro-plenoptic imaging system has great potential to be utilized for iris disease diagnosis and continuing, simple monitoring.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

15 September 2017: Typographical corrections were made to the author listing and the funding section.


OSA Recommended Articles
Plastic embedding immunolabeled large-volume samples for three-dimensional high-resolution imaging

Yadong Gang, Xiuli Liu, Xiaojun Wang, Qi Zhang, Hongfu Zhou, Ruixi Chen, Ling Liu, Yao Jia, Fangfang Yin, Gong Rao, Jiadong Chen, and Shaoqun Zeng
Biomed. Opt. Express 8(8) 3583-3596 (2017)

Optical imaging for the assessment of hepatocyte metabolic state in ischemia and reperfusion injuries

Mette F. la Cour, Shima Mehrvar, Joohyun Kim, Alicia Martin, Michael A. Zimmerman, Johnny C. Hong, and Mahsa Ranji
Biomed. Opt. Express 8(10) 4419-4426 (2017)

Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging

Kai Shen, Hui Lu, Sarfaraz Baig, and Michael R. Wang
Biomed. Opt. Express 8(11) 4887-4918 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. M. Levine, V. S. Brar, M. H. Goldstein, A. Kahana, W. R. Katowitz, S. K. Law, and D. A. Mackey, “Basic and Clinical Science Course (BCSC) Section 2: Fundamentals and Principles of Ophthalmology,” (American Academy of Ophthalmology, San Francisco, CA, 2016).
  2. R. C. Eagle., “Iris pigmentation and pigmented lesions: an ultrastructural study,” Trans. Am. Ophthalmol. Soc. 86, 581–687 (1988).
    [PubMed]
  3. S. Gartner and P. Henkind, “Neovascularization of the iris (rubeosis iridis),” Surv. Ophthalmol. 22(5), 291–312 (1978).
    [Crossref] [PubMed]
  4. D. F. Chang and J. R. Campbell, “Intraoperative floppy iris syndrome associated with tamsulosin,” J. Cataract Refract. Surg. 31(4), 664–673 (2005).
    [Crossref] [PubMed]
  5. C. Bianciotto, C. L. Shields, J. M. Guzman, M. Romanelli-Gobbi, D. Mazzuca, W. R. Green, and J. A. Shields, “Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases,” Ophthalmology 118(7), 1297–1302 (2011).
    [PubMed]
  6. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994).
  7. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Archives of Ophthalmology 119, 1179–1185 (2001).
  8. C. J. Pavlin, K. Harasiewicz, M. D. Sherar, and F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology 98(3), 287–295 (1991).
    [Crossref] [PubMed]
  9. J. J. Liu, A. J. Witkin, M. Adhi, I. Grulkowski, M. F. Kraus, A. H. Dhalla, C. D. Lu, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography,” PLoS One 9(7), e102950 (2014).
    [Crossref] [PubMed]
  10. D. B. Downey, D. A. Nicolle, M. F. Levin, and A. Fenster, “Three-dimensional ultrasound imaging of the eye,” Eye (Lond.) 10(1), 75–81 (1996).
    [Crossref] [PubMed]
  11. G. Lippmann, “Epreuves reversibles, photographies integrales,” Comptes Rendus de l’Académie des Sciences 146, 446–551 (1908).
  12. A. Chutjian and R. J. Collier, “Recording and Reconstructing Three-Dimensional Images of Computer-Generated Subjects by Lippmann ntegral Photography,” Appl. Opt. 7(1), 99–103 (1968).
    [Crossref] [PubMed]
  13. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
    [Crossref]
  14. M. Levoy, “Light Fields and Computational Imaging,” Computer 39(8), 46–55 (2006).
    [Crossref]
  15. A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Computational Photography (ICCP),2009IEEE International Conference on, 2009), 1–8.
    [Crossref]
  16. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-Held Plenoptic Camera,” (Stanford University Computer Science Tech Report CSTR, 2005).
  17. M. Levoy, R. Ng, A. Adam, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
    [Crossref]
  18. H. Chen, V. Sick, M. Woodward, and D. Burke, “Human Iris 3D Imaging using a micro-Plenoptic Camera,” in Optics in the Life Sciences Congress, OSA Technical Digest (online) (Optical Society of America, 2017), BoW3A.6.
    [Crossref]
  19. C. Perwaß and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” in Human Vision and Electronic Imaging XVII, 2012), 829108.
  20. C. Heinze, S. Spyropoulos, S. Hussmann, and C. Perwass, “Automated Robust Metric Calibration Algorithm for Multifocus Plenoptic Cameras,” IEEE Trans. Instrum. Meas. 65(5), 1197–1205 (2016).
    [Crossref]
  21. O. Johannsen, C. Heinze, B. Goldluecke, and C. Perwaß, “On the Calibration of Focused Plenoptic Cameras,” in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications: Dagstuhl 2012 Seminar on Time-of-Flight Imaging and GCPR 2013 Workshop on Imaging New Modalities, M. Grzegorzek, C. Theobalt, R. Koch, and A. Kolb, eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013), pp. 302–317.
    [Crossref]
  22. T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Proceedings of the 17th Eurographics conference on Rendering Techniques, (Eurographics Association, Nicosia, Cyprus, 2006), pp. 263–272.
  23. N. Zeller, F. Quint, and U. Stilla, “Depth estimation and camera calibration of a focused plenoptic camera for visual odometry,” ISPRS J. Photogramm. Remote Sens. 118, 83–100 (2016).
    [Crossref]
  24. H. Chen and V. Sick, “Three-Dimensional Three-Component Air Flow Visualization in a Steady-State Engine Flow Bench Using a Plenoptic Camera,” SAE Int. J. Engines 10(2), 625–635 (2017).
    [Crossref]
  25. H. Chen, P. M. Lillo, and V. Sick, “Three-dimensional spray–flow interaction in a spark-ignition direct-injection engine,” Int. J. Engine Res. 17(1), 129–138 (2016).
    [Crossref]
  26. H. Nien, J. A. Fessler, and V. Sick, “Model-based image reconstruction of chemiluminescence using a plenoptic 2.0 camera,” in ICIP 2015 IEEE International Conference on Image Processing, (IEEE, Québec City, Canada, 2015).
    [Crossref]

