Abstract

Birefringence imaging, including polarization sensitive optical coherence tomography (PS-OCT), can provide valuable insight into the microscopic structure and organization of many biological tissues. In this paper, we report on a method to fabricate tissue-like birefringence phantoms for such imaging modalities. We utilize the photo-elastic effect, wherein birefringence is induced by stretching a polymer sample after heating it above its glass-transition temperature. The cooled samples stably exhibit homogeneous birefringence, and were assembled into phantoms containing multiple well-defined regions of distinct birefringence. We present planar slab phantoms for microscopy applications and cylindrical phantoms for catheter-based imaging and demonstrate quantitative analysis of the birefringence within individual regions of interest. Birefringence phantoms enable testing, validating, calibrating, and improving PS-OCT acquisition systems and reconstruction strategies.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
    [Crossref] [PubMed]
  2. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett. 35(13), 2269–2271 (2010).
    [Crossref] [PubMed]
  3. X. Liu, S. Chen, D. Cui, X. Yu, and L. Liu, “Spectral estimation optical coherence tomography for axial super-resolution,” Opt. Express 23(20), 26521–26532 (2015).
    [Crossref] [PubMed]
  4. A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express 19(20), 19480–19485 (2011).
    [Crossref] [PubMed]
  5. M. Strupler, A. M. Beckley, F. Benboujja, S. Dubois, I. Noiseux, O. Mermut, J. P. Bouchard, and C. Boudoux, “Toward an automated method for optical coherence tomography characterization,” J. Biomed. Opt. 20(12), 126007 (2015).
    [Crossref] [PubMed]
  6. C.-É. Bisaillon and G. Lamouche, “Artery phantoms for intravascular optical coherence tomography: diseased arteries,” J. Biomed. Opt. 18, 096010 (2013).
  7. J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. J. Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
    [Crossref] [PubMed]
  8. M. R. Hee, D. Huang, E. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903 (1992).
    [Crossref]
  9. J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
    [Crossref] [PubMed]
  10. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25(18), 1355–1357 (2000).
    [Crossref] [PubMed]
  11. W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16(2), 1096–1103 (2008).
    [Crossref] [PubMed]
  12. Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging,” Opt. Lett. 37(11), 1958–1960 (2012).
    [Crossref] [PubMed]
  13. W. Y. Oh, B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Single-detector polarization-sensitive optical frequency domain imaging using high-speed intra A-line polarization modulation,” Opt. Lett. 33(12), 1330–1332 (2008).
    [Crossref] [PubMed]
  14. B. Park, M. Pierce, B. Cense, and J. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11(7), 782–793 (2003).
    [Crossref] [PubMed]
  15. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
    [Crossref] [PubMed]
  16. N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
    [Crossref] [PubMed]
  17. C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 4(3), 460–465 (2013).
    [Crossref] [PubMed]
  18. J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
    [Crossref] [PubMed]
  19. B. Baumann, “Polarization sensitive optical coherence tomography: a review of technology and applications,” Appl. Sci. 7(5), 474 (2017).
    [Crossref]
  20. S. Fukuda, G. Kishino, S. Hoshi, S. Beheregaray, Y. Ueno, M. Fukuda, D. Kasaragod, Y. Yasuno, and T. Oshika, “Repeatability of corneal phase retardation measurements by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 56(5), 3196–3201 (2015).
    [Crossref] [PubMed]
  21. R. G. Sayegh, S. Zotter, P. K. Roberts, M. M. Kandula, S. Sacu, D. P. Kreil, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization-sensitive optical coherence tomography and conventional retinal imaging strategies in assessing foveal integrity in geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 56(9), 5246–5255 (2015).
    [Crossref] [PubMed]
  22. K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
    [Crossref] [PubMed]
  23. W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
    [Crossref] [PubMed]
  24. D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
    [Crossref] [PubMed]
  25. J. N. van der Sijde, A. Karanasos, M. Villiger, B. E. Bouma, and E. Regar, “First-in-man assessment of plaque rupture by polarization-sensitive optical frequency domain imaging in vivo,” Eur. Heart J. 37(24), 1932 (2016).
    [Crossref] [PubMed]
  26. F. A. South, E. J. Chaney, M. Marjanovic, S. G. Adie, and S. A. Boppart, “Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(10), 3417–3426 (2014).
    [Crossref] [PubMed]
  27. M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
    [Crossref] [PubMed]
  28. Z. Ding, C.-P. Liang, Q. Tang, and Y. Chen, “Quantitative single-mode fiber based PS-OCT with single input polarization state using Mueller matrix,” Biomed. Opt. Express 6(5), 1828–1843 (2015).
    [Crossref] [PubMed]
  29. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
    [Crossref] [PubMed]
  30. C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett. 37(9), 1415–1417 (2012).
    [Crossref] [PubMed]
  31. M. Villiger, E. Z. Zhang, S. Nadkarni, W. Y. Oh, B. E. Bouma, and B. J. Vakoc, “Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion,” Opt. Lett. 38(6), 923–925 (2013).
    [Crossref] [PubMed]
  32. M. Villiger, E. Z. Zhang, S. K. Nadkarni, W. Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
    [Crossref] [PubMed]
  33. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18(2), 854–876 (2010).
    [Crossref] [PubMed]
  34. P. H. Mott and C. M. Roland, “Elasticity of Natural Rubber Networks,” Macromolecules 29(21), 6941–6945 (1996).
    [Crossref]
  35. “Elastomer Polyisoprene (natural rubber),” http://www.substech.com/dokuwiki/doku.php?id=elastomer_polyisoprene_natural_rubber
  36. “Polycarbonate,” http://www.polymerprocessing.com/polymers/PC.html .
  37. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
  38. S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49(13), 1474–1481 (2007).
    [Crossref] [PubMed]
  39. M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
    [Crossref] [PubMed]
  40. S. Alali, A. Gribble, and I. A. Vitkin, “Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts,” Opt. Lett. 41(5), 1038–1041 (2016).
    [Crossref] [PubMed]

