Abstract

The aptamer and target molecule binding reaction has been widely applied for construction of aptasensors, most of which are labeled methods. In contrast, terahertz technology proves to be a label-free sensing tool for biomedical applications. We utilize terahertz absorption spectroscopy and molecular dynamics simulation to investigate the variation of binding-induced collective vibration of hydrogen bond network in a mixed solution of MUC1 peptide and anti-MUC1 aptamer. The results show that binding-induced alterations of hydrogen bond numbers could be sensitively reflected by the variation of terahertz absorption coefficients of the mixed solution in a customized fluidic chip. The minimal detectable concentration is determined as 1 pmol/μL, which is approximately equal to the optimal immobilized concentration of aptasensors.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz and far infrared Spectroscopy of alanine-rich peptides having variable ellipticity

Tao Ding, Ruoyu Li, J. Axel Zeitler, Thomas L. Huber, Lynn F. Gladden, Anton P. J. Middelberg, and Robert J. Falconer
Opt. Express 18(26) 27431-27444 (2010)

Development of a highly specific amine-terminated aptamer functionalized surface plasmon resonance biosensor for blood protein detection

Rui Zheng, Byung-Wook Park, Dong-Shik Kim, and Brent D. Cameron
Biomed. Opt. Express 2(9) 2731-2740 (2011)

Human heart failure biomarker immunosensor based on excessively tilted fiber gratings

Binbin Luo, Shengxi Wu, Zhonghao Zhang, Wengen Zou, Shenghui Shi, Mingfu Zhao, Nianbing Zhong, Yong Liu, Xue Zou, Lingling Wang, Weina Chai, Chuanmin Hu, and Lin Zhang
Biomed. Opt. Express 8(1) 57-67 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Hu, W. Wen, Q. Wang, H. Xiong, X. Zhang, H. Gu, and S. Wang, “Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1,” Biosens. Bioelectron. 53, 384–389 (2014).
    [Crossref] [PubMed]
  2. L. Kirnarsky, O. Prakash, S. M. Vogen, M. Nomoto, M. A. Hollingsworth, and S. Sherman, “Structural effects of O-glycosylation on a 15-residue peptide from the mucin (MUC1) core protein,” Biochemistry 39(39), 12076–12082 (2000).
    [Crossref] [PubMed]
  3. S. J. Gendler, “MUC1, the renaissance molecule,” J. Mammary Gland Biol. Neoplasia 6(3), 339–353 (2001).
    [Crossref] [PubMed]
  4. M. Čadková, V. Dvořáková, R. Metelka, Z. Bílková, and L. Korecká, “Alkaline phosphatase labeled antibody-based electrochemical biosensor for sensitive HE4 tumor marker detection,” Electrochem. Commun. 59, 1–4 (2015).
    [Crossref]
  5. Y. Huang, P. Kannan, L. Zhang, T. Chen, and D.-H. Kim, “Concave gold nanoparticle-based highly sensitive electrochemical IgG immunobiosensor for the detection of antibody-antigen interactions,” RSC Advances 5(72), 58478–58484 (2015).
    [Crossref]
  6. T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
    [Crossref]
  7. A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature 346(6287), 818–822 (1990).
    [Crossref] [PubMed]
  8. S. Huang, W. Wang, F. Cheng, H. Yao, and J.-J. Zhu, “Highly sensitive detection of mercury ion based on T-rich DNA machine using portable glucose meter,” Sens. Actuators B Chem. 242, 347–354 (2017).
    [Crossref]
  9. H. Qu, A. T. Csordas, J. Wang, S. S. Oh, M. S. Eisenstein, and H. T. Soh, “Rapid and label-free strategy to isolate aptamers for metal ions,” ACS Nano 10(8), 7558–7565 (2016).
    [Crossref] [PubMed]
  10. X. Jiang, H. Wang, H. Wang, Y. Zhuo, R. Yuan, and Y. Chai, “Electrochemiluminescence Biosensor Based on 3-D DNA Nanomachine Signal Probe Powered by Protein-Aptamer Binding Complex for Ultrasensitive Mucin 1 Detection,” Anal. Chem. 89(7), 4280–4286 (2017).
    [Crossref] [PubMed]
  11. K. Chang, Y. Pi, W. Lu, F. Wang, F. Pan, F. Li, S. Jia, J. Shi, S. Deng, and M. Chen, “Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array,” Biosens. Bioelectron. 60, 318–324 (2014).
    [Crossref] [PubMed]
  12. H. Jo, J. Her, and C. Ban, “Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer,” Biosens. Bioelectron. 71, 129–136 (2015).
    [Crossref] [PubMed]
  13. C. S. Ferreira, C. S. Matthews, and S. Missailidis, “DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers,” Tumour Biol. 27(6), 289–301 (2006).
    [Crossref] [PubMed]
  14. X. Yang, D. Wei, S. Yan, Y. Liu, S. Yu, M. Zhang, Z. Yang, X. Zhu, Q. Huang, H. L. Cui, and W. Fu, “Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy,” J. Biophotonics 9(10), 1050–1058 (2016).
    [Crossref] [PubMed]
  15. X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
    [Crossref] [PubMed]
  16. T. Bowman, M. El-Shenawee, and L. K. Campbell, “Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas,” Biomed. Opt. Express 7(9), 3756–3783 (2016).
    [Crossref] [PubMed]
  17. Y. Peng, X. Yuan, X. Zou, W. Chen, H. Huang, H. Zhao, B. Song, L. Chen, and Y. Zhu, “Terahertz identification and quantification of neurotransmitter and neurotrophy mixture,” Biomed. Opt. Express 7(11), 4472–4479 (2016).
    [Crossref] [PubMed]
  18. S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, “An extended dynamical hydration shell around proteins,” Proc. Natl. Acad. Sci. U.S.A. 104(52), 20749–20752 (2007).
    [Crossref] [PubMed]
  19. H. J. Bakker and J. L. Skinner, “Vibrational spectroscopy as a probe of structure and dynamics in liquid water,” Chem. Rev. 110(3), 1498–1517 (2010).
    [Crossref] [PubMed]
  20. J. Ropp, C. Lawrence, T. C. Farrar, and J. L. Skinner, “Rotational motion in liquid water is anisotropic: a nuclear magnetic resonance and molecular dynamics simulation study,” J. Am. Chem. Soc. 123(33), 8047–8052 (2001).
    [Crossref] [PubMed]
  21. D. Di Cola, A. Deriu, M. Sampoli, and A. Torcini, “Proton dynamics in supercooled water by molecular dynamics simulations and quasielastic neutron scattering,” J. Chem. Phys. 104(11), 4223–4232 (1996).
    [Crossref]
  22. G. Ruocco and F. Sette, “The high-frequency dynamics of liquid water,” J. Phys. Condens. Matter 11(24), R259–R293 (1999).
    [Crossref]
  23. J. Teixeira, M. C. Bellissent-Funel, S. H. Chen, and B. Dorner, “Observation of new short-wavelength collective excitations in heavy water by coherent inelastic neutron scattering,” Phys. Rev. Lett. 54(25), 2681–2683 (1985).
    [Crossref] [PubMed]
  24. V. Conti Nibali and M. Havenith, “New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations,” J. Am. Chem. Soc. 136(37), 12800–12807 (2014).
    [Crossref] [PubMed]
  25. J. Dielmann-Gessner, M. Grossman, V. Conti Nibali, B. Born, I. Solomonov, G. B. Fields, M. Havenith, and I. Sagi, “Enzymatic turnover of macromolecules generates long-lasting protein-water-coupled motions beyond reaction steady state,” Proc. Natl. Acad. Sci. U.S.A. 111(50), 17857–17862 (2014).
    [Crossref] [PubMed]
  26. K. L. Rhinehardt, G. Srinivas, and R. V. Mohan, “Molecular dynamics simulation analysis of anti-MUC1 aptamer and mucin 1 peptide binding,” J. Phys. Chem. B 119(22), 6571–6583 (2015).
    [Crossref] [PubMed]
  27. Y. Sun, J. Zhong, C. Zhang, J. Zuo, and E. Pickwell-MacPherson, “Label-free detection and characterization of the binding of hemagglutinin protein and broadly neutralizing monoclonal antibodies using terahertz spectroscopy,” J. Biomed. Opt. 20(3), 037006 (2015).
    [Crossref] [PubMed]
  28. M. Liu, D. Zhou, M. Zhang, H.-L. Cui, and D. Wang, “A microfluidic chip for terahertz spectral detection,” in Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO),2016IEEE International Conference on(IEEE, 2016), pp. 59–63.
    [Crossref]
  29. D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The Amber biomolecular simulation programs,” J. Comput. Chem. 26(16), 1668–1688 (2005).
    [Crossref] [PubMed]
  30. A. Perez, J. L. MacCallum, E. Brini, C. Simmerling, and K. A. Dill, “Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations,” J. Chem. Theory Comput. 11(10), 4770–4779 (2015).
    [Crossref] [PubMed]
  31. M. Zhang, D. Wei, M. Tang, C. Shi, H. Cui, and C. Du, “Molecular dynamics simulations of conformation and chain length dependent terahertz spectra of alanine polypeptides,” Mol. Simul. 42(5), 398–404 (2016).
    [Crossref]
  32. A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst (Lond.) 137(3), 575–579 (2012).
    [Crossref] [PubMed]
  33. J.-J. Max and C. Chapados, “IR spectroscopy of aqueous alkali halide solutions: pure salt-solvated water spectra and hydration numbers,” J. Chem. Phys. 115(6), 2664–2675 (2001).
    [Crossref]
  34. J.-B. Masson, M.-P. Sauviat, J.-L. Martin, and G. Gallot, “Ionic contrast terahertz near-field imaging of axonal water fluxes,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4808–4812 (2006).
    [Crossref] [PubMed]
  35. M. Liss, B. Petersen, H. Wolf, and E. Prohaska, “An aptamer-based quartz crystal protein biosensor,” Anal. Chem. 74(17), 4488–4495 (2002).
    [Crossref] [PubMed]
  36. Y. Levy and J. N. Onuchic, “Water mediation in protein folding and molecular recognition,” Annu. Rev. Biophys. Biomol. Struct. 35(1), 389–415 (2006).
    [Crossref] [PubMed]
  37. J. W. Schwabe, “The role of water in protein-DNA interactions,” Curr. Opin. Struct. Biol. 7(1), 126–134 (1997).
    [Crossref] [PubMed]
  38. M. Heyden and M. Havenith, “Combining THz spectroscopy and MD simulations to study protein-hydration coupling,” Methods 52(1), 74–83 (2010).
    [Crossref] [PubMed]
  39. X. Wu, Y. e, X. Xu, and L. Wang, “Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy,” Appl. Phys. Lett. 101(3), 033704 (2012).
    [Crossref]
  40. L. J. Root and B. J. Berne, “Effect of pressure on hydrogen bonding in glycerol: A molecular dynamics investigation,” J. Chem. Phys. 107(11), 4350–4357 (1997).
    [Crossref]
  41. C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst, E. Durner, W. Ott, D. B. Fried, E. A. Bayer, K. Schulten, H. E. Gaub, and M. A. Nash, “Ultrastable cellulosome-adhesion complex tightens under load,” Nat. Commun. 5, 5635 (2014).
    [Crossref] [PubMed]
  42. K. Mazur, I. A. Heisler, and S. R. Meech, “THz spectra and dynamics of aqueous solutions studied by the ultrafast optical Kerr effect,” J. Phys. Chem. B 115(11), 2563–2573 (2011).
    [Crossref] [PubMed]
  43. S. K. Pal, J. Peon, B. Bagchi, and A. H. Zewail, “Biological Water: Femtosecond Dynamics of Macromolecular Hydration,” J. Phys. Chem. B 106(48), 12376–12395 (2002).
    [Crossref]