2017 (1)

H. Chen and V. Sick, “Three-Dimensional Three-Component Air Flow Visualization in a Steady-State Engine Flow Bench Using a Plenoptic Camera,” SAE Int. J. Engines 10(2), 625–635 (2017).
[Crossref]

2016 (3)

H. Chen, P. M. Lillo, and V. Sick, “Three-dimensional spray–flow interaction in a spark-ignition direct-injection engine,” Int. J. Engine Res. 17(1), 129–138 (2016).
[Crossref]

C. Heinze, S. Spyropoulos, S. Hussmann, and C. Perwass, “Automated Robust Metric Calibration Algorithm for Multifocus Plenoptic Cameras,” IEEE Trans. Instrum. Meas. 65(5), 1197–1205 (2016).
[Crossref]

N. Zeller, F. Quint, and U. Stilla, “Depth estimation and camera calibration of a focused plenoptic camera for visual odometry,” ISPRS J. Photogramm. Remote Sens. 118, 83–100 (2016).
[Crossref]

2014 (1)

J. J. Liu, A. J. Witkin, M. Adhi, I. Grulkowski, M. F. Kraus, A. H. Dhalla, C. D. Lu, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography,” PLoS One 9(7), e102950 (2014).
[Crossref] [PubMed]

2011 (1)

C. Bianciotto, C. L. Shields, J. M. Guzman, M. Romanelli-Gobbi, D. Mazzuca, W. R. Green, and J. A. Shields, “Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases,” Ophthalmology 118(7), 1297–1302 (2011).
[PubMed]

2006 (2)

M. Levoy, “Light Fields and Computational Imaging,” Computer 39(8), 46–55 (2006).
[Crossref]

M. Levoy, R. Ng, A. Adam, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

2005 (1)

D. F. Chang and J. R. Campbell, “Intraoperative floppy iris syndrome associated with tamsulosin,” J. Cataract Refract. Surg. 31(4), 664–673 (2005).
[Crossref] [PubMed]

2001 (1)

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Archives of Ophthalmology 119, 1179–1185 (2001).