2017 (2)

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
[Crossref] [PubMed]

B. Baumann, “Polarization sensitive optical coherence tomography: a review of technology and applications,” Appl. Sci. 7(5), 474 (2017).
[Crossref]

2016 (5)

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

J. N. van der Sijde, A. Karanasos, M. Villiger, B. E. Bouma, and E. Regar, “First-in-man assessment of plaque rupture by polarization-sensitive optical frequency domain imaging in vivo,” Eur. Heart J. 37(24), 1932 (2016).
[Crossref] [PubMed]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

S. Alali, A. Gribble, and I. A. Vitkin, “Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts,” Opt. Lett. 41(5), 1038–1041 (2016).
[Crossref] [PubMed]

2015 (6)

Z. Ding, C.-P. Liang, Q. Tang, and Y. Chen, “Quantitative single-mode fiber based PS-OCT with single input polarization state using Mueller matrix,” Biomed. Opt. Express 6(5), 1828–1843 (2015).
[Crossref] [PubMed]

S. Fukuda, G. Kishino, S. Hoshi, S. Beheregaray, Y. Ueno, M. Fukuda, D. Kasaragod, Y. Yasuno, and T. Oshika, “Repeatability of corneal phase retardation measurements by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 56(5), 3196–3201 (2015).
[Crossref] [PubMed]

R. G. Sayegh, S. Zotter, P. K. Roberts, M. M. Kandula, S. Sacu, D. P. Kreil, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization-sensitive optical coherence tomography and conventional retinal imaging strategies in assessing foveal integrity in geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 56(9), 5246–5255 (2015).
[Crossref] [PubMed]

X. Liu, S. Chen, D. Cui, X. Yu, and L. Liu, “Spectral estimation optical coherence tomography for axial super-resolution,” Opt. Express 23(20), 26521–26532 (2015).
[Crossref] [PubMed]

M. Strupler, A. M. Beckley, F. Benboujja, S. Dubois, I. Noiseux, O. Mermut, J. P. Bouchard, and C. Boudoux, “Toward an automated method for optical coherence tomography characterization,” J. Biomed. Opt. 20(12), 126007 (2015).
[Crossref] [PubMed]

N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (5)

2012 (4)

2011 (1)

2010 (2)

2008 (3)

2007 (1)

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49(13), 1474–1481 (2007).
[Crossref] [PubMed]

2006 (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).

2004 (1)

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
[Crossref] [PubMed]

2003 (1)

2001 (1)

2000 (1)

1997 (1)

1996 (1)

P. H. Mott and C. M. Roland, “Elasticity of Natural Rubber Networks,” Macromolecules 29(21), 6941–6945 (1996).
[Crossref]

1992 (1)

Adams, D. C.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Adie, S. G.