2017 (2)

S. Huang, W. Wang, F. Cheng, H. Yao, and J.-J. Zhu, “Highly sensitive detection of mercury ion based on T-rich DNA machine using portable glucose meter,” Sens. Actuators B Chem. 242, 347–354 (2017).
[Crossref]

X. Jiang, H. Wang, H. Wang, Y. Zhuo, R. Yuan, and Y. Chai, “Electrochemiluminescence Biosensor Based on 3-D DNA Nanomachine Signal Probe Powered by Protein-Aptamer Binding Complex for Ultrasensitive Mucin 1 Detection,” Anal. Chem. 89(7), 4280–4286 (2017).
[Crossref] [PubMed]

2016 (7)

X. Yang, D. Wei, S. Yan, Y. Liu, S. Yu, M. Zhang, Z. Yang, X. Zhu, Q. Huang, H. L. Cui, and W. Fu, “Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy,” J. Biophotonics 9(10), 1050–1058 (2016).
[Crossref] [PubMed]

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref] [PubMed]

T. Bowman, M. El-Shenawee, and L. K. Campbell, “Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas,” Biomed. Opt. Express 7(9), 3756–3783 (2016).
[Crossref] [PubMed]

Y. Peng, X. Yuan, X. Zou, W. Chen, H. Huang, H. Zhao, B. Song, L. Chen, and Y. Zhu, “Terahertz identification and quantification of neurotransmitter and neurotrophy mixture,” Biomed. Opt. Express 7(11), 4472–4479 (2016).
[Crossref] [PubMed]

H. Qu, A. T. Csordas, J. Wang, S. S. Oh, M. S. Eisenstein, and H. T. Soh, “Rapid and label-free strategy to isolate aptamers for metal ions,” ACS Nano 10(8), 7558–7565 (2016).
[Crossref] [PubMed]

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

M. Zhang, D. Wei, M. Tang, C. Shi, H. Cui, and C. Du, “Molecular dynamics simulations of conformation and chain length dependent terahertz spectra of alanine polypeptides,” Mol. Simul. 42(5), 398–404 (2016).
[Crossref]

2015 (6)

A. Perez, J. L. MacCallum, E. Brini, C. Simmerling, and K. A. Dill, “Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations,” J. Chem. Theory Comput. 11(10), 4770–4779 (2015).
[Crossref] [PubMed]

K. L. Rhinehardt, G. Srinivas, and R. V. Mohan, “Molecular dynamics simulation analysis of anti-MUC1 aptamer and mucin 1 peptide binding,” J. Phys. Chem. B 119(22), 6571–6583 (2015).
[Crossref] [PubMed]

Y. Sun, J. Zhong, C. Zhang, J. Zuo, and E. Pickwell-MacPherson, “Label-free detection and characterization of the binding of hemagglutinin protein and broadly neutralizing monoclonal antibodies using terahertz spectroscopy,” J. Biomed. Opt. 20(3), 037006 (2015).
[Crossref] [PubMed]

M. Čadková, V. Dvořáková, R. Metelka, Z. Bílková, and L. Korecká, “Alkaline phosphatase labeled antibody-based electrochemical biosensor for sensitive HE4 tumor marker detection,” Electrochem. Commun. 59, 1–4 (2015).
[Crossref]

Y. Huang, P. Kannan, L. Zhang, T. Chen, and D.-H. Kim, “Concave gold nanoparticle-based highly sensitive electrochemical IgG immunobiosensor for the detection of antibody-antigen interactions,” RSC Advances 5(72), 58478–58484 (2015).
[Crossref]

H. Jo, J. Her, and C. Ban, “Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer,” Biosens. Bioelectron. 71, 129–136 (2015).
[Crossref] [PubMed]

2014 (5)

K. Chang, Y. Pi, W. Lu, F. Wang, F. Pan, F. Li, S. Jia, J. Shi, S. Deng, and M. Chen, “Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array,” Biosens. Bioelectron. 60, 318–324 (2014).
[Crossref] [PubMed]

R. Hu, W. Wen, Q. Wang, H. Xiong, X. Zhang, H. Gu, and S. Wang, “Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1,” Biosens. Bioelectron. 53, 384–389 (2014).
[Crossref] [PubMed]

V. Conti Nibali and M. Havenith, “New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations,” J. Am. Chem. Soc. 136(37), 12800–12807 (2014).
[Crossref] [PubMed]

J. Dielmann-Gessner, M. Grossman, V. Conti Nibali, B. Born, I. Solomonov, G. B. Fields, M. Havenith, and I. Sagi, “Enzymatic turnover of macromolecules generates long-lasting protein-water-coupled motions beyond reaction steady state,” Proc. Natl. Acad. Sci. U.S.A. 111(50), 17857–17862 (2014).
[Crossref] [PubMed]

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst, E. Durner, W. Ott, D. B. Fried, E. A. Bayer, K. Schulten, H. E. Gaub, and M. A. Nash, “Ultrastable cellulosome-adhesion complex tightens under load,” Nat. Commun. 5, 5635 (2014).
[Crossref] [PubMed]

2012 (2)

X. Wu, Y. e, X. Xu, and L. Wang, “Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy,” Appl. Phys. Lett. 101(3), 033704 (2012).
[Crossref]

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst (Lond.) 137(3), 575–579 (2012).
[Crossref] [PubMed]

2011 (1)

K. Mazur, I. A. Heisler, and S. R. Meech, “THz spectra and dynamics of aqueous solutions studied by the ultrafast optical Kerr effect,” J. Phys. Chem. B 115(11), 2563–2573 (2011).
[Crossref] [PubMed]

2010 (2)

M. Heyden and M. Havenith, “Combining THz spectroscopy and MD simulations to study protein-hydration coupling,” Methods 52(1), 74–83 (2010).
[Crossref] [PubMed]

H. J. Bakker and J. L. Skinner, “Vibrational spectroscopy as a probe of structure and dynamics in liquid water,” Chem. Rev. 110(3), 1498–1517 (2010).
[Crossref] [PubMed]

2007 (1)

S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, “An extended dynamical hydration shell around proteins,” Proc. Natl. Acad. Sci. U.S.A. 104(52), 20749–20752 (2007).
[Crossref] [PubMed]

2006 (3)

C. S. Ferreira, C. S. Matthews, and S. Missailidis, “DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers,” Tumour Biol. 27(6), 289–301 (2006).
[Crossref] [PubMed]

J.-B. Masson, M.-P. Sauviat, J.-L. Martin, and G. Gallot, “Ionic contrast terahertz near-field imaging of axonal water fluxes,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4808–4812 (2006).
[Crossref] [PubMed]

Y. Levy and J. N. Onuchic, “Water mediation in protein folding and molecular recognition,” Annu. Rev. Biophys. Biomol. Struct. 35(1), 389–415 (2006).
[Crossref] [PubMed]

2005 (1)

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The Amber biomolecular simulation programs,” J. Comput. Chem. 26(16), 1668–1688 (2005).
[Crossref] [PubMed]

2002 (2)

M. Liss, B. Petersen, H. Wolf, and E. Prohaska, “An aptamer-based quartz crystal protein biosensor,” Anal. Chem. 74(17), 4488–4495 (2002).
[Crossref] [PubMed]

S. K. Pal, J. Peon, B. Bagchi, and A. H. Zewail, “Biological Water: Femtosecond Dynamics of Macromolecular Hydration,” J. Phys. Chem. B 106(48), 12376–12395 (2002).
[Crossref]

2001 (3)

J.-J. Max and C. Chapados, “IR spectroscopy of aqueous alkali halide solutions: pure salt-solvated water spectra and hydration numbers,” J. Chem. Phys. 115(6), 2664–2675 (2001).
[Crossref]

S. J. Gendler, “MUC1, the renaissance molecule,” J. Mammary Gland Biol. Neoplasia 6(3), 339–353 (2001).
[Crossref] [PubMed]

J. Ropp, C. Lawrence, T. C. Farrar, and J. L. Skinner, “Rotational motion in liquid water is anisotropic: a nuclear magnetic resonance and molecular dynamics simulation study,” J. Am. Chem. Soc. 123(33), 8047–8052 (2001).
[Crossref] [PubMed]

2000 (1)

L. Kirnarsky, O. Prakash, S. M. Vogen, M. Nomoto, M. A. Hollingsworth, and S. Sherman, “Structural effects of O-glycosylation on a 15-residue peptide from the mucin (MUC1) core protein,” Biochemistry 39(39), 12076–12082 (2000).
[Crossref] [PubMed]

1999 (1)

G. Ruocco and F. Sette, “The high-frequency dynamics of liquid water,” J. Phys. Condens. Matter 11(24), R259–R293 (1999).
[Crossref]

1997 (2)

J. W. Schwabe, “The role of water in protein-DNA interactions,” Curr. Opin. Struct. Biol. 7(1), 126–134 (1997).
[Crossref] [PubMed]

L. J. Root and B. J. Berne, “Effect of pressure on hydrogen bonding in glycerol: A molecular dynamics investigation,” J. Chem. Phys. 107(11), 4350–4357 (1997).
[Crossref]

1996 (1)

D. Di Cola, A. Deriu, M. Sampoli, and A. Torcini, “Proton dynamics in supercooled water by molecular dynamics simulations and quasielastic neutron scattering,” J. Chem. Phys. 104(11), 4223–4232 (1996).
[Crossref]

1990 (1)

A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature 346(6287), 818–822 (1990).
[Crossref] [PubMed]

1985 (1)

J. Teixeira, M. C. Bellissent-Funel, S. H. Chen, and B. Dorner, “Observation of new short-wavelength collective excitations in heavy water by coherent inelastic neutron scattering,” Phys. Rev. Lett. 54(25), 2681–2683 (1985).
[Crossref] [PubMed]

Amemiya, Y.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Arora, A.