1996 (1)

D. B. Downey, D. A. Nicolle, M. F. Levin, and A. Fenster, “Three-dimensional ultrasound imaging of the eye,” Eye (Lond.) 10(1), 75–81 (1996).
[Crossref] [PubMed]

1994 (1)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994).

1992 (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

1991 (1)

C. J. Pavlin, K. Harasiewicz, M. D. Sherar, and F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology 98(3), 287–295 (1991).
[Crossref] [PubMed]

1988 (1)

R. C. Eagle., “Iris pigmentation and pigmented lesions: an ultrastructural study,” Trans. Am. Ophthalmol. Soc. 86, 581–687 (1988).
[PubMed]

1978 (1)

S. Gartner and P. Henkind, “Neovascularization of the iris (rubeosis iridis),” Surv. Ophthalmol. 22(5), 291–312 (1978).
[Crossref] [PubMed]

1968 (1)

1908 (1)

G. Lippmann, “Epreuves reversibles, photographies integrales,” Comptes Rendus de l’Académie des Sciences 146, 446–551 (1908).

Adam, A.

M. Levoy, R. Ng, A. Adam, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Adhi, M.

J. J. Liu, A. J. Witkin, M. Adhi, I. Grulkowski, M. F. Kraus, A. H. Dhalla, C. D. Lu, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography,” PLoS One 9(7), e102950 (2014).
[Crossref] [PubMed]

Bardenstein, D. S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Archives of Ophthalmology 119, 1179–1185 (2001).

Bianciotto, C.

C. Bianciotto, C. L. Shields, J. M. Guzman, M. Romanelli-Gobbi, D. Mazzuca, W. R. Green, and J. A. Shields, “Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases,” Ophthalmology 118(7), 1297–1302 (2011).
[PubMed]

Campbell, J. R.

D. F. Chang and J. R. Campbell, “Intraoperative floppy iris syndrome associated with tamsulosin,” J. Cataract Refract. Surg. 31(4), 664–673 (2005).
[Crossref] [PubMed]

Chang, D. F.

D. F. Chang and J. R. Campbell, “Intraoperative floppy iris syndrome associated with tamsulosin,” J. Cataract Refract. Surg. 31(4), 664–673 (2005).
[Crossref] [PubMed]

Chen, H.

H. Chen and V. Sick, “Three-Dimensional Three-Component Air Flow Visualization in a Steady-State Engine Flow Bench Using a Plenoptic Camera,” SAE Int. J. Engines 10(2), 625–635 (2017).
[Crossref]

H. Chen, P. M. Lillo, and V. Sick, “Three-dimensional spray–flow interaction in a spark-ignition direct-injection engine,” Int. J. Engine Res. 17(1), 129–138 (2016).
[Crossref]

Chutjian, A.

Collier, R. J.

Dhalla, A. H.

J. J. Liu, A. J. Witkin, M. Adhi, I. Grulkowski, M. F. Kraus, A. H. Dhalla, C. D. Lu, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography,” PLoS One 9(7), e102950 (2014).
[Crossref] [PubMed]

Downey, D. B.

D. B. Downey, D. A. Nicolle, M. F. Levin, and A. Fenster, “Three-dimensional ultrasound imaging of the eye,” Eye (Lond.) 10(1), 75–81 (1996).
[Crossref] [PubMed]

Duker, J. S.

J. J. Liu, A. J. Witkin, M. Adhi, I. Grulkowski, M. F. Kraus, A. H. Dhalla, C. D. Lu, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography,” PLoS One 9(7), e102950 (2014).
[Crossref] [PubMed]

Eagle, R. C.

R. C. Eagle., “Iris pigmentation and pigmented lesions: an ultrastructural study,” Trans. Am. Ophthalmol. Soc. 86, 581–687 (1988).
[PubMed]

Fenster, A.