Agrawal, A.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. J. Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref] [PubMed]

A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett. 35(13), 2269–2271 (2010).
[Crossref] [PubMed]

Ahlers, C.

Alali, S.

Austen, W. G.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Baumann, B.

B. Baumann, “Polarization sensitive optical coherence tomography: a review of technology and applications,” Appl. Sci. 7(5), 474 (2017).
[Crossref]

R. G. Sayegh, S. Zotter, P. K. Roberts, M. M. Kandula, S. Sacu, D. P. Kreil, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization-sensitive optical coherence tomography and conventional retinal imaging strategies in assessing foveal integrity in geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 56(9), 5246–5255 (2015).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

Baxi, J.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. J. Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref] [PubMed]

Beckley, A. M.

M. Strupler, A. M. Beckley, F. Benboujja, S. Dubois, I. Noiseux, O. Mermut, J. P. Bouchard, and C. Boudoux, “Toward an automated method for optical coherence tomography characterization,” J. Biomed. Opt. 20(12), 126007 (2015).
[Crossref] [PubMed]

Beheregaray, S.

S. Fukuda, G. Kishino, S. Hoshi, S. Beheregaray, Y. Ueno, M. Fukuda, D. Kasaragod, Y. Yasuno, and T. Oshika, “Repeatability of corneal phase retardation measurements by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 56(5), 3196–3201 (2015).
[Crossref] [PubMed]

Benboujja, F.

M. Strupler, A. M. Beckley, F. Benboujja, S. Dubois, I. Noiseux, O. Mermut, J. P. Bouchard, and C. Boudoux, “Toward an automated method for optical coherence tomography characterization,” J. Biomed. Opt. 20(12), 126007 (2015).
[Crossref] [PubMed]

Bisaillon, C.-E.

Bisaillon, C.-É.

C.-É. Bisaillon and G. Lamouche, “Artery phantoms for intravascular optical coherence tomography: diseased arteries,” J. Biomed. Opt. 18, 096010 (2013).

Boppart, S. A.

Bouchard, J. P.

M. Strupler, A. M. Beckley, F. Benboujja, S. Dubois, I. Noiseux, O. Mermut, J. P. Bouchard, and C. Boudoux, “Toward an automated method for optical coherence tomography characterization,” J. Biomed. Opt. 20(12), 126007 (2015).
[Crossref] [PubMed]

Boudoux, C.

M. Strupler, A. M. Beckley, F. Benboujja, S. Dubois, I. Noiseux, O. Mermut, J. P. Bouchard, and C. Boudoux, “Toward an automated method for optical coherence tomography characterization,” J. Biomed. Opt. 20(12), 126007 (2015).
[Crossref] [PubMed]

Bouma, B. E.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

J. N. van der Sijde, A. Karanasos, M. Villiger, B. E. Bouma, and E. Regar, “First-in-man assessment of plaque rupture by polarization-sensitive optical frequency domain imaging in vivo,” Eur. Heart J. 37(24), 1932 (2016).
[Crossref] [PubMed]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W. Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. Nadkarni, W. Y. Oh, B. E. Bouma, and B. J. Vakoc, “Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion,” Opt. Lett. 38(6), 923–925 (2013).
[Crossref] [PubMed]

W. Y. Oh, B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Single-detector polarization-sensitive optical frequency domain imaging using high-speed intra A-line polarization modulation,” Opt. Lett. 33(12), 1330–1332 (2008).
[Crossref] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16(2), 1096–1103 (2008).
[Crossref] [PubMed]

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49(13), 1474–1481 (2007).
[Crossref] [PubMed]

Bressner, J. E.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49(13), 1474–1481 (2007).
[Crossref] [PubMed]

Broelsch, G. F.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Calhoun, W.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. J. Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref] [PubMed]

Campbell, G.

Cense, B.

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
[Crossref] [PubMed]

B. Park, M. Pierce, B. Cense, and J. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11(7), 782–793 (2003).
[Crossref] [PubMed]

Chaney, E. J.

Chen, S.

Chen, Y.

Chen, Z.

Cho, J. L.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Cui, D.

Curatolo, A.

de Boer, J.

de Boer, J. F.

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
[Crossref] [PubMed]

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16(2), 1096–1103 (2008).
[Crossref] [PubMed]

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49(13), 1474–1481 (2007).
[Crossref] [PubMed]

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
[Crossref] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25(18), 1355–1357 (2000).
[Crossref] [PubMed]

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
[Crossref] [PubMed]

Desjardins, A. E.

