Abstract

We have used scanning X-ray diffraction (XRD) and X-ray fluorescence (XRF) with micro-focused synchrotron radiation to study histological sections from human substantia nigra (SN). Both XRF and XRD mappings visualize tissue properties, which are inaccessible by conventional microscopy and histology. We propose to use these advanced tools to characterize neuronal tissue in neurodegeneration, in particular in Parkinson’s disease (PD). To this end, we take advantage of the recent experimental progress in x-ray focusing, detection, and use automated data analysis scripts to enable quantitative analysis of large field of views. XRD signals are recorded and analyzed both in the regime of small-angle (SAXS) and wide-angle x-ray scattering (WAXS). The SAXS signal was analyzed in view of the local myelin structure, while WAXS was used to identify crystalline deposits. PD tissue scans exhibited increased amounts of crystallized cholesterol. The XRF analysis showed increased amounts of iron and decreased amounts of copper in the PD tissue compared to the control.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast

Vivek J. Srinivasan, Harsha Radhakrishnan, James Y. Jiang, Scott Barry, and Alex E. Cable
Opt. Express 20(3) 2220-2239 (2012)

Real-time histology in liver disease using multiphoton microscopy with fluorescence lifetime imaging

Haolu Wang, Xiaowen Liang, Yousuf H. Mohammed, James A. Thomas, Kim R. Bridle, Camilla A. Thorling, Jeffrey E. Grice, Zhi Ping Xu, Xin Liu, Darrell H. G. Crawford, and Michael S. Roberts
Biomed. Opt. Express 6(3) 780-792 (2015)