D. B. Downey, D. A. Nicolle, M. F. Levin, and A. Fenster, “Three-dimensional ultrasound imaging of the eye,” Eye (Lond.) 10(1), 75–81 (1996).
[Crossref] [PubMed]

Footer, M.

M. Levoy, R. Ng, A. Adam, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Foster, F. S.

C. J. Pavlin, K. Harasiewicz, M. D. Sherar, and F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology 98(3), 287–295 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

J. J. Liu, A. J. Witkin, M. Adhi, I. Grulkowski, M. F. Kraus, A. H. Dhalla, C. D. Lu, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography,” PLoS One 9(7), e102950 (2014).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994).

Gartner, S.

S. Gartner and P. Henkind, “Neovascularization of the iris (rubeosis iridis),” Surv. Ophthalmol. 22(5), 291–312 (1978).
[Crossref] [PubMed]

Green, W. R.

C. Bianciotto, C. L. Shields, J. M. Guzman, M. Romanelli-Gobbi, D. Mazzuca, W. R. Green, and J. A. Shields, “Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases,” Ophthalmology 118(7), 1297–1302 (2011).
[PubMed]

Grulkowski, I.

J. J. Liu, A. J. Witkin, M. Adhi, I. Grulkowski, M. F. Kraus, A. H. Dhalla, C. D. Lu, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography,” PLoS One 9(7), e102950 (2014).
[Crossref] [PubMed]

Guzman, J. M.

C. Bianciotto, C. L. Shields, J. M. Guzman, M. Romanelli-Gobbi, D. Mazzuca, W. R. Green, and J. A. Shields, “Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases,” Ophthalmology 118(7), 1297–1302 (2011).
[PubMed]

Harasiewicz, K.

C. J. Pavlin, K. Harasiewicz, M. D. Sherar, and F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology 98(3), 287–295 (1991).
[Crossref] [PubMed]

Hee, M. R.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994).

Heinze, C.

C. Heinze, S. Spyropoulos, S. Hussmann, and C. Perwass, “Automated Robust Metric Calibration Algorithm for Multifocus Plenoptic Cameras,” IEEE Trans. Instrum. Meas. 65(5), 1197–1205 (2016).
[Crossref]

Henkind, P.

S. Gartner and P. Henkind, “Neovascularization of the iris (rubeosis iridis),” Surv. Ophthalmol. 22(5), 291–312 (1978).
[Crossref] [PubMed]

Hornegger, J.

J. J. Liu, A. J. Witkin, M. Adhi, I. Grulkowski, M. F. Kraus, A. H. Dhalla, C. D. Lu, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography,” PLoS One 9(7), e102950 (2014).
[Crossref] [PubMed]

Horowitz, M.

M. Levoy, R. Ng, A. Adam, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Huang, D.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994).

Hussmann, S.

C. Heinze, S. Spyropoulos, S. Hussmann, and C. Perwass, “Automated Robust Metric Calibration Algorithm for Multifocus Plenoptic Cameras,” IEEE Trans. Instrum. Meas. 65(5), 1197–1205 (2016).
[Crossref]

Izatt, J. A.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Archives of Ophthalmology 119, 1179–1185 (2001).

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994).

Kraus, M. F.

J. J. Liu, A. J. Witkin, M. Adhi, I. Grulkowski, M. F. Kraus, A. H. Dhalla, C. D. Lu, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography,” PLoS One 9(7), e102950 (2014).
[Crossref] [PubMed]

Levin, M. F.

D. B. Downey, D. A. Nicolle, M. F. Levin, and A. Fenster, “Three-dimensional ultrasound imaging of the eye,” Eye (Lond.) 10(1), 75–81 (1996).
[Crossref] [PubMed]

Levoy, M.

M. Levoy, “Light Fields and Computational Imaging,” Computer 39(8), 46–55 (2006).
[Crossref]

M. Levoy, R. Ng, A. Adam, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Lillo, P. M.

H. Chen, P. M. Lillo, and V. Sick, “Three-dimensional spray–flow interaction in a spark-ignition direct-injection engine,” Int. J. Engine Res. 17(1), 129–138 (2016).
[Crossref]

Lin, C. P.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994).