Ding, Z.

Drezek, R.

Duan, L.

Dubois, S.

M. Strupler, A. M. Beckley, F. Benboujja, S. Dubois, I. Noiseux, O. Mermut, J. P. Bouchard, and C. Boudoux, “Toward an automated method for optical coherence tomography characterization,” J. Biomed. Opt. 20(12), 126007 (2015).
[Crossref] [PubMed]

Fan, C.

Fercher, A.

Fujimoto, J. G.

Fukuda, M.

S. Fukuda, G. Kishino, S. Hoshi, S. Beheregaray, Y. Ueno, M. Fukuda, D. Kasaragod, Y. Yasuno, and T. Oshika, “Repeatability of corneal phase retardation measurements by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 56(5), 3196–3201 (2015).
[Crossref] [PubMed]

Fukuda, S.

S. Fukuda, G. Kishino, S. Hoshi, S. Beheregaray, Y. Ueno, M. Fukuda, D. Kasaragod, Y. Yasuno, and T. Oshika, “Repeatability of corneal phase retardation measurements by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 56(5), 3196–3201 (2015).
[Crossref] [PubMed]

Geitzenauer, W.

Gilani, N.

Goetzinger, E.

Golberg, A.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Götzinger, E.

Gribble, A.

Griffith, J. W.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Halpern, E.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49(13), 1474–1481 (2007).
[Crossref] [PubMed]

Hamilos, D. L.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Hammer, D. X.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. J. Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref] [PubMed]

Hariri, L. P.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Hee, M. R.

Hitzenberger, C.

Hitzenberger, C. K.

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
[Crossref] [PubMed]

R. G. Sayegh, S. Zotter, P. K. Roberts, M. M. Kandula, S. Sacu, D. P. Kreil, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization-sensitive optical coherence tomography and conventional retinal imaging strategies in assessing foveal integrity in geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 56(9), 5246–5255 (2015).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

Holz, J. A.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Hong, Y.-J.

Hoshi, S.

S. Fukuda, G. Kishino, S. Hoshi, S. Beheregaray, Y. Ueno, M. Fukuda, D. Kasaragod, Y. Yasuno, and T. Oshika, “Repeatability of corneal phase retardation measurements by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 56(5), 3196–3201 (2015).
[Crossref] [PubMed]

Houser, S. L.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49(13), 1474–1481 (2007).
[Crossref] [PubMed]

Huang, D.

Hyle Park, B.

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
[Crossref] [PubMed]

Ilev, I.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. J. Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref] [PubMed]

Kandula, M. M.

R. G. Sayegh, S. Zotter, P. K. Roberts, M. M. Kandula, S. Sacu, D. P. Kreil, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization-sensitive optical coherence tomography and conventional retinal imaging strategies in assessing foveal integrity in geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 56(9), 5246–5255 (2015).
[Crossref] [PubMed]

Karanasos, A.

J. N. van der Sijde, A. Karanasos, M. Villiger, B. E. Bouma, and E. Regar, “First-in-man assessment of plaque rupture by polarization-sensitive optical frequency domain imaging in vivo,” Eur. Heart J. 37(24), 1932 (2016).
[Crossref] [PubMed]

Kasaragod, D.

S. Fukuda, G. Kishino, S. Hoshi, S. Beheregaray, Y. Ueno, M. Fukuda, D. Kasaragod, Y. Yasuno, and T. Oshika, “Repeatability of corneal phase retardation measurements by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 56(5), 3196–3201 (2015).
[Crossref] [PubMed]

Kennedy, B. F.

Kennedy, K. M.

Khan, S.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Kim, K. H.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

Kirk, R. W.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

Kishino, G.

S. Fukuda, G. Kishino, S. Hoshi, S. Beheregaray, Y. Ueno, M. Fukuda, D. Kasaragod, Y. Yasuno, and T. Oshika, “Repeatability of corneal phase retardation measurements by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 56(5), 3196–3201 (2015).
[Crossref] [PubMed]

Kreil, D. P.

R. G. Sayegh, S. Zotter, P. K. Roberts, M. M. Kandula, S. Sacu, D. P. Kreil, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization-sensitive optical coherence tomography and conventional retinal imaging strategies in assessing foveal integrity in geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 56(9), 5246–5255 (2015).
[Crossref] [PubMed]

Lamouche, G.

Lian, C. G.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Liang, C.-P.