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst (Lond.) 137(3), 575–579 (2012).
[Crossref] [PubMed]

Bagchi, B.

S. K. Pal, J. Peon, B. Bagchi, and A. H. Zewail, “Biological Water: Femtosecond Dynamics of Macromolecular Hydration,” J. Phys. Chem. B 106(48), 12376–12395 (2002).
[Crossref]

Bakker, H. J.

H. J. Bakker and J. L. Skinner, “Vibrational spectroscopy as a probe of structure and dynamics in liquid water,” Chem. Rev. 110(3), 1498–1517 (2010).
[Crossref] [PubMed]

Ban, C.

H. Jo, J. Her, and C. Ban, “Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer,” Biosens. Bioelectron. 71, 129–136 (2015).
[Crossref] [PubMed]

Bayer, E. A.

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst, E. Durner, W. Ott, D. B. Fried, E. A. Bayer, K. Schulten, H. E. Gaub, and M. A. Nash, “Ultrastable cellulosome-adhesion complex tightens under load,” Nat. Commun. 5, 5635 (2014).
[Crossref] [PubMed]

Bellissent-Funel, M. C.

J. Teixeira, M. C. Bellissent-Funel, S. H. Chen, and B. Dorner, “Observation of new short-wavelength collective excitations in heavy water by coherent inelastic neutron scattering,” Phys. Rev. Lett. 54(25), 2681–2683 (1985).
[Crossref] [PubMed]

Bernardi, R. C.

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst, E. Durner, W. Ott, D. B. Fried, E. A. Bayer, K. Schulten, H. E. Gaub, and M. A. Nash, “Ultrastable cellulosome-adhesion complex tightens under load,” Nat. Commun. 5, 5635 (2014).
[Crossref] [PubMed]

Berne, B. J.

L. J. Root and B. J. Berne, “Effect of pressure on hydrogen bonding in glycerol: A molecular dynamics investigation,” J. Chem. Phys. 107(11), 4350–4357 (1997).
[Crossref]

Bílková, Z.

M. Čadková, V. Dvořáková, R. Metelka, Z. Bílková, and L. Korecká, “Alkaline phosphatase labeled antibody-based electrochemical biosensor for sensitive HE4 tumor marker detection,” Electrochem. Commun. 59, 1–4 (2015).
[Crossref]

Born, B.

J. Dielmann-Gessner, M. Grossman, V. Conti Nibali, B. Born, I. Solomonov, G. B. Fields, M. Havenith, and I. Sagi, “Enzymatic turnover of macromolecules generates long-lasting protein-water-coupled motions beyond reaction steady state,” Proc. Natl. Acad. Sci. U.S.A. 111(50), 17857–17862 (2014).
[Crossref] [PubMed]

Bowman, T.

Brini, E.

A. Perez, J. L. MacCallum, E. Brini, C. Simmerling, and K. A. Dill, “Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations,” J. Chem. Theory Comput. 11(10), 4770–4779 (2015).
[Crossref] [PubMed]

Cadková, M.

M. Čadková, V. Dvořáková, R. Metelka, Z. Bílková, and L. Korecká, “Alkaline phosphatase labeled antibody-based electrochemical biosensor for sensitive HE4 tumor marker detection,” Electrochem. Commun. 59, 1–4 (2015).
[Crossref]

Campbell, L. K.

Case, D. A.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The Amber biomolecular simulation programs,” J. Comput. Chem. 26(16), 1668–1688 (2005).
[Crossref] [PubMed]

Chai, Y.

X. Jiang, H. Wang, H. Wang, Y. Zhuo, R. Yuan, and Y. Chai, “Electrochemiluminescence Biosensor Based on 3-D DNA Nanomachine Signal Probe Powered by Protein-Aptamer Binding Complex for Ultrasensitive Mucin 1 Detection,” Anal. Chem. 89(7), 4280–4286 (2017).
[Crossref] [PubMed]

Chang, K.

K. Chang, Y. Pi, W. Lu, F. Wang, F. Pan, F. Li, S. Jia, J. Shi, S. Deng, and M. Chen, “Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array,” Biosens. Bioelectron. 60, 318–324 (2014).
[Crossref] [PubMed]

Chapados, C.

J.-J. Max and C. Chapados, “IR spectroscopy of aqueous alkali halide solutions: pure salt-solvated water spectra and hydration numbers,” J. Chem. Phys. 115(6), 2664–2675 (2001).
[Crossref]

Cheatham, T. E.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The Amber biomolecular simulation programs,” J. Comput. Chem. 26(16), 1668–1688 (2005).
[Crossref] [PubMed]

Chen, L.

Chen, M.

K. Chang, Y. Pi, W. Lu, F. Wang, F. Pan, F. Li, S. Jia, J. Shi, S. Deng, and M. Chen, “Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array,” Biosens. Bioelectron. 60, 318–324 (2014).
[Crossref] [PubMed]

Chen, S. H.

J. Teixeira, M. C. Bellissent-Funel, S. H. Chen, and B. Dorner, “Observation of new short-wavelength collective excitations in heavy water by coherent inelastic neutron scattering,” Phys. Rev. Lett. 54(25), 2681–2683 (1985).
[Crossref] [PubMed]

Chen, T.

Y. Huang, P. Kannan, L. Zhang, T. Chen, and D.-H. Kim, “Concave gold nanoparticle-based highly sensitive electrochemical IgG immunobiosensor for the detection of antibody-antigen interactions,” RSC Advances 5(72), 58478–58484 (2015).
[Crossref]

Chen, W.

Cheng, F.

S. Huang, W. Wang, F. Cheng, H. Yao, and J.-J. Zhu, “Highly sensitive detection of mercury ion based on T-rich DNA machine using portable glucose meter,” Sens. Actuators B Chem. 242, 347–354 (2017).
[Crossref]

Conti Nibali, V.

V. Conti Nibali and M. Havenith, “New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations,” J. Am. Chem. Soc. 136(37), 12800–12807 (2014).
[Crossref] [PubMed]

J. Dielmann-Gessner, M. Grossman, V. Conti Nibali, B. Born, I. Solomonov, G. B. Fields, M. Havenith, and I. Sagi, “Enzymatic turnover of macromolecules generates long-lasting protein-water-coupled motions beyond reaction steady state,” Proc. Natl. Acad. Sci. U.S.A. 111(50), 17857–17862 (2014).
[Crossref] [PubMed]

Csordas, A. T.

H. Qu, A. T. Csordas, J. Wang, S. S. Oh, M. S. Eisenstein, and H. T. Soh, “Rapid and label-free strategy to isolate aptamers for metal ions,” ACS Nano 10(8), 7558–7565 (2016).
[Crossref] [PubMed]

Cui, H.

M. Zhang, D. Wei, M. Tang, C. Shi, H. Cui, and C. Du, “Molecular dynamics simulations of conformation and chain length dependent terahertz spectra of alanine polypeptides,” Mol. Simul. 42(5), 398–404 (2016).
[Crossref]

Cui, H. L.

X. Yang, D. Wei, S. Yan, Y. Liu, S. Yu, M. Zhang, Z. Yang, X. Zhu, Q. Huang, H. L. Cui, and W. Fu, “Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy,” J. Biophotonics 9(10), 1050–1058 (2016).
[Crossref] [PubMed]

Darden, T.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The Amber biomolecular simulation programs,” J. Comput. Chem. 26(16), 1668–1688 (2005).
[Crossref] [PubMed]

Deng, S.

K. Chang, Y. Pi, W. Lu, F. Wang, F. Pan, F. Li, S. Jia, J. Shi, S. Deng, and M. Chen, “Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array,” Biosens. Bioelectron. 60, 318–324 (2014).
[Crossref] [PubMed]

Deriu, A.

D. Di Cola, A. Deriu, M. Sampoli, and A. Torcini, “Proton dynamics in supercooled water by molecular dynamics simulations and quasielastic neutron scattering,” J. Chem. Phys. 104(11), 4223–4232 (1996).
[Crossref]

Di Cola, D.

D. Di Cola, A. Deriu, M. Sampoli, and A. Torcini, “Proton dynamics in supercooled water by molecular dynamics simulations and quasielastic neutron scattering,” J. Chem. Phys. 104(11), 4223–4232 (1996).
[Crossref]

Dielmann-Gessner, J.

J. Dielmann-Gessner, M. Grossman, V. Conti Nibali, B. Born, I. Solomonov, G. B. Fields, M. Havenith, and I. Sagi, “Enzymatic turnover of macromolecules generates long-lasting protein-water-coupled motions beyond reaction steady state,” Proc. Natl. Acad. Sci. U.S.A. 111(50), 17857–17862 (2014).
[Crossref] [PubMed]

Dill, K. A.

A. Perez, J. L. MacCallum, E. Brini, C. Simmerling, and K. A. Dill, “Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations,” J. Chem. Theory Comput. 11(10), 4770–4779 (2015).
[Crossref] [PubMed]

Dorner, B.

J. Teixeira, M. C. Bellissent-Funel, S. H. Chen, and B. Dorner, “Observation of new short-wavelength collective excitations in heavy water by coherent inelastic neutron scattering,” Phys. Rev. Lett. 54(25), 2681–2683 (1985).
[Crossref] [PubMed]

Du, C.

