Abstract

We present a flow-through refractive index sensor for measuring the concentration of glucose solutions based on the application of rectangular glass micro-capillaries, with channel depth of 50 µm and 30 µm. A custom designed and 3D printed polymeric shell protects the tiny capillaries, ensuring an easier handling and interconnection with the macro-fluidic path. By illuminating the capillary with broadband radiation centered at λ~1.55 µm, both the transmitted (T) and reflected (R) optical spectrum from the capillary are detected with an optical spectrum analyzer, exploiting an all-fiber setup. Monitoring the spectral shift of the ratio T/R in response to increasing concentration of glucose solutions in water we have obtained sensitivities up to 530.9 nm/RIU and limit of detection in the range of 10−5-10−4 RIU. Experimental results are in agreement with the theoretically predicted principle of operation. After the demonstration of amplitude detection at a single wavelength, we finally discuss the impact of the capillary parameters on the sensitivity.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Blood oxygenation and flow measurements using a single 720-nm tunable V-cavity laser

Yafei Feng, Haoyu Deng, Xin Chen, and Jian-Jun He
Biomed. Opt. Express 8(8) 3516-3525 (2017)

Adaptive optical versus spherical aberration corrections for in vivo brain imaging

Raphaël Turcotte, Yajie Liang, and Na Ji
Biomed. Opt. Express 8(8) 3891-3902 (2017)

All-optical photoacoustic projection imaging

Johannes Bauer-Marschallinger, Karoline Felbermayer, and Thomas Berer
Biomed. Opt. Express 8(9) 3938-3951 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
    [Crossref] [PubMed]
  2. N. M. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors (Basel) 14(8), 15458–15479 (2014).
    [Crossref] [PubMed]
  3. A. A. P. Trichet, J. Foster, N. E. Omori, D. James, P. R. Dolan, G. M. Hughes, C. Vallance, and J. M. Smith, “Open-access optical microcavities for lab-on-a-chip refractive index sensing,” Lab Chip 14(21), 4244–4249 (2014).
    [Crossref] [PubMed]
  4. V. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Advances 3(1), 25–44 (2013).
    [Crossref]
  5. M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
    [Crossref] [PubMed]
  6. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
    [Crossref] [PubMed]
  7. G. Barillaro, S. Merlo, S. Surdo, L. M. Strambini, and F. Carpignano, “Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals,” Microfluid. Nanofluidics 12(1), 545–552 (2012).
    [Crossref]
  8. S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
    [Crossref] [PubMed]
  9. S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
    [Crossref]
  10. C. A. Barrios, M. J. Bañuls, V. González-Pedro, K. B. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33(7), 708–710 (2008).
    [Crossref] [PubMed]
  11. H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
    [Crossref]
  12. G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
    [Crossref]
  13. C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
    [Crossref]
  14. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [Crossref] [PubMed]
  15. J. H. Wade and R. C. Bailey, “Applications of optical microcavity resonators in analytical chemistry,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 1–25 (2016).
    [Crossref] [PubMed]
  16. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
    [Crossref] [PubMed]
  17. W. Morrish, P. West, N. Orlando, E. Klantsataya, K. Gardner, S. Lane, R. Decorby, A. François, and A. Meldrum, “Refractometric Micro-Sensor Using a Mirrored Capillary Resonator,” Opt. Express 24(22), 24959–24970 (2016).
    [Crossref] [PubMed]
  18. M. Evander and M. Tenje, “Microfluidic PMMA interfaces for rectangular glass capillaries,” J. Micromech. Microeng. 24(2), 027003 (2014).
    [Crossref]
  19. S. Calixto, M. Rosete-Aguilar, D. Monzon-Hernandez, and V. P. Minkovich, “Capillary refractometer integrated in a microfluidic configuration,” Appl. Opt. 47(6), 843–848 (2008).
    [Crossref] [PubMed]
  20. T. Tsuda, J. V. Sweedler, and R. N. Zare, “Rectangular capillaries for capillary zone electrophoresis,” Anal. Chem. 62(19), 2149–2152 (1990).
    [Crossref]
  21. B. Hammarström, M. Evander, H. Barbeau, M. Bruzelius, J. Larsson, T. Laurell, and J. Nilsson, “Non-contact acoustic cell trapping in disposable glass capillaries,” Lab Chip 10(17), 2251–2257 (2010).
    [Crossref] [PubMed]
  22. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1986).
  23. S. J. Orfanidis, Electromagnetic Waves and Antennas (2008), Chap. 6.
  24. F. Carpignano, G. Rigamonti, T. Migliazza, and S. Merlo, “Refractive index sensing in rectangular glass micro-capillaries by spectral reflectivity measurments,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–9 (2015).
  25. Y. Zhou, Y. Hu, N. Zeng, Y. Ji, X. Dai, P. Li, H. Ma, and Y. He, “Noninvasive monitoring of Pirenoxine Sodium concentration in aqueous humor based on dual-wavelength iris imaging technique,” Biomed. Opt. Express 2(2), 231–242 (2011).
    [Crossref] [PubMed]
  26. R. Cheng and L. Xia, “Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection,” Opt. Lett. 41(22), 5254–5257 (2016).
    [Crossref] [PubMed]
  27. U. S. Raikar, V. K. Kulkarni, A. S. Lalasangi, K. Madhav, and S. Asokan, “Etched fiber Bragg grating as ethanol solution concentration sensor,” Adv. Mater. 1(4), 149–151 (2007).
  28. W. Zhang, D. Webb, and G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
    [Crossref] [PubMed]
  29. M. S. Kwon and W. H. Steier, “Microring-resonator-based sensor measuring both the concentration and temperature of a solution,” Opt. Express 16(13), 9372–9377 (2008).
    [Crossref] [PubMed]
  30. Datasheet “BOROFLOAT 33 glass - Optical Properties”, SCHOTT North America Inc., https://refractiveindex.info/?shelf=glass&book=SCHOTT-multipurpose&page=BOROFLOAT33
  31. P. L. Gourley, “Biocavity laser for high-speed cell and tumour biology,” J. Phys. D Appl. Phys. 36(14), R228–R239 (2003).
    [Crossref]
  32. T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
    [Crossref] [PubMed]
  33. Y. Temiz, R. D. Lovchik, G. V. Kaigala, and E. Delamarche, “Lab-on-a-chip devices: how to close and plug the lab?” Microelectron. Eng. 132, 156–175 (2015).
    [Crossref]
  34. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  35. F. Carpignano, G. Rigamonti, G. Mazzini, and S. Merlo, “Low-coherence reflectometry for refractive index measurements of cells in micro-capillaries,” Sensors 16(10), 1670 (2016).
  36. F. Carpignano, G. Rigamonti, and S. Merlo, “Characterization of rectangular glass microcapillaries by low-coherence reflectometry,” IEEE Photonics Technol. Lett. 27(10), 1064–1067 (2015).
    [Crossref]
  37. K. Zirk and H. Poetzschke, “A refractometry-based glucose analysis of body fluids,” Med. Eng. Phys. 29(4), 449–458 (2007).
    [Crossref] [PubMed]