Lippmann, G.

G. Lippmann, “Epreuves reversibles, photographies integrales,” Comptes Rendus de l’Académie des Sciences 146, 446–551 (1908).

Liu, J. J.

J. J. Liu, A. J. Witkin, M. Adhi, I. Grulkowski, M. F. Kraus, A. H. Dhalla, C. D. Lu, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography,” PLoS One 9(7), e102950 (2014).
[Crossref] [PubMed]

Lu, C. D.

J. J. Liu, A. J. Witkin, M. Adhi, I. Grulkowski, M. F. Kraus, A. H. Dhalla, C. D. Lu, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography,” PLoS One 9(7), e102950 (2014).
[Crossref] [PubMed]

Mazzuca, D.

C. Bianciotto, C. L. Shields, J. M. Guzman, M. Romanelli-Gobbi, D. Mazzuca, W. R. Green, and J. A. Shields, “Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases,” Ophthalmology 118(7), 1297–1302 (2011).
[PubMed]

Ng, R.

M. Levoy, R. Ng, A. Adam, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Nicolle, D. A.

D. B. Downey, D. A. Nicolle, M. F. Levin, and A. Fenster, “Three-dimensional ultrasound imaging of the eye,” Eye (Lond.) 10(1), 75–81 (1996).
[Crossref] [PubMed]

Pavlin, C. J.

C. J. Pavlin, K. Harasiewicz, M. D. Sherar, and F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology 98(3), 287–295 (1991).
[Crossref] [PubMed]

Perwass, C.

C. Heinze, S. Spyropoulos, S. Hussmann, and C. Perwass, “Automated Robust Metric Calibration Algorithm for Multifocus Plenoptic Cameras,” IEEE Trans. Instrum. Meas. 65(5), 1197–1205 (2016).
[Crossref]

Puliafito, C. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994).

Quint, F.

N. Zeller, F. Quint, and U. Stilla, “Depth estimation and camera calibration of a focused plenoptic camera for visual odometry,” ISPRS J. Photogramm. Remote Sens. 118, 83–100 (2016).
[Crossref]

Radhakrishnan, S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Archives of Ophthalmology 119, 1179–1185 (2001).

Rollins, A. M.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Archives of Ophthalmology 119, 1179–1185 (2001).

Romanelli-Gobbi, M.

C. Bianciotto, C. L. Shields, J. M. Guzman, M. Romanelli-Gobbi, D. Mazzuca, W. R. Green, and J. A. Shields, “Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases,” Ophthalmology 118(7), 1297–1302 (2011).
[PubMed]

Roth, J. E.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Archives of Ophthalmology 119, 1179–1185 (2001).

Schuman, J. S.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994).

Sherar, M. D.

C. J. Pavlin, K. Harasiewicz, M. D. Sherar, and F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology 98(3), 287–295 (1991).
[Crossref] [PubMed]

Shields, C. L.

C. Bianciotto, C. L. Shields, J. M. Guzman, M. Romanelli-Gobbi, D. Mazzuca, W. R. Green, and J. A. Shields, “Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases,” Ophthalmology 118(7), 1297–1302 (2011).
[PubMed]

Shields, J. A.

C. Bianciotto, C. L. Shields, J. M. Guzman, M. Romanelli-Gobbi, D. Mazzuca, W. R. Green, and J. A. Shields, “Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases,” Ophthalmology 118(7), 1297–1302 (2011).
[PubMed]

Sick, V.

H. Chen and V. Sick, “Three-Dimensional Three-Component Air Flow Visualization in a Steady-State Engine Flow Bench Using a Plenoptic Camera,” SAE Int. J. Engines 10(2), 625–635 (2017).
[Crossref]

H. Chen, P. M. Lillo, and V. Sick, “Three-dimensional spray–flow interaction in a spark-ignition direct-injection engine,” Int. J. Engine Res. 17(1), 129–138 (2016).
[Crossref]

Spyropoulos, S.