M. Zhang, D. Wei, M. Tang, C. Shi, H. Cui, and C. Du, “Molecular dynamics simulations of conformation and chain length dependent terahertz spectra of alanine polypeptides,” Mol. Simul. 42(5), 398–404 (2016).
[Crossref]

Durner, E.

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst, E. Durner, W. Ott, D. B. Fried, E. A. Bayer, K. Schulten, H. E. Gaub, and M. A. Nash, “Ultrastable cellulosome-adhesion complex tightens under load,” Nat. Commun. 5, 5635 (2014).
[Crossref] [PubMed]

Dvoráková, V.

M. Čadková, V. Dvořáková, R. Metelka, Z. Bílková, and L. Korecká, “Alkaline phosphatase labeled antibody-based electrochemical biosensor for sensitive HE4 tumor marker detection,” Electrochem. Commun. 59, 1–4 (2015).
[Crossref]

e, Y.

X. Wu, Y. e, X. Xu, and L. Wang, “Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy,” Appl. Phys. Lett. 101(3), 033704 (2012).
[Crossref]

Ebbinghaus, S.

S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, “An extended dynamical hydration shell around proteins,” Proc. Natl. Acad. Sci. U.S.A. 104(52), 20749–20752 (2007).
[Crossref] [PubMed]

Eisenstein, M. S.

H. Qu, A. T. Csordas, J. Wang, S. S. Oh, M. S. Eisenstein, and H. T. Soh, “Rapid and label-free strategy to isolate aptamers for metal ions,” ACS Nano 10(8), 7558–7565 (2016).
[Crossref] [PubMed]

Ellington, A. D.

A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature 346(6287), 818–822 (1990).
[Crossref] [PubMed]

El-Shenawee, M.

Farrar, T. C.

J. Ropp, C. Lawrence, T. C. Farrar, and J. L. Skinner, “Rotational motion in liquid water is anisotropic: a nuclear magnetic resonance and molecular dynamics simulation study,” J. Am. Chem. Soc. 123(33), 8047–8052 (2001).
[Crossref] [PubMed]

Ferreira, C. S.

C. S. Ferreira, C. S. Matthews, and S. Missailidis, “DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers,” Tumour Biol. 27(6), 289–301 (2006).
[Crossref] [PubMed]

Fields, G. B.

J. Dielmann-Gessner, M. Grossman, V. Conti Nibali, B. Born, I. Solomonov, G. B. Fields, M. Havenith, and I. Sagi, “Enzymatic turnover of macromolecules generates long-lasting protein-water-coupled motions beyond reaction steady state,” Proc. Natl. Acad. Sci. U.S.A. 111(50), 17857–17862 (2014).
[Crossref] [PubMed]

Fried, D. B.

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst, E. Durner, W. Ott, D. B. Fried, E. A. Bayer, K. Schulten, H. E. Gaub, and M. A. Nash, “Ultrastable cellulosome-adhesion complex tightens under load,” Nat. Commun. 5, 5635 (2014).
[Crossref] [PubMed]

Fu, W.

X. Yang, D. Wei, S. Yan, Y. Liu, S. Yu, M. Zhang, Z. Yang, X. Zhu, Q. Huang, H. L. Cui, and W. Fu, “Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy,” J. Biophotonics 9(10), 1050–1058 (2016).
[Crossref] [PubMed]

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref] [PubMed]

Fukuyama, M.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Gallot, G.

J.-B. Masson, M.-P. Sauviat, J.-L. Martin, and G. Gallot, “Ionic contrast terahertz near-field imaging of axonal water fluxes,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4808–4812 (2006).
[Crossref] [PubMed]

Gaub, H. E.

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst, E. Durner, W. Ott, D. B. Fried, E. A. Bayer, K. Schulten, H. E. Gaub, and M. A. Nash, “Ultrastable cellulosome-adhesion complex tightens under load,” Nat. Commun. 5, 5635 (2014).
[Crossref] [PubMed]

Gendler, S. J.

S. J. Gendler, “MUC1, the renaissance molecule,” J. Mammary Gland Biol. Neoplasia 6(3), 339–353 (2001).
[Crossref] [PubMed]

Gohlke, H.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The Amber biomolecular simulation programs,” J. Comput. Chem. 26(16), 1668–1688 (2005).
[Crossref] [PubMed]

Grossman, M.

J. Dielmann-Gessner, M. Grossman, V. Conti Nibali, B. Born, I. Solomonov, G. B. Fields, M. Havenith, and I. Sagi, “Enzymatic turnover of macromolecules generates long-lasting protein-water-coupled motions beyond reaction steady state,” Proc. Natl. Acad. Sci. U.S.A. 111(50), 17857–17862 (2014).
[Crossref] [PubMed]

Gruebele, M.

S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, “An extended dynamical hydration shell around proteins,” Proc. Natl. Acad. Sci. U.S.A. 104(52), 20749–20752 (2007).
[Crossref] [PubMed]

Gu, H.

R. Hu, W. Wen, Q. Wang, H. Xiong, X. Zhang, H. Gu, and S. Wang, “Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1,” Biosens. Bioelectron. 53, 384–389 (2014).
[Crossref] [PubMed]

Havenith, M.

J. Dielmann-Gessner, M. Grossman, V. Conti Nibali, B. Born, I. Solomonov, G. B. Fields, M. Havenith, and I. Sagi, “Enzymatic turnover of macromolecules generates long-lasting protein-water-coupled motions beyond reaction steady state,” Proc. Natl. Acad. Sci. U.S.A. 111(50), 17857–17862 (2014).
[Crossref] [PubMed]

V. Conti Nibali and M. Havenith, “New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations,” J. Am. Chem. Soc. 136(37), 12800–12807 (2014).
[Crossref] [PubMed]

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst (Lond.) 137(3), 575–579 (2012).
[Crossref] [PubMed]

M. Heyden and M. Havenith, “Combining THz spectroscopy and MD simulations to study protein-hydration coupling,” Methods 52(1), 74–83 (2010).
[Crossref] [PubMed]

S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, “An extended dynamical hydration shell around proteins,” Proc. Natl. Acad. Sci. U.S.A. 104(52), 20749–20752 (2007).
[Crossref] [PubMed]

Heisler, I. A.

K. Mazur, I. A. Heisler, and S. R. Meech, “THz spectra and dynamics of aqueous solutions studied by the ultrafast optical Kerr effect,” J. Phys. Chem. B 115(11), 2563–2573 (2011).
[Crossref] [PubMed]

Her, J.

H. Jo, J. Her, and C. Ban, “Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer,” Biosens. Bioelectron. 71, 129–136 (2015).
[Crossref] [PubMed]

Heugen, U.

S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, “An extended dynamical hydration shell around proteins,” Proc. Natl. Acad. Sci. U.S.A. 104(52), 20749–20752 (2007).
[Crossref] [PubMed]

Heyden, M.

M. Heyden and M. Havenith, “Combining THz spectroscopy and MD simulations to study protein-hydration coupling,” Methods 52(1), 74–83 (2010).
[Crossref] [PubMed]

S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, “An extended dynamical hydration shell around proteins,” Proc. Natl. Acad. Sci. U.S.A. 104(52), 20749–20752 (2007).
[Crossref] [PubMed]

Hirowatari, A.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Hollingsworth, M. A.

L. Kirnarsky, O. Prakash, S. M. Vogen, M. Nomoto, M. A. Hollingsworth, and S. Sherman, “Structural effects of O-glycosylation on a 15-residue peptide from the mucin (MUC1) core protein,” Biochemistry 39(39), 12076–12082 (2000).
[Crossref] [PubMed]

Hu, R.

R. Hu, W. Wen, Q. Wang, H. Xiong, X. Zhang, H. Gu, and S. Wang, “Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1,” Biosens. Bioelectron. 53, 384–389 (2014).
[Crossref] [PubMed]

Huang, H.

Huang, Q.

X. Yang, D. Wei, S. Yan, Y. Liu, S. Yu, M. Zhang, Z. Yang, X. Zhu, Q. Huang, H. L. Cui, and W. Fu, “Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy,” J. Biophotonics 9(10), 1050–1058 (2016).
[Crossref] [PubMed]

Huang, S.

S. Huang, W. Wang, F. Cheng, H. Yao, and J.-J. Zhu, “Highly sensitive detection of mercury ion based on T-rich DNA machine using portable glucose meter,” Sens. Actuators B Chem. 242, 347–354 (2017).
[Crossref]

Huang, Y.

Y. Huang, P. Kannan, L. Zhang, T. Chen, and D.-H. Kim, “Concave gold nanoparticle-based highly sensitive electrochemical IgG immunobiosensor for the detection of antibody-antigen interactions,” RSC Advances 5(72), 58478–58484 (2015).
[Crossref]

Ikeda, T.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Jia, S.

K. Chang, Y. Pi, W. Lu, F. Wang, F. Pan, F. Li, S. Jia, J. Shi, S. Deng, and M. Chen, “Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array,” Biosens. Bioelectron. 60, 318–324 (2014).
[Crossref] [PubMed]

Jiang, X.

X. Jiang, H. Wang, H. Wang, Y. Zhuo, R. Yuan, and Y. Chai, “Electrochemiluminescence Biosensor Based on 3-D DNA Nanomachine Signal Probe Powered by Protein-Aptamer Binding Complex for Ultrasensitive Mucin 1 Detection,” Anal. Chem. 89(7), 4280–4286 (2017).
[Crossref] [PubMed]

Jo, H.

H. Jo, J. Her, and C. Ban, “Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer,” Biosens. Bioelectron. 71, 129–136 (2015).
[Crossref] [PubMed]

Jobst, M. A.

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst, E. Durner, W. Ott, D. B. Fried, E. A. Bayer, K. Schulten, H. E. Gaub, and M. A. Nash, “Ultrastable cellulosome-adhesion complex tightens under load,” Nat. Commun. 5, 5635 (2014).
[Crossref] [PubMed]

Kannan, P.

Y. Huang, P. Kannan, L. Zhang, T. Chen, and D.-H. Kim, “Concave gold nanoparticle-based highly sensitive electrochemical IgG immunobiosensor for the detection of antibody-antigen interactions,” RSC Advances 5(72), 58478–58484 (2015).
[Crossref]

Kim, D.-H.

Y. Huang, P. Kannan, L. Zhang, T. Chen, and D.-H. Kim, “Concave gold nanoparticle-based highly sensitive electrochemical IgG immunobiosensor for the detection of antibody-antigen interactions,” RSC Advances 5(72), 58478–58484 (2015).
[Crossref]

Kim, S. J.