2016 (4)

J. H. Wade and R. C. Bailey, “Applications of optical microcavity resonators in analytical chemistry,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 1–25 (2016).
[Crossref] [PubMed]

F. Carpignano, G. Rigamonti, G. Mazzini, and S. Merlo, “Low-coherence reflectometry for refractive index measurements of cells in micro-capillaries,” Sensors 16(10), 1670 (2016).

W. Morrish, P. West, N. Orlando, E. Klantsataya, K. Gardner, S. Lane, R. Decorby, A. François, and A. Meldrum, “Refractometric Micro-Sensor Using a Mirrored Capillary Resonator,” Opt. Express 24(22), 24959–24970 (2016).
[Crossref] [PubMed]

R. Cheng and L. Xia, “Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection,” Opt. Lett. 41(22), 5254–5257 (2016).
[Crossref] [PubMed]

2015 (4)

Y. Temiz, R. D. Lovchik, G. V. Kaigala, and E. Delamarche, “Lab-on-a-chip devices: how to close and plug the lab?” Microelectron. Eng. 132, 156–175 (2015).
[Crossref]

F. Carpignano, G. Rigamonti, and S. Merlo, “Characterization of rectangular glass microcapillaries by low-coherence reflectometry,” IEEE Photonics Technol. Lett. 27(10), 1064–1067 (2015).
[Crossref]

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

F. Carpignano, G. Rigamonti, T. Migliazza, and S. Merlo, “Refractive index sensing in rectangular glass micro-capillaries by spectral reflectivity measurments,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–9 (2015).