In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH

Mohammad A. Yaseen, Sava Sakadžić, Weicheng Wu, Wolfgang Becker, Karl A. Kasischke, and David A. Boas
Biomed. Opt. Express 4(2) 307-321 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. Bertram and R. E. Tanzi, “The genetic epidemiology of neurodegenerative disease,” J. Clin. Invest. 115, 1449–1457 (2005).
    [Crossref] [PubMed]
  2. A. J. Hughes, S. E. Daniel, Y. Ben-Shlomo, and A. J. Lees, “The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service,” Brain 125, 861 (2002).
    [Crossref] [PubMed]
  3. M. G. Spillantini, M. L. Schmidt, V. M.-Y. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in lewy bodies,” Nature 388, 839–840 (1997).
    [Crossref] [PubMed]
  4. D. T. Dexter, F. R. Wells, A. J. Lee, F. Agid, Y. Agid, P. Jenner, and C. D. Marsden, “Increased nigral iron content and alterations in other metal ions occurring in brain in parkinson’s disease,” J. Neurochem. 52, 1830–1836 (1989).
    [Crossref] [PubMed]
  5. M. Szczerbowska-Boruchowska, A. Krygowska-Wajs, and D. Adamek, “Elemental micro-imaging and quantification of human substantia nigra using synchrotron radiation based x-ray fluorescence - in relation to parkinson’s disease,” J. Phys. Condens. Matter 24, 244104 (2012).
    [Crossref]
  6. V. Dias, E. Junn, and M. M. Mouradian, “The role of oxidative stress in parkinson’s disease,” J. Parkinsons Dis. 3, 461–491 (2013).
  7. E. Carboni and P. Lingor, “Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease,” Metallomics 7, 395–404 (2015).
    [Crossref] [PubMed]
  8. J. Meiser, D. Weindl, and K. Hiller, “Complexity of dopamine metabolism,” Cell Commun. Signal 11, 34 (2013).
    [Crossref] [PubMed]
  9. D. Sulzer, J. Bogulavsky, K. E. Larsen, G. Behr, E. Karatekin, M. H. Kleinman, N. Turro, D. Krantz, R. H. Edwards, L. A. Greene, and L. Zecca, “Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles,” Proc. Natl. Acad. Sci. 97, 11869–11874 (2000).
    [Crossref] [PubMed]
  10. F. A. Zucca, J. Segura-Aguilar, E. Ferrari, P. Muñoz, I. Paris, D. Sulzer, T. Sarna, L. Casella, and L. Zecca, “Interactions of iron, dopamine and neuromelanin pathways in brain aging and parkinson’s disease,” Prog. Neurobiol. 155, 96–119 (2017).
    [Crossref]
  11. M. Doria, L. Maugest, T. Moreau, G. Lizard, and A. Vejux, “Contribution of cholesterol and oxysterols to the pathophysiology of parkinson’s disease,” Free Radic. Biol. Med. 101, 393–400 (2016).
    [Crossref] [PubMed]
  12. A. Sakdinawat and D. Attwood, “Nanoscale x-ray imaging,” Nat. Photon. 4, 840–848 (2010).
    [Crossref]
  13. J. Stangl, C. Mocuta, V. Chamard, and D. Carbone, Nanobeam X-ray Scattering: Probing Matter at the Nanoscale (WILEY-VCH Verlag GmbH & Co. KGaA, 2014).
  14. S. Vogt, J. Maser, and C. Jacobsen, “Data analysis for x-ray fluorescence imaging,” J. Phys. IV France 104, 617–622 (2003).
    [Crossref]
  15. C. J. Fahrni, “Biological applications of x-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals,” Curr. Opin. Chem. Biol. 11, 121–127 (2007).
    [Crossref] [PubMed]
  16. T. Salditt and T. Dučić, Super-Resolution Microscopy Techniques in the Neurosciences (Humana Press, Totowa, NJ, 2014), Chap. X-Ray Microscopy for Neuroscience: Novel Opportunities by Coherent Optics, pp. 257–290.
    [Crossref]
  17. S. Bohic, K. Murphy, W. Paulus, P. Cloetens, M. Salomé, J. Susini, and K. Double, “Intracellular chemical imaging of the developmental phases of human neuromelanin using synchrotron x-ray microspectroscopy,” Anal. Chem. 80, 9557–9566 (2008).
    [Crossref] [PubMed]
  18. M. Szczerbowska-Boruchowska, “X-ray fluorescence spectrometry, an analytical tool in neurochemical research,” X-Ray Spectrom. 37, 21–31 (2008).
    [Crossref]
  19. T. Dučić, S. Quintes, K.-A. Nave, J. Susini, M. Rak, R. Tucoulou, M. Alevra, P. Guttmann, and T. Salditt, “Structure and composition of myelinated axons: A multimodal synchrotron spectro-microscopy study,” J. Struct. Biol. 173, 202–212 (2011).
    [Crossref]
  20. S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
    [Crossref] [PubMed]
  21. S. C. Dodani, D. W. Domaille, C. I. Nam, E. W. Miller, L. A. Finney, S. Vogt, and C. J. Chang, “Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and x-ray fluorescence microscopy,” Proc. Natl. Acad. Sci. 108, 5980–5985 (2011).
    [Crossref] [PubMed]
  22. T. Jensen, M. Bech, O. Bunk, A. Menzel, A. Bouchet, G. L. Duc, R. Feidenhans’l, and F. Pfeiffer, “Molecular x-ray computed tomography of myelin in a rat brain,” NeuroImage 57, 124– 129 (2011).
    [Crossref]
  23. H. Lichtenegger, M. Müller, O. Paris, C. Riekel, and P. Fratzl, “Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction,” J. Appl. Crystallogr. 32, 1127–1133 (1999).
    [Crossref]
  24. P. Fratzl and R. Weinkamer, “Nature’s hierarchical materials,” Prog Mater Sci 52, 1263–1334 (2007).
    [Crossref]
  25. C. Riekel, M. Burghammer, T. G. Dane, C. Ferrero, and M. Rosenthal, “Nanoscale structural features in major ampullate spider silk,” Biomacromolecules 18, 231–241 (2017).
    [Crossref]
  26. M. J. Lynch, S. S. Raphael, L. D. Mellor, P. D. Spare, and M. J. Inwood, Medical Laboratory Technology and Clinical Pathology (WB Saunders Co., 1969), 2nd ed.