S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, “An extended dynamical hydration shell around proteins,” Proc. Natl. Acad. Sci. U.S.A. 104(52), 20749–20752 (2007).
[Crossref] [PubMed]

Kim, Y. J.

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst (Lond.) 137(3), 575–579 (2012).
[Crossref] [PubMed]

Kirnarsky, L.

L. Kirnarsky, O. Prakash, S. M. Vogen, M. Nomoto, M. A. Hollingsworth, and S. Sherman, “Structural effects of O-glycosylation on a 15-residue peptide from the mucin (MUC1) core protein,” Biochemistry 39(39), 12076–12082 (2000).
[Crossref] [PubMed]

Korecká, L.

M. Čadková, V. Dvořáková, R. Metelka, Z. Bílková, and L. Korecká, “Alkaline phosphatase labeled antibody-based electrochemical biosensor for sensitive HE4 tumor marker detection,” Electrochem. Commun. 59, 1–4 (2015).
[Crossref]

Krüger, M.

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst (Lond.) 137(3), 575–579 (2012).
[Crossref] [PubMed]

Kuroda, A.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Lawrence, C.

J. Ropp, C. Lawrence, T. C. Farrar, and J. L. Skinner, “Rotational motion in liquid water is anisotropic: a nuclear magnetic resonance and molecular dynamics simulation study,” J. Am. Chem. Soc. 123(33), 8047–8052 (2001).
[Crossref] [PubMed]

Leitner, D. M.

S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, “An extended dynamical hydration shell around proteins,” Proc. Natl. Acad. Sci. U.S.A. 104(52), 20749–20752 (2007).
[Crossref] [PubMed]

Levy, Y.

Y. Levy and J. N. Onuchic, “Water mediation in protein folding and molecular recognition,” Annu. Rev. Biophys. Biomol. Struct. 35(1), 389–415 (2006).
[Crossref] [PubMed]

Li, F.

K. Chang, Y. Pi, W. Lu, F. Wang, F. Pan, F. Li, S. Jia, J. Shi, S. Deng, and M. Chen, “Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array,” Biosens. Bioelectron. 60, 318–324 (2014).
[Crossref] [PubMed]

Liss, M.

M. Liss, B. Petersen, H. Wolf, and E. Prohaska, “An aptamer-based quartz crystal protein biosensor,” Anal. Chem. 74(17), 4488–4495 (2002).
[Crossref] [PubMed]

Liu, Y.

X. Yang, D. Wei, S. Yan, Y. Liu, S. Yu, M. Zhang, Z. Yang, X. Zhu, Q. Huang, H. L. Cui, and W. Fu, “Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy,” J. Biophotonics 9(10), 1050–1058 (2016).
[Crossref] [PubMed]

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref] [PubMed]

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref] [PubMed]

Lu, W.

K. Chang, Y. Pi, W. Lu, F. Wang, F. Pan, F. Li, S. Jia, J. Shi, S. Deng, and M. Chen, “Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array,” Biosens. Bioelectron. 60, 318–324 (2014).
[Crossref] [PubMed]

Luo, R.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The Amber biomolecular simulation programs,” J. Comput. Chem. 26(16), 1668–1688 (2005).
[Crossref] [PubMed]

Luo, Y.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref] [PubMed]

Luong, T. Q.

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst (Lond.) 137(3), 575–579 (2012).
[Crossref] [PubMed]

MacCallum, J. L.

A. Perez, J. L. MacCallum, E. Brini, C. Simmerling, and K. A. Dill, “Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations,” J. Chem. Theory Comput. 11(10), 4770–4779 (2015).
[Crossref] [PubMed]

Malinowska, K. H.

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst, E. Durner, W. Ott, D. B. Fried, E. A. Bayer, K. Schulten, H. E. Gaub, and M. A. Nash, “Ultrastable cellulosome-adhesion complex tightens under load,” Nat. Commun. 5, 5635 (2014).
[Crossref] [PubMed]

Manz, A.

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst (Lond.) 137(3), 575–579 (2012).
[Crossref] [PubMed]

Martin, J.-L.

J.-B. Masson, M.-P. Sauviat, J.-L. Martin, and G. Gallot, “Ionic contrast terahertz near-field imaging of axonal water fluxes,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4808–4812 (2006).
[Crossref] [PubMed]

Masson, J.-B.

J.-B. Masson, M.-P. Sauviat, J.-L. Martin, and G. Gallot, “Ionic contrast terahertz near-field imaging of axonal water fluxes,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4808–4812 (2006).
[Crossref] [PubMed]

Matthews, C. S.

C. S. Ferreira, C. S. Matthews, and S. Missailidis, “DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers,” Tumour Biol. 27(6), 289–301 (2006).
[Crossref] [PubMed]

Max, J.-J.

J.-J. Max and C. Chapados, “IR spectroscopy of aqueous alkali halide solutions: pure salt-solvated water spectra and hydration numbers,” J. Chem. Phys. 115(6), 2664–2675 (2001).
[Crossref]

Mazur, K.

K. Mazur, I. A. Heisler, and S. R. Meech, “THz spectra and dynamics of aqueous solutions studied by the ultrafast optical Kerr effect,” J. Phys. Chem. B 115(11), 2563–2573 (2011).
[Crossref] [PubMed]

Meech, S. R.

K. Mazur, I. A. Heisler, and S. R. Meech, “THz spectra and dynamics of aqueous solutions studied by the ultrafast optical Kerr effect,” J. Phys. Chem. B 115(11), 2563–2573 (2011).
[Crossref] [PubMed]

Merz, K. M.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The Amber biomolecular simulation programs,” J. Comput. Chem. 26(16), 1668–1688 (2005).
[Crossref] [PubMed]

Metelka, R.

M. Čadková, V. Dvořáková, R. Metelka, Z. Bílková, and L. Korecká, “Alkaline phosphatase labeled antibody-based electrochemical biosensor for sensitive HE4 tumor marker detection,” Electrochem. Commun. 59, 1–4 (2015).
[Crossref]

Milles, L. F.

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst, E. Durner, W. Ott, D. B. Fried, E. A. Bayer, K. Schulten, H. E. Gaub, and M. A. Nash, “Ultrastable cellulosome-adhesion complex tightens under load,” Nat. Commun. 5, 5635 (2014).
[Crossref] [PubMed]

Missailidis, S.

C. S. Ferreira, C. S. Matthews, and S. Missailidis, “DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers,” Tumour Biol. 27(6), 289–301 (2006).
[Crossref] [PubMed]

Mohan, R. V.

K. L. Rhinehardt, G. Srinivas, and R. V. Mohan, “Molecular dynamics simulation analysis of anti-MUC1 aptamer and mucin 1 peptide binding,” J. Phys. Chem. B 119(22), 6571–6583 (2015).
[Crossref] [PubMed]

Nam, C.-H.

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst (Lond.) 137(3), 575–579 (2012).
[Crossref] [PubMed]

Nash, M. A.

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst, E. Durner, W. Ott, D. B. Fried, E. A. Bayer, K. Schulten, H. E. Gaub, and M. A. Nash, “Ultrastable cellulosome-adhesion complex tightens under load,” Nat. Commun. 5, 5635 (2014).
[Crossref] [PubMed]

Nomoto, M.

L. Kirnarsky, O. Prakash, S. M. Vogen, M. Nomoto, M. A. Hollingsworth, and S. Sherman, “Structural effects of O-glycosylation on a 15-residue peptide from the mucin (MUC1) core protein,” Biochemistry 39(39), 12076–12082 (2000).
[Crossref] [PubMed]

Oh, S. S.

H. Qu, A. T. Csordas, J. Wang, S. S. Oh, M. S. Eisenstein, and H. T. Soh, “Rapid and label-free strategy to isolate aptamers for metal ions,” ACS Nano 10(8), 7558–7565 (2016).
[Crossref] [PubMed]

Onuchic, J. N.

Y. Levy and J. N. Onuchic, “Water mediation in protein folding and molecular recognition,” Annu. Rev. Biophys. Biomol. Struct. 35(1), 389–415 (2006).
[Crossref] [PubMed]

Onufriev, A.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The Amber biomolecular simulation programs,” J. Comput. Chem. 26(16), 1668–1688 (2005).
[Crossref] [PubMed]

Ott, W.

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst, E. Durner, W. Ott, D. B. Fried, E. A. Bayer, K. Schulten, H. E. Gaub, and M. A. Nash, “Ultrastable cellulosome-adhesion complex tightens under load,” Nat. Commun. 5, 5635 (2014).
[Crossref] [PubMed]

Pal, S. K.

S. K. Pal, J. Peon, B. Bagchi, and A. H. Zewail, “Biological Water: Femtosecond Dynamics of Macromolecular Hydration,” J. Phys. Chem. B 106(48), 12376–12395 (2002).
[Crossref]

Pan, F.

K. Chang, Y. Pi, W. Lu, F. Wang, F. Pan, F. Li, S. Jia, J. Shi, S. Deng, and M. Chen, “Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array,” Biosens. Bioelectron. 60, 318–324 (2014).
[Crossref] [PubMed]

Peng, Y.

Peon, J.

S. K. Pal, J. Peon, B. Bagchi, and A. H. Zewail, “Biological Water: Femtosecond Dynamics of Macromolecular Hydration,” J. Phys. Chem. B 106(48), 12376–12395 (2002).
[Crossref]

Perez, A.

A. Perez, J. L. MacCallum, E. Brini, C. Simmerling, and K. A. Dill, “Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations,” J. Chem. Theory Comput. 11(10), 4770–4779 (2015).
[Crossref] [PubMed]

Petersen, B.

M. Liss, B. Petersen, H. Wolf, and E. Prohaska, “An aptamer-based quartz crystal protein biosensor,” Anal. Chem. 74(17), 4488–4495 (2002).
[Crossref] [PubMed]

Pi, Y.

K. Chang, Y. Pi, W. Lu, F. Wang, F. Pan, F. Li, S. Jia, J. Shi, S. Deng, and M. Chen, “Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array,” Biosens. Bioelectron. 60, 318–324 (2014).
[Crossref] [PubMed]

Pickwell-MacPherson, E.