2014 (4)

M. Evander and M. Tenje, “Microfluidic PMMA interfaces for rectangular glass capillaries,” J. Micromech. Microeng. 24(2), 027003 (2014).
[Crossref]

N. M. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors (Basel) 14(8), 15458–15479 (2014).
[Crossref] [PubMed]

A. A. P. Trichet, J. Foster, N. E. Omori, D. James, P. R. Dolan, G. M. Hughes, C. Vallance, and J. M. Smith, “Open-access optical microcavities for lab-on-a-chip refractive index sensing,” Lab Chip 14(21), 4244–4249 (2014).
[Crossref] [PubMed]

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
[Crossref]

2013 (2)

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

V. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Advances 3(1), 25–44 (2013).
[Crossref]

2012 (3)

G. Barillaro, S. Merlo, S. Surdo, L. M. Strambini, and F. Carpignano, “Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals,” Microfluid. Nanofluidics 12(1), 545–552 (2012).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

W. Zhang, D. Webb, and G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (4)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
[Crossref]

B. Hammarström, M. Evander, H. Barbeau, M. Bruzelius, J. Larsson, T. Laurell, and J. Nilsson, “Non-contact acoustic cell trapping in disposable glass capillaries,” Lab Chip 10(17), 2251–2257 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (4)

2007 (3)

K. Zirk and H. Poetzschke, “A refractometry-based glucose analysis of body fluids,” Med. Eng. Phys. 29(4), 449–458 (2007).
[Crossref] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

U. S. Raikar, V. K. Kulkarni, A. S. Lalasangi, K. Madhav, and S. Asokan, “Etched fiber Bragg grating as ethanol solution concentration sensor,” Adv. Mater. 1(4), 149–151 (2007).

2004 (2)

T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
[Crossref] [PubMed]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
[Crossref] [PubMed]

2003 (1)

P. L. Gourley, “Biocavity laser for high-speed cell and tumour biology,” J. Phys. D Appl. Phys. 36(14), R228–R239 (2003).
[Crossref]

1990 (1)

T. Tsuda, J. V. Sweedler, and R. N. Zare, “Rectangular capillaries for capillary zone electrophoresis,” Anal. Chem. 62(19), 2149–2152 (1990).
[Crossref]

Altug, H.

Angnes, L.

T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
[Crossref] [PubMed]

Armani, A. M.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Armenise, M. N.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Asokan, S.

U. S. Raikar, V. K. Kulkarni, A. S. Lalasangi, K. Madhav, and S. Asokan, “Etched fiber Bragg grating as ethanol solution concentration sensor,” Adv. Mater. 1(4), 149–151 (2007).

Baets, R.

Bailey, R. C.

J. H. Wade and R. C. Bailey, “Applications of optical microcavity resonators in analytical chemistry,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 1–25 (2016).
[Crossref] [PubMed]

Baldini, F.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Bañuls, M. J.

Baptista, M. S.

T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
[Crossref] [PubMed]

Barbeau, H.

B. Hammarström, M. Evander, H. Barbeau, M. Bruzelius, J. Larsson, T. Laurell, and J. Nilsson, “Non-contact acoustic cell trapping in disposable glass capillaries,” Lab Chip 10(17), 2251–2257 (2010).
[Crossref] [PubMed]

Barillaro, G.

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

G. Barillaro, S. Merlo, S. Surdo, L. M. Strambini, and F. Carpignano, “Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals,” Microfluid. Nanofluidics 12(1), 545–552 (2012).
[Crossref]

Barrios, C. A.

Bartolozzi, I.

Bernini, R.

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
[Crossref]

Bienstman, P.

Bruzelius, M.

B. Hammarström, M. Evander, H. Barbeau, M. Bruzelius, J. Larsson, T. Laurell, and J. Nilsson, “Non-contact acoustic cell trapping in disposable glass capillaries,” Lab Chip 10(17), 2251–2257 (2010).
[Crossref] [PubMed]

Calixto, S.

Campanella, C. E.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Campanella, C. M.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Carpignano, F.

F. Carpignano, G. Rigamonti, G. Mazzini, and S. Merlo, “Low-coherence reflectometry for refractive index measurements of cells in micro-capillaries,” Sensors 16(10), 1670 (2016).

F. Carpignano, G. Rigamonti, and S. Merlo, “Characterization of rectangular glass microcapillaries by low-coherence reflectometry,” IEEE Photonics Technol. Lett. 27(10), 1064–1067 (2015).
[Crossref]

F. Carpignano, G. Rigamonti, T. Migliazza, and S. Merlo, “Refractive index sensing in rectangular glass micro-capillaries by spectral reflectivity measurments,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–9 (2015).

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
[Crossref]

G. Barillaro, S. Merlo, S. Surdo, L. M. Strambini, and F. Carpignano, “Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals,” Microfluid. Nanofluidics 12(1), 545–552 (2012).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Casquel, R.

Chang, T. Y.

Cheng, R.

Chow, E.

Ciminelli, C.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Dai, X.

De Leonardis, F.

V. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Advances 3(1), 25–44 (2013).
[Crossref]

De Vos, K.