  27. A. H. Fischer, K. A. Jacobson, J. Rose, and R. Zeller, “Fixation and permeabilization of cells and tissues,” Cold Spring Harb Protoc 2008, 1–2 (2008).
    [Crossref]
  28. V. Solé, E. Papillon, M. Cotte, P. Walter, and J. Susini, “A multiplatform code for the analysis of energy-dispersive x-ray fluorescence spectra,” Spectrochim Acta B 62, 63–68 (2007).
    [Crossref]
  29. D. A. Kirschner and C. J. Hollingshead, “Processing for electron microscopy alters membrane structure and packing in myelin,” J. Ultrastruct. Res. 73, 211–232 (1980).
    [Crossref] [PubMed]
  30. M. Bernhardt, J.-D. Nicolas, M. Eckermann, B. Eltzner, F. Rehfeldt, and T. Salditt, “Anisotropic x-ray scattering and orientation fields in cardiac tissue cells,” New J. Phys. 19, 013012 (2017).
    [Crossref]
  31. R. Shaharabani, M. Ram-On, R. Avinery, R. Aharoni, R. Arnon, Y. Talmon, and R. Beck, “Structural transition in myelin membrane as initiator of multiple sclerosis,” J. Am. Chem. Soc. 138, 12159–12165 (2016).
    [Crossref]
  32. R. T. Joy and J. B. Finean, “A comparison of the effects of freezing and of treatment with hypertonic solutions on the structure of nerve myelin,” J. Ultrastruct. Res. 8, 264–282 (1963).
    [Crossref] [PubMed]
  33. J. Elkes and J. B. Finean, “X-ray diffraction studies on the effect of temperature on the structure of myelin in the sciatic nerve of the frog,” Exp. Cell Res. 4, 69–81 (1953).
    [Crossref]
  34. J. B. Finean, “The nature and stability of nerve myelin,” Int. Rev. Cytol. 12, 303–336 (1962).
    [Crossref]
  35. C. R. Worthington and A. R. Worthington, “Effect of heat on frog sciatic nerve determined by x-ray diffraction,” Int. J. Biol. Macromol. 3, 159–164 (1981).
    [Crossref]
  36. J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, 2015).
  37. H. S. Shieh, L. G. Hoard, and C. E. Nordman, “Crystal structure of anhydrous cholesterol,” Nature 267, 287–289 (1977).
    [Crossref] [PubMed]
  38. K. M. Davies, S. Bohic, A. Carmona, R. Ortega, V. Cottam, D. J. Hare, J. P. M. Finberg, S. Reyes, G. M. Halliday, J. F. B. Mercer, and K. L. Double, “Copper pathology in vulnerable brain regions in parkinson’s disease,” Neurobiol Aging 35, 858–866 (2014).
    [Crossref]
  39. A. Surowka, M. Töpperwien, M. Bernhardt, J. Nicolas, M. Osterhoff, T. Salditt, D. Adamek, and M. Szczerbowska-Boruchowska, “Combined in-situ imaging of structural organization and elemental composition of substantia nigra neurons in the elderly,” Talanta 161, 368–376 (2016).
    [Crossref] [PubMed]
  40. L. Zecca, T. Shima, A. Stroppolo, C. Goj, G. Battiston, R. Gerbasi, T. Sarna, and H. Swartz, “Interaction of neuromelanin and iron in substantia nigra and other areas of human brain,” Neuroscience 73, 407–415 (1996).
    [Crossref] [PubMed]
  41. M. Szczerbowska-Boruchowska, M. Lankosz, J. Ostachowicz, D. Adamek, A. Krygowska-Wajs, B. Tomik, A. Szczudlik, A. Simionovici, and S. Bohic, “Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation,” X-Ray Spectrom 33, 3–11 (2004).
    [Crossref]
  42. A. Binolfi, R. M. Rasia, C. W. Bertoncini, M. Ceolin, M. Zweckstetter, C. Griesinger, T. M. Jovin, and C. O. Fernández, “Interaction of α-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement,” J. Am. Chem. Soc. 128, 9893–9901 (2006).
    [Crossref] [PubMed]
  43. S. R. Paik, H.-J. Shin, J.-H. Lee, C.-S. Chang, and J. Kim, “Copper(ii)-induced self-oligomerization of α-synuclein,” Biochem. J. 340, 821–828 (1999).
    [Crossref]
  44. V. N. Uversky, J. Li, and A. L. Fink, “Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein: A possible molecular link between parkinson’s disease and heavy metal exposure,” J. Biol. Chem. 276, 44284–44296 (2001).
    [Crossref] [PubMed]
  45. J. Liu, I. Costantino, N. Venugopalan, R. F. Fischetti, B. T. Hyman, M. P. Frosch, T. Gomez-Isla, and L. Makowski, “Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue,” Sci. Rep. 6, 33079 (2016).
    [Crossref] [PubMed]
  46. C. R. Loomis, G. G. Shipley, and D. M. Small, “The phase behavior of hydrated cholesterol,” J. Lipid Res. 20, 525–535 (1979).
    [PubMed]
  47. D. Cheng, A. M. Jenner, G. Shui, W. F. Cheong, T. W. Mitchell, J. R. Nealon, W. S. Kim, H. McCann, M. R. Wenk, G. M. Halliday, and B. Garner, “Lipid pathway alterations in parkinson’s disease primary visual cortex,” PLoS One 6, 1–18 (2011).
  48. Z. Li, J. Zhang, and H. Sun, “Increased plasma levels of phospholipid in parkinson’s disease with mild cognitive impairment,” J. Clin. Neurosci. 22, 1268–1271 (2015).
    [Crossref] [PubMed]
  49. A. Zarrouk, A. Vejux, J. Mackrill, Y. O’Callaghan, M. Hammami, N. O’Brien, and G. Lizard, “Involvement of oxysterols in age-related diseases and ageing processes,” Ageing Res. Rev. 18, 148–162 (2014).
    [Crossref] [PubMed]
  50. M. Bousquet, I. St-Amour, M. Vandal, P. Julien, F. Cicchetti, and F. Calon, “High-fat diet exacerbates MPTP-induced dopaminergic degeneration in mice,” Neurobiol. Dis. 45, 529–538 (2012).
    [Crossref]
  51. A. van Maarschalkerweerd, V. Vetri, and B. Vestergaard, “Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes,” FEBS Lett. 589, 2661–2667 (2015).
    [Crossref] [PubMed]