Y. Sun, J. Zhong, C. Zhang, J. Zuo, and E. Pickwell-MacPherson, “Label-free detection and characterization of the binding of hemagglutinin protein and broadly neutralizing monoclonal antibodies using terahertz spectroscopy,” J. Biomed. Opt. 20(3), 037006 (2015).
[Crossref] [PubMed]

Prakash, O.

L. Kirnarsky, O. Prakash, S. M. Vogen, M. Nomoto, M. A. Hollingsworth, and S. Sherman, “Structural effects of O-glycosylation on a 15-residue peptide from the mucin (MUC1) core protein,” Biochemistry 39(39), 12076–12082 (2000).
[Crossref] [PubMed]

Prohaska, E.

M. Liss, B. Petersen, H. Wolf, and E. Prohaska, “An aptamer-based quartz crystal protein biosensor,” Anal. Chem. 74(17), 4488–4495 (2002).
[Crossref] [PubMed]

Qu, H.

H. Qu, A. T. Csordas, J. Wang, S. S. Oh, M. S. Eisenstein, and H. T. Soh, “Rapid and label-free strategy to isolate aptamers for metal ions,” ACS Nano 10(8), 7558–7565 (2016).
[Crossref] [PubMed]

Rhinehardt, K. L.

K. L. Rhinehardt, G. Srinivas, and R. V. Mohan, “Molecular dynamics simulation analysis of anti-MUC1 aptamer and mucin 1 peptide binding,” J. Phys. Chem. B 119(22), 6571–6583 (2015).
[Crossref] [PubMed]

Root, L. J.

L. J. Root and B. J. Berne, “Effect of pressure on hydrogen bonding in glycerol: A molecular dynamics investigation,” J. Chem. Phys. 107(11), 4350–4357 (1997).
[Crossref]

Ropp, J.

J. Ropp, C. Lawrence, T. C. Farrar, and J. L. Skinner, “Rotational motion in liquid water is anisotropic: a nuclear magnetic resonance and molecular dynamics simulation study,” J. Am. Chem. Soc. 123(33), 8047–8052 (2001).
[Crossref] [PubMed]

Ruocco, G.

G. Ruocco and F. Sette, “The high-frequency dynamics of liquid water,” J. Phys. Condens. Matter 11(24), R259–R293 (1999).
[Crossref]

Sagi, I.

J. Dielmann-Gessner, M. Grossman, V. Conti Nibali, B. Born, I. Solomonov, G. B. Fields, M. Havenith, and I. Sagi, “Enzymatic turnover of macromolecules generates long-lasting protein-water-coupled motions beyond reaction steady state,” Proc. Natl. Acad. Sci. U.S.A. 111(50), 17857–17862 (2014).
[Crossref] [PubMed]

Sampoli, M.

D. Di Cola, A. Deriu, M. Sampoli, and A. Torcini, “Proton dynamics in supercooled water by molecular dynamics simulations and quasielastic neutron scattering,” J. Chem. Phys. 104(11), 4223–4232 (1996).
[Crossref]

Sauviat, M.-P.

J.-B. Masson, M.-P. Sauviat, J.-L. Martin, and G. Gallot, “Ionic contrast terahertz near-field imaging of axonal water fluxes,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4808–4812 (2006).
[Crossref] [PubMed]

Schoeler, C.

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst, E. Durner, W. Ott, D. B. Fried, E. A. Bayer, K. Schulten, H. E. Gaub, and M. A. Nash, “Ultrastable cellulosome-adhesion complex tightens under load,” Nat. Commun. 5, 5635 (2014).
[Crossref] [PubMed]

Schulten, K.

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst, E. Durner, W. Ott, D. B. Fried, E. A. Bayer, K. Schulten, H. E. Gaub, and M. A. Nash, “Ultrastable cellulosome-adhesion complex tightens under load,” Nat. Commun. 5, 5635 (2014).
[Crossref] [PubMed]

Schwabe, J. W.

J. W. Schwabe, “The role of water in protein-DNA interactions,” Curr. Opin. Struct. Biol. 7(1), 126–134 (1997).
[Crossref] [PubMed]

Sette, F.

G. Ruocco and F. Sette, “The high-frequency dynamics of liquid water,” J. Phys. Condens. Matter 11(24), R259–R293 (1999).
[Crossref]

Sherman, S.

L. Kirnarsky, O. Prakash, S. M. Vogen, M. Nomoto, M. A. Hollingsworth, and S. Sherman, “Structural effects of O-glycosylation on a 15-residue peptide from the mucin (MUC1) core protein,” Biochemistry 39(39), 12076–12082 (2000).
[Crossref] [PubMed]

Shi, C.

M. Zhang, D. Wei, M. Tang, C. Shi, H. Cui, and C. Du, “Molecular dynamics simulations of conformation and chain length dependent terahertz spectra of alanine polypeptides,” Mol. Simul. 42(5), 398–404 (2016).
[Crossref]

Shi, J.

K. Chang, Y. Pi, W. Lu, F. Wang, F. Pan, F. Li, S. Jia, J. Shi, S. Deng, and M. Chen, “Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array,” Biosens. Bioelectron. 60, 318–324 (2014).
[Crossref] [PubMed]

Simmerling, C.

A. Perez, J. L. MacCallum, E. Brini, C. Simmerling, and K. A. Dill, “Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations,” J. Chem. Theory Comput. 11(10), 4770–4779 (2015).
[Crossref] [PubMed]

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The Amber biomolecular simulation programs,” J. Comput. Chem. 26(16), 1668–1688 (2005).
[Crossref] [PubMed]

Skinner, J. L.

H. J. Bakker and J. L. Skinner, “Vibrational spectroscopy as a probe of structure and dynamics in liquid water,” Chem. Rev. 110(3), 1498–1517 (2010).
[Crossref] [PubMed]

J. Ropp, C. Lawrence, T. C. Farrar, and J. L. Skinner, “Rotational motion in liquid water is anisotropic: a nuclear magnetic resonance and molecular dynamics simulation study,” J. Am. Chem. Soc. 123(33), 8047–8052 (2001).
[Crossref] [PubMed]

Soh, H. T.

H. Qu, A. T. Csordas, J. Wang, S. S. Oh, M. S. Eisenstein, and H. T. Soh, “Rapid and label-free strategy to isolate aptamers for metal ions,” ACS Nano 10(8), 7558–7565 (2016).
[Crossref] [PubMed]

Solomonov, I.

J. Dielmann-Gessner, M. Grossman, V. Conti Nibali, B. Born, I. Solomonov, G. B. Fields, M. Havenith, and I. Sagi, “Enzymatic turnover of macromolecules generates long-lasting protein-water-coupled motions beyond reaction steady state,” Proc. Natl. Acad. Sci. U.S.A. 111(50), 17857–17862 (2014).
[Crossref] [PubMed]

Song, B.

Srinivas, G.

K. L. Rhinehardt, G. Srinivas, and R. V. Mohan, “Molecular dynamics simulation analysis of anti-MUC1 aptamer and mucin 1 peptide binding,” J. Phys. Chem. B 119(22), 6571–6583 (2015).
[Crossref] [PubMed]

Sun, Y.

Y. Sun, J. Zhong, C. Zhang, J. Zuo, and E. Pickwell-MacPherson, “Label-free detection and characterization of the binding of hemagglutinin protein and broadly neutralizing monoclonal antibodies using terahertz spectroscopy,” J. Biomed. Opt. 20(3), 037006 (2015).
[Crossref] [PubMed]

Szostak, J. W.

A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature 346(6287), 818–822 (1990).
[Crossref] [PubMed]

Tang, M.

M. Zhang, D. Wei, M. Tang, C. Shi, H. Cui, and C. Du, “Molecular dynamics simulations of conformation and chain length dependent terahertz spectra of alanine polypeptides,” Mol. Simul. 42(5), 398–404 (2016).
[Crossref]

Taniguchi, T.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Teixeira, J.

J. Teixeira, M. C. Bellissent-Funel, S. H. Chen, and B. Dorner, “Observation of new short-wavelength collective excitations in heavy water by coherent inelastic neutron scattering,” Phys. Rev. Lett. 54(25), 2681–2683 (1985).
[Crossref] [PubMed]

Torcini, A.

D. Di Cola, A. Deriu, M. Sampoli, and A. Torcini, “Proton dynamics in supercooled water by molecular dynamics simulations and quasielastic neutron scattering,” J. Chem. Phys. 104(11), 4223–4232 (1996).
[Crossref]

Vogen, S. M.

L. Kirnarsky, O. Prakash, S. M. Vogen, M. Nomoto, M. A. Hollingsworth, and S. Sherman, “Structural effects of O-glycosylation on a 15-residue peptide from the mucin (MUC1) core protein,” Biochemistry 39(39), 12076–12082 (2000).
[Crossref] [PubMed]

Wang, B.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The Amber biomolecular simulation programs,” J. Comput. Chem. 26(16), 1668–1688 (2005).
[Crossref] [PubMed]

Wang, F.

K. Chang, Y. Pi, W. Lu, F. Wang, F. Pan, F. Li, S. Jia, J. Shi, S. Deng, and M. Chen, “Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array,” Biosens. Bioelectron. 60, 318–324 (2014).
[Crossref] [PubMed]

Wang, H.

X. Jiang, H. Wang, H. Wang, Y. Zhuo, R. Yuan, and Y. Chai, “Electrochemiluminescence Biosensor Based on 3-D DNA Nanomachine Signal Probe Powered by Protein-Aptamer Binding Complex for Ultrasensitive Mucin 1 Detection,” Anal. Chem. 89(7), 4280–4286 (2017).
[Crossref] [PubMed]

X. Jiang, H. Wang, H. Wang, Y. Zhuo, R. Yuan, and Y. Chai, “Electrochemiluminescence Biosensor Based on 3-D DNA Nanomachine Signal Probe Powered by Protein-Aptamer Binding Complex for Ultrasensitive Mucin 1 Detection,” Anal. Chem. 89(7), 4280–4286 (2017).
[Crossref] [PubMed]

Wang, J.

H. Qu, A. T. Csordas, J. Wang, S. S. Oh, M. S. Eisenstein, and H. T. Soh, “Rapid and label-free strategy to isolate aptamers for metal ions,” ACS Nano 10(8), 7558–7565 (2016).
[Crossref] [PubMed]

Wang, L.