Decorby, R.

Delamarche, E.

Y. Temiz, R. D. Lovchik, G. V. Kaigala, and E. Delamarche, “Lab-on-a-chip devices: how to close and plug the lab?” Microelectron. Eng. 132, 156–175 (2015).
[Crossref]

Dell’Olio, F.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Dolan, P. R.

A. A. P. Trichet, J. Foster, N. E. Omori, D. James, P. R. Dolan, G. M. Hughes, C. Vallance, and J. M. Smith, “Open-access optical microcavities for lab-on-a-chip refractive index sensing,” Lab Chip 14(21), 4244–4249 (2014).
[Crossref] [PubMed]

Dong, T.

N. M. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors (Basel) 14(8), 15458–15479 (2014).
[Crossref] [PubMed]

Evander, M.

M. Evander and M. Tenje, “Microfluidic PMMA interfaces for rectangular glass capillaries,” J. Micromech. Microeng. 24(2), 027003 (2014).
[Crossref]

B. Hammarström, M. Evander, H. Barbeau, M. Bruzelius, J. Larsson, T. Laurell, and J. Nilsson, “Non-contact acoustic cell trapping in disposable glass capillaries,” Lab Chip 10(17), 2251–2257 (2010).
[Crossref] [PubMed]

Fan, X.

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

Foreman, M. R.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Foster, J.

A. A. P. Trichet, J. Foster, N. E. Omori, D. James, P. R. Dolan, G. M. Hughes, C. Vallance, and J. M. Smith, “Open-access optical microcavities for lab-on-a-chip refractive index sensing,” Lab Chip 14(21), 4244–4249 (2014).
[Crossref] [PubMed]

François, A.

Gardner, K.

Giannetti, A.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Girolami, G.

González-Pedro, V.

Gourley, P. L.

P. L. Gourley, “Biocavity laser for high-speed cell and tumour biology,” J. Phys. D Appl. Phys. 36(14), R228–R239 (2003).
[Crossref]

Griol, A.

Grot, A.

Gylfason, K. B.

Hammarström, B.

B. Hammarström, M. Evander, H. Barbeau, M. Bruzelius, J. Larsson, T. Laurell, and J. Nilsson, “Non-contact acoustic cell trapping in disposable glass capillaries,” Lab Chip 10(17), 2251–2257 (2010).
[Crossref] [PubMed]

Hanke, U.

N. M. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors (Basel) 14(8), 15458–15479 (2014).
[Crossref] [PubMed]

He, Y.

Hoivik, N.

N. M. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors (Basel) 14(8), 15458–15479 (2014).
[Crossref] [PubMed]

Holgado, M.

Hu, Y.

Huang, M.

Huang, Y.

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
[Crossref]

Hughes, G. M.

A. A. P. Trichet, J. Foster, N. E. Omori, D. James, P. R. Dolan, G. M. Hughes, C. Vallance, and J. M. Smith, “Open-access optical microcavities for lab-on-a-chip refractive index sensing,” Lab Chip 14(21), 4244–4249 (2014).
[Crossref] [PubMed]

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

James, D.

A. A. P. Trichet, J. Foster, N. E. Omori, D. James, P. R. Dolan, G. M. Hughes, C. Vallance, and J. M. Smith, “Open-access optical microcavities for lab-on-a-chip refractive index sensing,” Lab Chip 14(21), 4244–4249 (2014).
[Crossref] [PubMed]

Ji, Y.

Kaigala, G. V.

Y. Temiz, R. D. Lovchik, G. V. Kaigala, and E. Delamarche, “Lab-on-a-chip devices: how to close and plug the lab?” Microelectron. Eng. 132, 156–175 (2015).
[Crossref]

Klantsataya, E.

Kulkarni, V. K.

U. S. Raikar, V. K. Kulkarni, A. S. Lalasangi, K. Madhav, and S. Asokan, “Etched fiber Bragg grating as ethanol solution concentration sensor,” Adv. Mater. 1(4), 149–151 (2007).

Kwon, M. S.

La Notte, M.

V. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Advances 3(1), 25–44 (2013).
[Crossref]

Lalasangi, A. S.

U. S. Raikar, V. K. Kulkarni, A. S. Lalasangi, K. Madhav, and S. Asokan, “Etched fiber Bragg grating as ethanol solution concentration sensor,” Adv. Mater. 1(4), 149–151 (2007).

Lane, S.

Larsson, J.

B. Hammarström, M. Evander, H. Barbeau, M. Bruzelius, J. Larsson, T. Laurell, and J. Nilsson, “Non-contact acoustic cell trapping in disposable glass capillaries,” Lab Chip 10(17), 2251–2257 (2010).
[Crossref] [PubMed]

Laurell, T.