Lim, Y.

Lippok, N.

Liu, L.

Liu, X.

Lo, W. C. Y.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Lorenser, D.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

Luster, A. D.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Lydon, M.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

Maguluri, G.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

Makita, S.

Marjanovic, M.

McLaughlin, R. A.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

Medoff, B. D.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Mermut, O.

M. Strupler, A. M. Beckley, F. Benboujja, S. Dubois, I. Noiseux, O. Mermut, J. P. Bouchard, and C. Boudoux, “Toward an automated method for optical coherence tomography characterization,” J. Biomed. Opt. 20(12), 126007 (2015).
[Crossref] [PubMed]

Michels, S.

Miller, A. J.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Milner, T. E.

Mott, P. H.

P. H. Mott and C. M. Roland, “Elasticity of Natural Rubber Networks,” Macromolecules 29(21), 6941–6945 (1996).
[Crossref]

Nadkarni, S.

Nadkarni, S. K.

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W. Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49(13), 1474–1481 (2007).
[Crossref] [PubMed]

Nelson, J. S.

Nguyen, Q. D.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. J. Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref] [PubMed]

Noiseux, I.

M. Strupler, A. M. Beckley, F. Benboujja, S. Dubois, I. Noiseux, O. Mermut, J. P. Bouchard, and C. Boudoux, “Toward an automated method for optical coherence tomography characterization,” J. Biomed. Opt. 20(12), 126007 (2015).
[Crossref] [PubMed]

Oh, W. Y.

Oshika, T.

S. Fukuda, G. Kishino, S. Hoshi, S. Beheregaray, Y. Ueno, M. Fukuda, D. Kasaragod, Y. Yasuno, and T. Oshika, “Repeatability of corneal phase retardation measurements by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 56(5), 3196–3201 (2015).
[Crossref] [PubMed]

Park, B.

Park, B. H.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16(2), 1096–1103 (2008).
[Crossref] [PubMed]

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49(13), 1474–1481 (2007).
[Crossref] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25(18), 1355–1357 (2000).
[Crossref] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).

Pazos, V.

Pfefer, T. J.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. J. Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref] [PubMed]

A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett. 35(13), 2269–2271 (2010).
[Crossref] [PubMed]

Pierce, M.

Pierce, M. C.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49(13), 1474–1481 (2007).
[Crossref] [PubMed]

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
[Crossref] [PubMed]

Pircher, M.

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).

Quirk, B. C.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

Regar, E.

J. N. van der Sijde, A. Karanasos, M. Villiger, B. E. Bouma, and E. Regar, “First-in-man assessment of plaque rupture by polarization-sensitive optical frequency domain imaging in vivo,” Eur. Heart J. 37(24), 1932 (2016).
[Crossref] [PubMed]

Roberts, P. K.

R. G. Sayegh, S. Zotter, P. K. Roberts, M. M. Kandula, S. Sacu, D. P. Kreil, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization-sensitive optical coherence tomography and conventional retinal imaging strategies in assessing foveal integrity in geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 56(9), 5246–5255 (2015).
[Crossref] [PubMed]

Roland, C. M.

P. H. Mott and C. M. Roland, “Elasticity of Natural Rubber Networks,” Macromolecules 29(21), 6941–6945 (1996).
[Crossref]

Sacu, S.

R. G. Sayegh, S. Zotter, P. K. Roberts, M. M. Kandula, S. Sacu, D. P. Kreil, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization-sensitive optical coherence tomography and conventional retinal imaging strategies in assessing foveal integrity in geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 56(9), 5246–5255 (2015).
[Crossref] [PubMed]

Sampson, D. D.

Saxer, C. E.

Sayegh, R. G.

R. G. Sayegh, S. Zotter, P. K. Roberts, M. M. Kandula, S. Sacu, D. P. Kreil, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization-sensitive optical coherence tomography and conventional retinal imaging strategies in assessing foveal integrity in geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 56(9), 5246–5255 (2015).
[Crossref] [PubMed]

Schmidt-Erfurth, U.

R. G. Sayegh, S. Zotter, P. K. Roberts, M. M. Kandula, S. Sacu, D. P. Kreil, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization-sensitive optical coherence tomography and conventional retinal imaging strategies in assessing foveal integrity in geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 56(9), 5246–5255 (2015).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

Scott Harris, R.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Sepah, Y. J.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. J. Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref] [PubMed]

Sheridan, R.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

Sheridan, R. L.