X. Wu, Y. e, X. Xu, and L. Wang, “Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy,” Appl. Phys. Lett. 101(3), 033704 (2012).
[Crossref]

Wang, Q.

R. Hu, W. Wen, Q. Wang, H. Xiong, X. Zhang, H. Gu, and S. Wang, “Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1,” Biosens. Bioelectron. 53, 384–389 (2014).
[Crossref] [PubMed]

Wang, S.

R. Hu, W. Wen, Q. Wang, H. Xiong, X. Zhang, H. Gu, and S. Wang, “Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1,” Biosens. Bioelectron. 53, 384–389 (2014).
[Crossref] [PubMed]

Wang, W.

S. Huang, W. Wang, F. Cheng, H. Yao, and J.-J. Zhu, “Highly sensitive detection of mercury ion based on T-rich DNA machine using portable glucose meter,” Sens. Actuators B Chem. 242, 347–354 (2017).
[Crossref]

Wei, D.

M. Zhang, D. Wei, M. Tang, C. Shi, H. Cui, and C. Du, “Molecular dynamics simulations of conformation and chain length dependent terahertz spectra of alanine polypeptides,” Mol. Simul. 42(5), 398–404 (2016).
[Crossref]

X. Yang, D. Wei, S. Yan, Y. Liu, S. Yu, M. Zhang, Z. Yang, X. Zhu, Q. Huang, H. L. Cui, and W. Fu, “Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy,” J. Biophotonics 9(10), 1050–1058 (2016).
[Crossref] [PubMed]

Wen, W.

R. Hu, W. Wen, Q. Wang, H. Xiong, X. Zhang, H. Gu, and S. Wang, “Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1,” Biosens. Bioelectron. 53, 384–389 (2014).
[Crossref] [PubMed]

Wolf, H.

M. Liss, B. Petersen, H. Wolf, and E. Prohaska, “An aptamer-based quartz crystal protein biosensor,” Anal. Chem. 74(17), 4488–4495 (2002).
[Crossref] [PubMed]

Woods, R. J.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The Amber biomolecular simulation programs,” J. Comput. Chem. 26(16), 1668–1688 (2005).
[Crossref] [PubMed]

Wu, X.

X. Wu, Y. e, X. Xu, and L. Wang, “Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy,” Appl. Phys. Lett. 101(3), 033704 (2012).
[Crossref]

Xiong, H.

R. Hu, W. Wen, Q. Wang, H. Xiong, X. Zhang, H. Gu, and S. Wang, “Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1,” Biosens. Bioelectron. 53, 384–389 (2014).
[Crossref] [PubMed]

Xu, X.

X. Wu, Y. e, X. Xu, and L. Wang, “Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy,” Appl. Phys. Lett. 101(3), 033704 (2012).
[Crossref]

Yan, S.

X. Yang, D. Wei, S. Yan, Y. Liu, S. Yu, M. Zhang, Z. Yang, X. Zhu, Q. Huang, H. L. Cui, and W. Fu, “Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy,” J. Biophotonics 9(10), 1050–1058 (2016).
[Crossref] [PubMed]

Yang, K.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref] [PubMed]

Yang, X.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref] [PubMed]

X. Yang, D. Wei, S. Yan, Y. Liu, S. Yu, M. Zhang, Z. Yang, X. Zhu, Q. Huang, H. L. Cui, and W. Fu, “Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy,” J. Biophotonics 9(10), 1050–1058 (2016).
[Crossref] [PubMed]

Yang, Z.

X. Yang, D. Wei, S. Yan, Y. Liu, S. Yu, M. Zhang, Z. Yang, X. Zhu, Q. Huang, H. L. Cui, and W. Fu, “Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy,” J. Biophotonics 9(10), 1050–1058 (2016).
[Crossref] [PubMed]

Yao, H.

S. Huang, W. Wang, F. Cheng, H. Yao, and J.-J. Zhu, “Highly sensitive detection of mercury ion based on T-rich DNA machine using portable glucose meter,” Sens. Actuators B Chem. 242, 347–354 (2017).
[Crossref]

Yokoyama, S.

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Yu, S.

X. Yang, D. Wei, S. Yan, Y. Liu, S. Yu, M. Zhang, Z. Yang, X. Zhu, Q. Huang, H. L. Cui, and W. Fu, “Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy,” J. Biophotonics 9(10), 1050–1058 (2016).
[Crossref] [PubMed]

Yu, X.

S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, “An extended dynamical hydration shell around proteins,” Proc. Natl. Acad. Sci. U.S.A. 104(52), 20749–20752 (2007).
[Crossref] [PubMed]

Yuan, R.

X. Jiang, H. Wang, H. Wang, Y. Zhuo, R. Yuan, and Y. Chai, “Electrochemiluminescence Biosensor Based on 3-D DNA Nanomachine Signal Probe Powered by Protein-Aptamer Binding Complex for Ultrasensitive Mucin 1 Detection,” Anal. Chem. 89(7), 4280–4286 (2017).
[Crossref] [PubMed]

Yuan, X.

Zewail, A. H.

S. K. Pal, J. Peon, B. Bagchi, and A. H. Zewail, “Biological Water: Femtosecond Dynamics of Macromolecular Hydration,” J. Phys. Chem. B 106(48), 12376–12395 (2002).
[Crossref]

Zhang, C.

Y. Sun, J. Zhong, C. Zhang, J. Zuo, and E. Pickwell-MacPherson, “Label-free detection and characterization of the binding of hemagglutinin protein and broadly neutralizing monoclonal antibodies using terahertz spectroscopy,” J. Biomed. Opt. 20(3), 037006 (2015).
[Crossref] [PubMed]

Zhang, L.

Y. Huang, P. Kannan, L. Zhang, T. Chen, and D.-H. Kim, “Concave gold nanoparticle-based highly sensitive electrochemical IgG immunobiosensor for the detection of antibody-antigen interactions,” RSC Advances 5(72), 58478–58484 (2015).
[Crossref]

Zhang, M.

M. Zhang, D. Wei, M. Tang, C. Shi, H. Cui, and C. Du, “Molecular dynamics simulations of conformation and chain length dependent terahertz spectra of alanine polypeptides,” Mol. Simul. 42(5), 398–404 (2016).
[Crossref]

X. Yang, D. Wei, S. Yan, Y. Liu, S. Yu, M. Zhang, Z. Yang, X. Zhu, Q. Huang, H. L. Cui, and W. Fu, “Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy,” J. Biophotonics 9(10), 1050–1058 (2016).
[Crossref] [PubMed]

Zhang, X.

R. Hu, W. Wen, Q. Wang, H. Xiong, X. Zhang, H. Gu, and S. Wang, “Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1,” Biosens. Bioelectron. 53, 384–389 (2014).
[Crossref] [PubMed]

Zhao, H.

Zhao, X.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref] [PubMed]

Zhong, J.

Y. Sun, J. Zhong, C. Zhang, J. Zuo, and E. Pickwell-MacPherson, “Label-free detection and characterization of the binding of hemagglutinin protein and broadly neutralizing monoclonal antibodies using terahertz spectroscopy,” J. Biomed. Opt. 20(3), 037006 (2015).
[Crossref] [PubMed]

Zhu, J.-J.

S. Huang, W. Wang, F. Cheng, H. Yao, and J.-J. Zhu, “Highly sensitive detection of mercury ion based on T-rich DNA machine using portable glucose meter,” Sens. Actuators B Chem. 242, 347–354 (2017).
[Crossref]

Zhu, X.

X. Yang, D. Wei, S. Yan, Y. Liu, S. Yu, M. Zhang, Z. Yang, X. Zhu, Q. Huang, H. L. Cui, and W. Fu, “Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy,” J. Biophotonics 9(10), 1050–1058 (2016).
[Crossref] [PubMed]

Zhu, Y.

Zhuo, Y.

X. Jiang, H. Wang, H. Wang, Y. Zhuo, R. Yuan, and Y. Chai, “Electrochemiluminescence Biosensor Based on 3-D DNA Nanomachine Signal Probe Powered by Protein-Aptamer Binding Complex for Ultrasensitive Mucin 1 Detection,” Anal. Chem. 89(7), 4280–4286 (2017).
[Crossref] [PubMed]

Zou, X.

Zuo, J.

Y. Sun, J. Zhong, C. Zhang, J. Zuo, and E. Pickwell-MacPherson, “Label-free detection and characterization of the binding of hemagglutinin protein and broadly neutralizing monoclonal antibodies using terahertz spectroscopy,” J. Biomed. Opt. 20(3), 037006 (2015).
[Crossref] [PubMed]

ACS Nano (1)

H. Qu, A. T. Csordas, J. Wang, S. S. Oh, M. S. Eisenstein, and H. T. Soh, “Rapid and label-free strategy to isolate aptamers for metal ions,” ACS Nano 10(8), 7558–7565 (2016).
[Crossref] [PubMed]

Anal. Chem. (2)

X. Jiang, H. Wang, H. Wang, Y. Zhuo, R. Yuan, and Y. Chai, “Electrochemiluminescence Biosensor Based on 3-D DNA Nanomachine Signal Probe Powered by Protein-Aptamer Binding Complex for Ultrasensitive Mucin 1 Detection,” Anal. Chem. 89(7), 4280–4286 (2017).
[Crossref] [PubMed]

M. Liss, B. Petersen, H. Wolf, and E. Prohaska, “An aptamer-based quartz crystal protein biosensor,” Anal. Chem. 74(17), 4488–4495 (2002).
[Crossref] [PubMed]

Analyst (Lond.) (1)

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst (Lond.) 137(3), 575–579 (2012).
[Crossref] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

Y. Levy and J. N. Onuchic, “Water mediation in protein folding and molecular recognition,” Annu. Rev. Biophys. Biomol. Struct. 35(1), 389–415 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

X. Wu, Y. e, X. Xu, and L. Wang, “Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy,” Appl. Phys. Lett. 101(3), 033704 (2012).
[Crossref]

Biochemistry (1)

L. Kirnarsky, O. Prakash, S. M. Vogen, M. Nomoto, M. A. Hollingsworth, and S. Sherman, “Structural effects of O-glycosylation on a 15-residue peptide from the mucin (MUC1) core protein,” Biochemistry 39(39), 12076–12082 (2000).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Biosens. Bioelectron. (3)