B. Hammarström, M. Evander, H. Barbeau, M. Bruzelius, J. Larsson, T. Laurell, and J. Nilsson, “Non-contact acoustic cell trapping in disposable glass capillaries,” Lab Chip 10(17), 2251–2257 (2010).
[Crossref] [PubMed]

Li, H.

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

Li, P.

Lovchik, R. D.

Y. Temiz, R. D. Lovchik, G. V. Kaigala, and E. Delamarche, “Lab-on-a-chip devices: how to close and plug the lab?” Microelectron. Eng. 132, 156–175 (2015).
[Crossref]

Ma, H.

Madhav, K.

U. S. Raikar, V. K. Kulkarni, A. S. Lalasangi, K. Madhav, and S. Asokan, “Etched fiber Bragg grating as ethanol solution concentration sensor,” Adv. Mater. 1(4), 149–151 (2007).

Maquieira, A.

Mazzini, G.

F. Carpignano, G. Rigamonti, G. Mazzini, and S. Merlo, “Low-coherence reflectometry for refractive index measurements of cells in micro-capillaries,” Sensors 16(10), 1670 (2016).

Meldrum, A.

Merlo, S.

F. Carpignano, G. Rigamonti, G. Mazzini, and S. Merlo, “Low-coherence reflectometry for refractive index measurements of cells in micro-capillaries,” Sensors 16(10), 1670 (2016).

F. Carpignano, G. Rigamonti, and S. Merlo, “Characterization of rectangular glass microcapillaries by low-coherence reflectometry,” IEEE Photonics Technol. Lett. 27(10), 1064–1067 (2015).
[Crossref]

F. Carpignano, G. Rigamonti, T. Migliazza, and S. Merlo, “Refractive index sensing in rectangular glass micro-capillaries by spectral reflectivity measurments,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–9 (2015).

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

G. Barillaro, S. Merlo, S. Surdo, L. M. Strambini, and F. Carpignano, “Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals,” Microfluid. Nanofluidics 12(1), 545–552 (2012).
[Crossref]

Migliazza, T.

F. Carpignano, G. Rigamonti, T. Migliazza, and S. Merlo, “Refractive index sensing in rectangular glass micro-capillaries by spectral reflectivity measurments,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–9 (2015).

Minkovich, V. P.

Mirkarimi, L. W.

Monzon-Hernandez, D.

Morrish, W.

Nilsson, J.

B. Hammarström, M. Evander, H. Barbeau, M. Bruzelius, J. Larsson, T. Laurell, and J. Nilsson, “Non-contact acoustic cell trapping in disposable glass capillaries,” Lab Chip 10(17), 2251–2257 (2010).
[Crossref] [PubMed]

Omori, N. E.

A. A. P. Trichet, J. Foster, N. E. Omori, D. James, P. R. Dolan, G. M. Hughes, C. Vallance, and J. M. Smith, “Open-access optical microcavities for lab-on-a-chip refractive index sensing,” Lab Chip 14(21), 4244–4249 (2014).
[Crossref] [PubMed]

Orlando, N.

Passaro, V.

V. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Advances 3(1), 25–44 (2013).
[Crossref]

Peng, G.

Pires, N. M. M.

N. M. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors (Basel) 14(8), 15458–15479 (2014).
[Crossref] [PubMed]

Poetzschke, H.

K. Zirk and H. Poetzschke, “A refractometry-based glucose analysis of body fluids,” Med. Eng. Phys. 29(4), 449–458 (2007).
[Crossref] [PubMed]

Raikar, U. S.

U. S. Raikar, V. K. Kulkarni, A. S. Lalasangi, K. Madhav, and S. Asokan, “Etched fiber Bragg grating as ethanol solution concentration sensor,” Adv. Mater. 1(4), 149–151 (2007).

Rigamonti, G.

F. Carpignano, G. Rigamonti, G. Mazzini, and S. Merlo, “Low-coherence reflectometry for refractive index measurements of cells in micro-capillaries,” Sensors 16(10), 1670 (2016).

F. Carpignano, G. Rigamonti, and S. Merlo, “Characterization of rectangular glass microcapillaries by low-coherence reflectometry,” IEEE Photonics Technol. Lett. 27(10), 1064–1067 (2015).
[Crossref]

F. Carpignano, G. Rigamonti, T. Migliazza, and S. Merlo, “Refractive index sensing in rectangular glass micro-capillaries by spectral reflectivity measurments,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–9 (2015).