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
[Crossref] [PubMed]

Shishkov, M.

South, F. A.

Sticker, M.

Strupler, M.

M. Strupler, A. M. Beckley, F. Benboujja, S. Dubois, I. Noiseux, O. Mermut, J. P. Bouchard, and C. Boudoux, “Toward an automated method for optical coherence tomography characterization,” J. Biomed. Opt. 20(12), 126007 (2015).
[Crossref] [PubMed]

Suter, M. J.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Swanson, E.

Szabari, M. V.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Tang, Q.

Tearney, G. J.

Ueno, Y.

S. Fukuda, G. Kishino, S. Hoshi, S. Beheregaray, Y. Ueno, M. Fukuda, D. Kasaragod, Y. Yasuno, and T. Oshika, “Repeatability of corneal phase retardation measurements by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 56(5), 3196–3201 (2015).
[Crossref] [PubMed]

Vakoc, B. J.

van der Sijde, J. N.

J. N. van der Sijde, A. Karanasos, M. Villiger, B. E. Bouma, and E. Regar, “First-in-man assessment of plaque rupture by polarization-sensitive optical frequency domain imaging in vivo,” Eur. Heart J. 37(24), 1932 (2016).
[Crossref] [PubMed]

van Gemert, M. J.

Villiger, M.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

J. N. van der Sijde, A. Karanasos, M. Villiger, B. E. Bouma, and E. Regar, “First-in-man assessment of plaque rupture by polarization-sensitive optical frequency domain imaging in vivo,” Eur. Heart J. 37(24), 1932 (2016).
[Crossref] [PubMed]

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W. Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. Nadkarni, W. Y. Oh, B. E. Bouma, and B. J. Vakoc, “Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion,” Opt. Lett. 38(6), 923–925 (2013).
[Crossref] [PubMed]

Vitkin, I. A.

Wang, Y.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Whittaker, P.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49(13), 1474–1481 (2007).
[Crossref] [PubMed]

Yamanari, M.

Yao, G.

Yarmush, M.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Yasuno, Y.

Yoon, S. J.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

Yu, X.

Yun, S. H.

Zhang, E. Z.

Zhao, Y.

Zotter, S.

R. G. Sayegh, S. Zotter, P. K. Roberts, M. M. Kandula, S. Sacu, D. P. Kreil, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization-sensitive optical coherence tomography and conventional retinal imaging strategies in assessing foveal integrity in geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 56(9), 5246–5255 (2015).
[Crossref] [PubMed]

Appl. Sci. (1)

B. Baumann, “Polarization sensitive optical coherence tomography: a review of technology and applications,” Appl. Sci. 7(5), 474 (2017).
[Crossref]

Biomed. Opt. Express (5)

Burns (1)

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
[Crossref] [PubMed]

Eur. Heart J. (1)

J. N. van der Sijde, A. Karanasos, M. Villiger, B. E. Bouma, and E. Regar, “First-in-man assessment of plaque rupture by polarization-sensitive optical frequency domain imaging in vivo,” Eur. Heart J. 37(24), 1932 (2016).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

S. Fukuda, G. Kishino, S. Hoshi, S. Beheregaray, Y. Ueno, M. Fukuda, D. Kasaragod, Y. Yasuno, and T. Oshika, “Repeatability of corneal phase retardation measurements by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 56(5), 3196–3201 (2015).
[Crossref] [PubMed]

R. G. Sayegh, S. Zotter, P. K. Roberts, M. M. Kandula, S. Sacu, D. P. Kreil, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization-sensitive optical coherence tomography and conventional retinal imaging strategies in assessing foveal integrity in geographic atrophy,” Invest. Ophthalmol. Vis. Sci. 56(9), 5246–5255 (2015).
[Crossref] [PubMed]

J. Am. Coll. Cardiol. (1)

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49(13), 1474–1481 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

M. Strupler, A. M. Beckley, F. Benboujja, S. Dubois, I. Noiseux, O. Mermut, J. P. Bouchard, and C. Boudoux, “Toward an automated method for optical coherence tomography characterization,” J. Biomed. Opt. 20(12), 126007 (2015).
[Crossref] [PubMed]

C.-É. Bisaillon and G. Lamouche, “Artery phantoms for intravascular optical coherence tomography: diseased arteries,” J. Biomed. Opt. 18, 096010 (2013).

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. J. Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).