R. Hu, W. Wen, Q. Wang, H. Xiong, X. Zhang, H. Gu, and S. Wang, “Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1,” Biosens. Bioelectron. 53, 384–389 (2014).
[Crossref] [PubMed]

K. Chang, Y. Pi, W. Lu, F. Wang, F. Pan, F. Li, S. Jia, J. Shi, S. Deng, and M. Chen, “Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array,” Biosens. Bioelectron. 60, 318–324 (2014).
[Crossref] [PubMed]

H. Jo, J. Her, and C. Ban, “Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer,” Biosens. Bioelectron. 71, 129–136 (2015).
[Crossref] [PubMed]

Chem. Rev. (1)

H. J. Bakker and J. L. Skinner, “Vibrational spectroscopy as a probe of structure and dynamics in liquid water,” Chem. Rev. 110(3), 1498–1517 (2010).
[Crossref] [PubMed]

Curr. Opin. Struct. Biol. (1)

J. W. Schwabe, “The role of water in protein-DNA interactions,” Curr. Opin. Struct. Biol. 7(1), 126–134 (1997).
[Crossref] [PubMed]

Electrochem. Commun. (1)

M. Čadková, V. Dvořáková, R. Metelka, Z. Bílková, and L. Korecká, “Alkaline phosphatase labeled antibody-based electrochemical biosensor for sensitive HE4 tumor marker detection,” Electrochem. Commun. 59, 1–4 (2015).
[Crossref]

J. Am. Chem. Soc. (2)

J. Ropp, C. Lawrence, T. C. Farrar, and J. L. Skinner, “Rotational motion in liquid water is anisotropic: a nuclear magnetic resonance and molecular dynamics simulation study,” J. Am. Chem. Soc. 123(33), 8047–8052 (2001).
[Crossref] [PubMed]

V. Conti Nibali and M. Havenith, “New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations,” J. Am. Chem. Soc. 136(37), 12800–12807 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

Y. Sun, J. Zhong, C. Zhang, J. Zuo, and E. Pickwell-MacPherson, “Label-free detection and characterization of the binding of hemagglutinin protein and broadly neutralizing monoclonal antibodies using terahertz spectroscopy,” J. Biomed. Opt. 20(3), 037006 (2015).
[Crossref] [PubMed]

J. Biophotonics (1)

X. Yang, D. Wei, S. Yan, Y. Liu, S. Yu, M. Zhang, Z. Yang, X. Zhu, Q. Huang, H. L. Cui, and W. Fu, “Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy,” J. Biophotonics 9(10), 1050–1058 (2016).
[Crossref] [PubMed]

J. Chem. Phys. (3)

J.-J. Max and C. Chapados, “IR spectroscopy of aqueous alkali halide solutions: pure salt-solvated water spectra and hydration numbers,” J. Chem. Phys. 115(6), 2664–2675 (2001).
[Crossref]

D. Di Cola, A. Deriu, M. Sampoli, and A. Torcini, “Proton dynamics in supercooled water by molecular dynamics simulations and quasielastic neutron scattering,” J. Chem. Phys. 104(11), 4223–4232 (1996).
[Crossref]

L. J. Root and B. J. Berne, “Effect of pressure on hydrogen bonding in glycerol: A molecular dynamics investigation,” J. Chem. Phys. 107(11), 4350–4357 (1997).
[Crossref]

J. Chem. Theory Comput. (1)

A. Perez, J. L. MacCallum, E. Brini, C. Simmerling, and K. A. Dill, “Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations,” J. Chem. Theory Comput. 11(10), 4770–4779 (2015).
[Crossref] [PubMed]

J. Comput. Chem. (1)

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The Amber biomolecular simulation programs,” J. Comput. Chem. 26(16), 1668–1688 (2005).
[Crossref] [PubMed]

J. Mammary Gland Biol. Neoplasia (1)

S. J. Gendler, “MUC1, the renaissance molecule,” J. Mammary Gland Biol. Neoplasia 6(3), 339–353 (2001).
[Crossref] [PubMed]

J. Phys. Chem. B (3)

K. L. Rhinehardt, G. Srinivas, and R. V. Mohan, “Molecular dynamics simulation analysis of anti-MUC1 aptamer and mucin 1 peptide binding,” J. Phys. Chem. B 119(22), 6571–6583 (2015).
[Crossref] [PubMed]

K. Mazur, I. A. Heisler, and S. R. Meech, “THz spectra and dynamics of aqueous solutions studied by the ultrafast optical Kerr effect,” J. Phys. Chem. B 115(11), 2563–2573 (2011).
[Crossref] [PubMed]

S. K. Pal, J. Peon, B. Bagchi, and A. H. Zewail, “Biological Water: Femtosecond Dynamics of Macromolecular Hydration,” J. Phys. Chem. B 106(48), 12376–12395 (2002).
[Crossref]

J. Phys. Condens. Matter (1)

G. Ruocco and F. Sette, “The high-frequency dynamics of liquid water,” J. Phys. Condens. Matter 11(24), R259–R293 (1999).
[Crossref]

Methods (1)

M. Heyden and M. Havenith, “Combining THz spectroscopy and MD simulations to study protein-hydration coupling,” Methods 52(1), 74–83 (2010).
[Crossref] [PubMed]

Mol. Simul. (1)

M. Zhang, D. Wei, M. Tang, C. Shi, H. Cui, and C. Du, “Molecular dynamics simulations of conformation and chain length dependent terahertz spectra of alanine polypeptides,” Mol. Simul. 42(5), 398–404 (2016).
[Crossref]

Nat. Commun. (1)

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst, E. Durner, W. Ott, D. B. Fried, E. A. Bayer, K. Schulten, H. E. Gaub, and M. A. Nash, “Ultrastable cellulosome-adhesion complex tightens under load,” Nat. Commun. 5, 5635 (2014).
[Crossref] [PubMed]

Nature (1)

A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature 346(6287), 818–822 (1990).
[Crossref] [PubMed]

Opt. Commun. (1)

T. Taniguchi, A. Hirowatari, T. Ikeda, M. Fukuyama, Y. Amemiya, A. Kuroda, and S. Yokoyama, “Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G,” Opt. Commun. 365, 16–23 (2016).
[Crossref]

Phys. Rev. Lett. (1)

J. Teixeira, M. C. Bellissent-Funel, S. H. Chen, and B. Dorner, “Observation of new short-wavelength collective excitations in heavy water by coherent inelastic neutron scattering,” Phys. Rev. Lett. 54(25), 2681–2683 (1985).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

J.-B. Masson, M.-P. Sauviat, J.-L. Martin, and G. Gallot, “Ionic contrast terahertz near-field imaging of axonal water fluxes,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4808–4812 (2006).
[Crossref] [PubMed]

S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, “An extended dynamical hydration shell around proteins,” Proc. Natl. Acad. Sci. U.S.A. 104(52), 20749–20752 (2007).
[Crossref] [PubMed]

J. Dielmann-Gessner, M. Grossman, V. Conti Nibali, B. Born, I. Solomonov, G. B. Fields, M. Havenith, and I. Sagi, “Enzymatic turnover of macromolecules generates long-lasting protein-water-coupled motions beyond reaction steady state,” Proc. Natl. Acad. Sci. U.S.A. 111(50), 17857–17862 (2014).
[Crossref] [PubMed]

RSC Advances (1)

Y. Huang, P. Kannan, L. Zhang, T. Chen, and D.-H. Kim, “Concave gold nanoparticle-based highly sensitive electrochemical IgG immunobiosensor for the detection of antibody-antigen interactions,” RSC Advances 5(72), 58478–58484 (2015).
[Crossref]

Sens. Actuators B Chem. (1)

S. Huang, W. Wang, F. Cheng, H. Yao, and J.-J. Zhu, “Highly sensitive detection of mercury ion based on T-rich DNA machine using portable glucose meter,” Sens. Actuators B Chem. 242, 347–354 (2017).
[Crossref]

Trends Biotechnol. (1)

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical Applications of Terahertz Spectroscopy and Imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref] [PubMed]

Tumour Biol. (1)

C. S. Ferreira, C. S. Matthews, and S. Missailidis, “DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers,” Tumour Biol. 27(6), 289–301 (2006).
[Crossref] [PubMed]

Other (1)

M. Liu, D. Zhou, M. Zhang, H.-L. Cui, and D. Wang, “A microfluidic chip for terahertz spectral detection,” in Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO),2016IEEE International Conference on(IEEE, 2016), pp. 59–63.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the THz Spectrometer: (a) setup of the THz time-domain spectroscopy system, (b) three-dimensional model of the fluidic chip, and (c) THz frequency-domain spectrum (Frequency range: 0.1–3 THz, average power: 130 nW, peak frequency: 0.13 THz).

Fig. 2
Fig. 2

THz absorption spectra of double deionized water, PBS, and D-PBS solution. Error bars represent the standard deviation.

Fig. 3
Fig. 3

THz absorption spectra of (a) anti-MUC1 aptamer and MUC1 in PBS and D-PBS solution at the concentration of 1 pmol/μL, and (b) concentration-dependent anti-MUC1 aptamer and MUC1 in PBS and D-PBS solution at 1 THz. Error bars represent the standard deviation.

Fig. 4
Fig. 4

THz absorption spectra of (a) random sequence and MUC1 in PBS and D-PBS solution at the concentration of 1 pmol/μL, and (b) concentration-dependent random sequence and MUC1 in PBS and D-PBS solution. Error bars represent the standard deviation.

Fig. 5
Fig. 5

Concentration-dependent THz absorption spectra of anti-MUC1 aptamer and random sequence reacting with MUC1 in D-PBS solution. Error bars represent the standard deviation.

Fig. 6
Fig. 6

Molecular dynamics simulation of hydrogen bond variations in MUC1 peptide and anti-MUC1 aptamer binding process at significant times. (a) Snapshots of MUC1 peptide (red backbone) and anti-MUC1 aptamer (blue backbone) binding process as observed in molecular dynamics simulation (without water molecules or ions). (b) Number of hydrogen bonds formed between aptamer and peptide. (c) The black line shows the number of hydrogen bonds formed between the peptide–aptamer complex and surrounding solvent; the red line shows the number of hydrogen bonds formed between peptide and aptamer as well as between the peptide–aptamer complex and surrounding solvent. The average number of hydrogen bonds is shown as symbols along with corresponding error bars.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α(ν)= lnIr(ν)lnIs(ν) d

Metrics