Rosete-Aguilar, M.

Sánchez, B.

Sarro, P. M.

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
[Crossref]

Schacht, E.

Sigalas, M.

Smith, J. M.

A. A. P. Trichet, J. Foster, N. E. Omori, D. James, P. R. Dolan, G. M. Hughes, C. Vallance, and J. M. Smith, “Open-access optical microcavities for lab-on-a-chip refractive index sensing,” Lab Chip 14(21), 4244–4249 (2014).
[Crossref] [PubMed]

Sohlström, H.

Steier, W. H.

Strambini, L. M.

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
[Crossref]

G. Barillaro, S. Merlo, S. Surdo, L. M. Strambini, and F. Carpignano, “Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals,” Microfluid. Nanofluidics 12(1), 545–552 (2012).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Surdo, S.

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

G. Barillaro, S. Merlo, S. Surdo, L. M. Strambini, and F. Carpignano, “Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals,” Microfluid. Nanofluidics 12(1), 545–552 (2012).
[Crossref]

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Sweedler, J. V.

T. Tsuda, J. V. Sweedler, and R. N. Zare, “Rectangular capillaries for capillary zone electrophoresis,” Anal. Chem. 62(19), 2149–2152 (1990).
[Crossref]

Temiz, Y.

Y. Temiz, R. D. Lovchik, G. V. Kaigala, and E. Delamarche, “Lab-on-a-chip devices: how to close and plug the lab?” Microelectron. Eng. 132, 156–175 (2015).
[Crossref]

Tenje, M.

M. Evander and M. Tenje, “Microfluidic PMMA interfaces for rectangular glass capillaries,” J. Micromech. Microeng. 24(2), 027003 (2014).
[Crossref]

Testa, G.

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
[Crossref]

Trichet, A. A. P.

A. A. P. Trichet, J. Foster, N. E. Omori, D. James, P. R. Dolan, G. M. Hughes, C. Vallance, and J. M. Smith, “Open-access optical microcavities for lab-on-a-chip refractive index sensing,” Lab Chip 14(21), 4244–4249 (2014).
[Crossref] [PubMed]

Troia, B.

V. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Advances 3(1), 25–44 (2013).
[Crossref]

Trono, C.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Tsuda, T.

T. Tsuda, J. V. Sweedler, and R. N. Zare, “Rectangular capillaries for capillary zone electrophoresis,” Anal. Chem. 62(19), 2149–2152 (1990).
[Crossref]

Tumolo, T.

T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
[Crossref] [PubMed]

Vallance, C.

A. A. P. Trichet, J. Foster, N. E. Omori, D. James, P. R. Dolan, G. M. Hughes, C. Vallance, and J. M. Smith, “Open-access optical microcavities for lab-on-a-chip refractive index sensing,” Lab Chip 14(21), 4244–4249 (2014).
[Crossref] [PubMed]

Vollmer, F.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Wade, J. H.

J. H. Wade and R. C. Bailey, “Applications of optical microcavity resonators in analytical chemistry,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 1–25 (2016).
[Crossref] [PubMed]

Webb, D.

West, P.

White, I. M.

Xia, L.

Yanik, A. A.

Zare, R. N.

T. Tsuda, J. V. Sweedler, and R. N. Zare, “Rectangular capillaries for capillary zone electrophoresis,” Anal. Chem. 62(19), 2149–2152 (1990).
[Crossref]

Zeng, N.

Zeni, L.

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
[Crossref]

Zhang, W.

Zhou, Y.

Zirk, K.

K. Zirk and H. Poetzschke, “A refractometry-based glucose analysis of body fluids,” Med. Eng. Phys. 29(4), 449–458 (2007).
[Crossref] [PubMed]

Adv. Mater. (1)

U. S. Raikar, V. K. Kulkarni, A. S. Lalasangi, K. Madhav, and S. Asokan, “Etched fiber Bragg grating as ethanol solution concentration sensor,” Adv. Mater. 1(4), 149–151 (2007).

Adv. Opt. Photonics (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Anal. Biochem. (1)

T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
[Crossref] [PubMed]

Anal. Chem. (1)

T. Tsuda, J. V. Sweedler, and R. N. Zare, “Rectangular capillaries for capillary zone electrophoresis,” Anal. Chem. 62(19), 2149–2152 (1990).
[Crossref]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

J. H. Wade and R. C. Bailey, “Applications of optical microcavity resonators in analytical chemistry,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 1–25 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

F. Carpignano, G. Rigamonti, T. Migliazza, and S. Merlo, “Refractive index sensing in rectangular glass micro-capillaries by spectral reflectivity measurments,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–9 (2015).