J. Invest. Dermatol. (1)

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Macromolecules (1)

P. H. Mott and C. M. Roland, “Elasticity of Natural Rubber Networks,” Macromolecules 29(21), 6941–6945 (1996).
[Crossref]

Opt. Express (8)

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W. Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18(2), 854–876 (2010).
[Crossref] [PubMed]

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[Crossref] [PubMed]

X. Liu, S. Chen, D. Cui, X. Yu, and L. Liu, “Spectral estimation optical coherence tomography for axial super-resolution,” Opt. Express 23(20), 26521–26532 (2015).
[Crossref] [PubMed]

A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express 19(20), 19480–19485 (2011).
[Crossref] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16(2), 1096–1103 (2008).
[Crossref] [PubMed]

B. Park, M. Pierce, B. Cense, and J. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11(7), 782–793 (2003).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

Opt. Lett. (9)

N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
[Crossref] [PubMed]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging,” Opt. Lett. 37(11), 1958–1960 (2012).
[Crossref] [PubMed]

W. Y. Oh, B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Single-detector polarization-sensitive optical frequency domain imaging using high-speed intra A-line polarization modulation,” Opt. Lett. 33(12), 1330–1332 (2008).
[Crossref] [PubMed]

A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett. 35(13), 2269–2271 (2010).
[Crossref] [PubMed]

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
[Crossref] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25(18), 1355–1357 (2000).
[Crossref] [PubMed]

C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett. 37(9), 1415–1417 (2012).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. Nadkarni, W. Y. Oh, B. E. Bouma, and B. J. Vakoc, “Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion,” Opt. Lett. 38(6), 923–925 (2013).
[Crossref] [PubMed]

S. Alali, A. Gribble, and I. A. Vitkin, “Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts,” Opt. Lett. 41(5), 1038–1041 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

Sci. Transl. Med. (1)

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Other (2)

“Elastomer Polyisoprene (natural rubber),” http://www.substech.com/dokuwiki/doku.php?id=elastomer_polyisoprene_natural_rubber

“Polycarbonate,” http://www.polymerprocessing.com/polymers/PC.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Birefringent elements arrangement in the phantom. Layer 1 consists of a long birefringent band; Layer 2 consists of four birefringent elements with distinct birefringence levels.

Fig. 2
Fig. 2

(a) Behavior of polymer chains of rubbery state polymers under tension. (b) Physical state transitions in polymers as a function of temperature.

Fig. 3
Fig. 3

PS-OCT cross-sections showing (a) birefringence patterns present in commercial PC films due to residual stress and (b) homogeneously low birefringence after annealing strips of PC. Horizontal and vertical scale bars: 2 mm and 250 µm, respectively.

Fig. 4
Fig. 4

(a) Schematic of the stretching apparatus and steps of pre-heating, stretching, and cooling. (b) Photograph of three PC strips of varying widths after stretching along with corresponding cross-sectional PS-OCT images showing the obtained birefringence levels.

Fig. 5
Fig. 5

(a) Photograph of the wedge sample after stretching and (b) matching en-face projection of birefringence obtained from volumetric PS-OCT data set. (c) A representative cross-sectional image illustrating the reference surfaces (arrows) used to measure the cumulative retardation. Horizontal and vertical scale bars: 1 mm and 250 µm, respectively. (d) Measured cumulative retardation against 1/w, where w is the width of the strip, along with linear regression. Error bars indicate the standard deviation across 20 measurements at distinct positions perpendicular to the wedge.

Fig. 6
Fig. 6

Intensity, birefringence and DOP images of the slab (a-c) and cylindrical (d-e) phantoms. (a) Representative cross-sectional images of the birefringence phantom for galvanometer-scanning system. (b) & (c) En-face images at different depths as indicated by the dashed red lines in (a). Horizontal and vertical scale bars for (a-c): 2 mm and 250 µm, respectively. (d) Representative images obtained from one rotational scan with the catheter. Scale bar: 1 mm. (e) Longitudinal sections obtained from a pull-back data set, with its corresponding location indicated by the dashed red line in (d). Radial and horizontal scale bars: 250 µm and 1 mm, respectively.

Fig. 7
Fig. 7

(a) & (b) Volume rendering of the slab phantom along with the segmentation of the individual birefringent elements. (c) Histogram of the birefringence measurements for each segmented region. (d) Mean ∆n and standard deviations for the initial and the repeat measurement after 3 months.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δn=Cσ,
δ1/w.