C. Heinze, S. Spyropoulos, S. Hussmann, and C. Perwass, “Automated Robust Metric Calibration Algorithm for Multifocus Plenoptic Cameras,” IEEE Trans. Instrum. Meas. 65(5), 1197–1205 (2016).
[Crossref]

Stilla, U.

N. Zeller, F. Quint, and U. Stilla, “Depth estimation and camera calibration of a focused plenoptic camera for visual odometry,” ISPRS J. Photogramm. Remote Sens. 118, 83–100 (2016).
[Crossref]

Swanson, E. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994).

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Westphal, V.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Archives of Ophthalmology 119, 1179–1185 (2001).

Witkin, A. J.

J. J. Liu, A. J. Witkin, M. Adhi, I. Grulkowski, M. F. Kraus, A. H. Dhalla, C. D. Lu, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography,” PLoS One 9(7), e102950 (2014).
[Crossref] [PubMed]

Yazdanfar, S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Archives of Ophthalmology 119, 1179–1185 (2001).

Zeller, N.

N. Zeller, F. Quint, and U. Stilla, “Depth estimation and camera calibration of a focused plenoptic camera for visual odometry,” ISPRS J. Photogramm. Remote Sens. 118, 83–100 (2016).
[Crossref]

ACM Trans. Graph. (1)

M. Levoy, R. Ng, A. Adam, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Appl. Opt. (1)

Archives of Ophthalmology (2)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology 112, 1584–1589 (1994).

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Archives of Ophthalmology 119, 1179–1185 (2001).

Comptes Rendus de l’Académie des Sciences (1)

G. Lippmann, “Epreuves reversibles, photographies integrales,” Comptes Rendus de l’Académie des Sciences 146, 446–551 (1908).

Computer (1)

M. Levoy, “Light Fields and Computational Imaging,” Computer 39(8), 46–55 (2006).
[Crossref]

Eye (Lond.) (1)

D. B. Downey, D. A. Nicolle, M. F. Levin, and A. Fenster, “Three-dimensional ultrasound imaging of the eye,” Eye (Lond.) 10(1), 75–81 (1996).
[Crossref] [PubMed]

IEEE Trans. Instrum. Meas. (1)

C. Heinze, S. Spyropoulos, S. Hussmann, and C. Perwass, “Automated Robust Metric Calibration Algorithm for Multifocus Plenoptic Cameras,” IEEE Trans. Instrum. Meas. 65(5), 1197–1205 (2016).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Int. J. Engine Res. (1)

H. Chen, P. M. Lillo, and V. Sick, “Three-dimensional spray–flow interaction in a spark-ignition direct-injection engine,” Int. J. Engine Res. 17(1), 129–138 (2016).
[Crossref]

ISPRS J. Photogramm. Remote Sens. (1)

N. Zeller, F. Quint, and U. Stilla, “Depth estimation and camera calibration of a focused plenoptic camera for visual odometry,” ISPRS J. Photogramm. Remote Sens. 118, 83–100 (2016).
[Crossref]

J. Cataract Refract. Surg. (1)

D. F. Chang and J. R. Campbell, “Intraoperative floppy iris syndrome associated with tamsulosin,” J. Cataract Refract. Surg. 31(4), 664–673 (2005).
[Crossref] [PubMed]

Ophthalmology (2)

C. Bianciotto, C. L. Shields, J. M. Guzman, M. Romanelli-Gobbi, D. Mazzuca, W. R. Green, and J. A. Shields, “Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases,” Ophthalmology 118(7), 1297–1302 (2011).
[PubMed]

C. J. Pavlin, K. Harasiewicz, M. D. Sherar, and F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology 98(3), 287–295 (1991).
[Crossref] [PubMed]

PLoS One (1)

J. J. Liu, A. J. Witkin, M. Adhi, I. Grulkowski, M. F. Kraus, A. H. Dhalla, C. D. Lu, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography,” PLoS One 9(7), e102950 (2014).
[Crossref] [PubMed]

SAE Int. J. Engines (1)