IEEE Photonics Technol. Lett. (1)

F. Carpignano, G. Rigamonti, and S. Merlo, “Characterization of rectangular glass microcapillaries by low-coherence reflectometry,” IEEE Photonics Technol. Lett. 27(10), 1064–1067 (2015).
[Crossref]

J. Micromech. Microeng. (1)

M. Evander and M. Tenje, “Microfluidic PMMA interfaces for rectangular glass capillaries,” J. Micromech. Microeng. 24(2), 027003 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

P. L. Gourley, “Biocavity laser for high-speed cell and tumour biology,” J. Phys. D Appl. Phys. 36(14), R228–R239 (2003).
[Crossref]

Lab Chip (3)

B. Hammarström, M. Evander, H. Barbeau, M. Bruzelius, J. Larsson, T. Laurell, and J. Nilsson, “Non-contact acoustic cell trapping in disposable glass capillaries,” Lab Chip 10(17), 2251–2257 (2010).
[Crossref] [PubMed]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

A. A. P. Trichet, J. Foster, N. E. Omori, D. James, P. R. Dolan, G. M. Hughes, C. Vallance, and J. M. Smith, “Open-access optical microcavities for lab-on-a-chip refractive index sensing,” Lab Chip 14(21), 4244–4249 (2014).
[Crossref] [PubMed]

Med. Eng. Phys. (1)

K. Zirk and H. Poetzschke, “A refractometry-based glucose analysis of body fluids,” Med. Eng. Phys. 29(4), 449–458 (2007).
[Crossref] [PubMed]

Microelectron. Eng. (1)

Y. Temiz, R. D. Lovchik, G. V. Kaigala, and E. Delamarche, “Lab-on-a-chip devices: how to close and plug the lab?” Microelectron. Eng. 132, 156–175 (2015).
[Crossref]

Microfluid. Nanofluidics (1)

G. Barillaro, S. Merlo, S. Surdo, L. M. Strambini, and F. Carpignano, “Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals,” Microfluid. Nanofluidics 12(1), 545–552 (2012).
[Crossref]

Nanoscale (1)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Prog. Quantum Electron. (1)

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

RSC Advances (2)

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
[Crossref]

V. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Advances 3(1), 25–44 (2013).
[Crossref]

Sensors (1)

F. Carpignano, G. Rigamonti, G. Mazzini, and S. Merlo, “Low-coherence reflectometry for refractive index measurements of cells in micro-capillaries,” Sensors 16(10), 1670 (2016).

Sensors (Basel) (1)

N. M. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors (Basel) 14(8), 15458–15479 (2014).
[Crossref] [PubMed]

Other (3)

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1986).

S. J. Orfanidis, Electromagnetic Waves and Antennas (2008), Chap. 6.

Datasheet “BOROFLOAT 33 glass - Optical Properties”, SCHOTT North America Inc., https://refractiveindex.info/?shelf=glass&book=SCHOTT-multipurpose&page=BOROFLOAT33

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

3D sketch of a glass rectangular micro-capillary.

Fig. 2
Fig. 2

Theoretical spectra obtained by using Fresnel equations for modeling the optical behavior of a capillary with d = tb = tf = 50 µm and nfluid = 1.3154. Upper red trace: optical power transmissivity; Lower blue trace: optical power reflectivity. A moving average has been applied to mimic the limited resolution bandwidth of the Optical Spectrum Analyzer employed in the following experimental verification.

Fig. 3
Fig. 3

(a) Calculated T/R spectra from theoretical analysis performed for a capillary with d = tb = tf = 50 µm and increasing nfluid values. Blue trace: nfluid = 1.3154 RIU; red dashed trace: nfluid = 1.3198 RIU; green dotted trace: nfluid = 1.3256 RIU. Δλ: distance in wavelength between two consecutive peaks of the same spectrum. (b) Fast Fourier Transform of the theoretical T/R spectrum reported in (a), relative to the capillary filled with water (nfluid = 1.3154 RIU), blue trace, as a function of the wavenumber 1/λ. The y axis is expressed in logarithmic scale for better visualization.

Fig. 4
Fig. 4

(a) Calibration curves obtained from theoretical T/R spectra for a capillary with d = tb = tf = 50 µm and nfluid in the range of 1.3154-1.3299 RIU. Numerical values on the right side represent the sensitivities obtained through linear fitting of the data, reported in nm/RIU units. The numbers reported near each fitting line recall the peak labels highlighted in Fig. 3(a). (b) Best sensitivity values obtained from T/R theoretical spectra calculated for channel depth d = 50 µm and different wall thicknesses (from 20 µm up to 110 µm) as a function of D = d/[d + nglass• (tf, + tb)], where tf is the front wall thickness and tb the back wall thickness.

Fig. 5
Fig. 5

3D-printed polymeric support.

Fig. 6
Fig. 6

Instrumental configuration for optical power measurements on glass micro-capillaries. SLED: Superluminescent Light Emitting Diode; OI: Optical Isolator; OSA: Optical Spectrum Analyzer; Lens: aspheric lens with pigtail style focuser; PC: personal computer.

Fig. 7
Fig. 7

Normalized optical spectra acquired on a capillary with d = tf = tb = 50 µm (nominal values). Black traces: raw data; Red traces: interpolated and filtered data. Upper traces: transmitted signal; Lower traces: reflected signal. Wavelength step (after interpolation) 1*10−5 µm.

Fig. 8
Fig. 8

T/R ratio measured on a capillary with d = tf = tb = 50 µm. Traces are relative to glucose solutions in water with RI from 1.3154 RIU (water) to 1.3313 RIU; the legend is reported on the right. Traces have been vertically shifted of −180 a.u. for a better visualization. The absolute scale, on the y-axis, refers only to the trace relative to water.

Fig. 9
Fig. 9

2D view of the 3D reconstruction of the T/R spectra shown in Fig. 8. Amplitude values are represented using false colors, indicated on top of the graph.

Fig. 10
Fig. 10

Wavelength positions of T/R maxima as a function of glucose solution RI: mean values (empty circles) and standard deviations (error bars) calculated on three spectral acquisitions. Straight lines represent the best linear fitting of the data. (a) capillary with tf = tb = d = 50 µm. The numbers reported near each fitting line recall the peaks numbering highlighted in Fig. 8. (b) capillary with tf = tb = 35 µm and d = 50 µm (nominal values).

Fig. 11
Fig. 11

(a) 2D view of the 3D reconstruction of the detected T/R spectra relative to a capillary with d = tf = tb = 30 µm. Amplitude values are represented using false colors. (b) Wavelength positions of T/R maxima as a function of glucose solution RI: mean values (empty circles) and standard deviations (error bars) calculated on three spectral acquisitions. Straight lines represent the best linear fitting of the data. Capillary with d = tf = tb = 30 µm (nominal values).

Fig. 12
Fig. 12

(a) Zoom of the T/R spectra relative to a capillary with d = tf = tb = 30 µm on a 1.5-nm interval. Spectral amplitude at a single wavelength decreases as the glucose RI increases. (b) Mean values and standard deviations of the T/R amplitude at λ = 1541.7 nm extracted from data of Fig. 12(a) as a function of the RI. A shape-preserving interpolant curve provides data fitting.

Fig. 13
Fig. 13

Schema of the capillary interfaces, used for numerical simulations.

Tables (1)

Tables Icon

Table 1 Parameters of performances of different capillaries

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ρ 34 = ( n n glass ) / ( n+ n glass ) = ρ 43
ρ 45 = ( n glass n air ) / ( n glass + n air ) = ( n glass 1 ) / ( n glass + 1 )
τ 34 = 2n/ ( n+ n glass )
τ 43 = 2 n glass / ( n glass +n )
τ 45 = 2 n glass / ( n glass + 1 ),
ρ 3 4 = ρ 34 + τ 34 τ 43 ρ 45  e ( j2k n glass t b ) 1 ρ 43 ρ 45 e ( j2k n glass t b )  
τ 3 4 = τ 34 τ 45 e (jk n glass t b ) 1 ρ 43 ρ 45 e (j2k n glass t b )
ρ 2 3 = ρ 23 + τ 23 τ 32 ρ 34'  e ( j2knd ) 1 ρ 32 ρ 34' e ( j2knd )
τ 2 3 = τ 23 τ 34' e (jkd) 1 ρ 32 ρ 34' e (j2kd)
ρ 23 = ( n glass n ) / ( n glass +n ) = ρ 32
τ 23 = 2 n glass / ( n glass +n )
τ 32 = 2n/ ( n+ n glass ).
ρ 1 2 = ρ 12 + τ 12 τ 21 ρ 23' e (j2k n glass t f ) 1 ρ 21 ρ 23' e (j2k n glass t f)
τ 1 2 = τ 12 τ 23' e (jkn   glass t f ) 1 ρ 21 ρ 23' e (j2kn   glass t f )
ρ 12 = ( 1 n glass ) / ( 1 + n glass ) = ρ 21 ,
τ 12 = 2 /( 1 + n glass ),
τ 21 = 2 n glass / ( n glass + 1 ).

Metrics