H. Chen and V. Sick, “Three-Dimensional Three-Component Air Flow Visualization in a Steady-State Engine Flow Bench Using a Plenoptic Camera,” SAE Int. J. Engines 10(2), 625–635 (2017).
[Crossref]

Surv. Ophthalmol. (1)

S. Gartner and P. Henkind, “Neovascularization of the iris (rubeosis iridis),” Surv. Ophthalmol. 22(5), 291–312 (1978).
[Crossref] [PubMed]

Trans. Am. Ophthalmol. Soc. (1)

R. C. Eagle., “Iris pigmentation and pigmented lesions: an ultrastructural study,” Trans. Am. Ophthalmol. Soc. 86, 581–687 (1988).
[PubMed]

Other (8)

L. M. Levine, V. S. Brar, M. H. Goldstein, A. Kahana, W. R. Katowitz, S. K. Law, and D. A. Mackey, “Basic and Clinical Science Course (BCSC) Section 2: Fundamentals and Principles of Ophthalmology,” (American Academy of Ophthalmology, San Francisco, CA, 2016).

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Computational Photography (ICCP),2009IEEE International Conference on, 2009), 1–8.
[Crossref]

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-Held Plenoptic Camera,” (Stanford University Computer Science Tech Report CSTR, 2005).

H. Chen, V. Sick, M. Woodward, and D. Burke, “Human Iris 3D Imaging using a micro-Plenoptic Camera,” in Optics in the Life Sciences Congress, OSA Technical Digest (online) (Optical Society of America, 2017), BoW3A.6.
[Crossref]

C. Perwaß and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” in Human Vision and Electronic Imaging XVII, 2012), 829108.

O. Johannsen, C. Heinze, B. Goldluecke, and C. Perwaß, “On the Calibration of Focused Plenoptic Cameras,” in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications: Dagstuhl 2012 Seminar on Time-of-Flight Imaging and GCPR 2013 Workshop on Imaging New Modalities, M. Grzegorzek, C. Theobalt, R. Koch, and A. Kolb, eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013), pp. 302–317.
[Crossref]

T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Proceedings of the 17th Eurographics conference on Rendering Techniques, (Eurographics Association, Nicosia, Cyprus, 2006), pp. 263–272.

H. Nien, J. A. Fessler, and V. Sick, “Model-based image reconstruction of chemiluminescence using a plenoptic 2.0 camera,” in ICIP 2015 IEEE International Conference on Image Processing, (IEEE, Québec City, Canada, 2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical schematics of the micro-plenoptic system for 3D human iris imaging.

Fig. 2
Fig. 2

A setup to experimentally assess the accuracy and precision of depth measurement (along z direction) of the micro-plenoptic imaging system. A paper target was utilized as the imaging target and fixed on a translation stage. The farthest plane that can be imaged by the system was defined as z = 0 mm.

Fig. 3
Fig. 3

(a) Comparison between measured z-direction displacement with the true displacement. The average ± one standard deviation are shown. (b) The depth measurement accuracy (quantified as measurement error) and precision (quantified by standard deviation divided by the average of 50 measurements) of the micro-plenoptic system.

Fig. 4
Fig. 4

(a) A computationally re-focused iris image. (b) The 3D iris pattern viewed at an angle, and (c) peaks and valleys on the iris can be identified. z = 0 mm is defined at the focus plane that farthest away from camera.

Fig. 5
Fig. 5

(a) Computation re-focused iris image for the healthy left eye, with rectangular highlights the 3D reconstruction region; (b) The height on iris represented by color (The focal plane that farthest away from the camera is defined as z = 0. Out-of-plane direction is positive z direction.)

Fig. 6
Fig. 6

(a) Computation re-focused iris image for right eye, with rectangular highlights the 3D reconstruction region and dashed triangle highlights the iris naevi; (b) the color-coded image shows the height on iris, the naevi region is highlighted by dashed line; (c) the height of the iris structures along line AB clearly shows the structural differences at the naevi.

Fig. 7
Fig. 7

A ~1 mm iris melanoma, where the depth is 50 ± 10 µm higher than the surrounding iris, is recognized.

Metrics