2017 (3)

F. A. Zucca, J. Segura-Aguilar, E. Ferrari, P. Muñoz, I. Paris, D. Sulzer, T. Sarna, L. Casella, and L. Zecca, “Interactions of iron, dopamine and neuromelanin pathways in brain aging and parkinson’s disease,” Prog. Neurobiol. 155, 96–119 (2017).
[Crossref]

C. Riekel, M. Burghammer, T. G. Dane, C. Ferrero, and M. Rosenthal, “Nanoscale structural features in major ampullate spider silk,” Biomacromolecules 18, 231–241 (2017).
[Crossref]

M. Bernhardt, J.-D. Nicolas, M. Eckermann, B. Eltzner, F. Rehfeldt, and T. Salditt, “Anisotropic x-ray scattering and orientation fields in cardiac tissue cells,” New J. Phys. 19, 013012 (2017).
[Crossref]

2016 (4)

R. Shaharabani, M. Ram-On, R. Avinery, R. Aharoni, R. Arnon, Y. Talmon, and R. Beck, “Structural transition in myelin membrane as initiator of multiple sclerosis,” J. Am. Chem. Soc. 138, 12159–12165 (2016).
[Crossref]

M. Doria, L. Maugest, T. Moreau, G. Lizard, and A. Vejux, “Contribution of cholesterol and oxysterols to the pathophysiology of parkinson’s disease,” Free Radic. Biol. Med. 101, 393–400 (2016).
[Crossref] [PubMed]

A. Surowka, M. Töpperwien, M. Bernhardt, J. Nicolas, M. Osterhoff, T. Salditt, D. Adamek, and M. Szczerbowska-Boruchowska, “Combined in-situ imaging of structural organization and elemental composition of substantia nigra neurons in the elderly,” Talanta 161, 368–376 (2016).
[Crossref] [PubMed]

J. Liu, I. Costantino, N. Venugopalan, R. F. Fischetti, B. T. Hyman, M. P. Frosch, T. Gomez-Isla, and L. Makowski, “Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue,” Sci. Rep. 6, 33079 (2016).
[Crossref] [PubMed]

2015 (3)

Z. Li, J. Zhang, and H. Sun, “Increased plasma levels of phospholipid in parkinson’s disease with mild cognitive impairment,” J. Clin. Neurosci. 22, 1268–1271 (2015).
[Crossref] [PubMed]

A. van Maarschalkerweerd, V. Vetri, and B. Vestergaard, “Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes,” FEBS Lett. 589, 2661–2667 (2015).
[Crossref] [PubMed]

E. Carboni and P. Lingor, “Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease,” Metallomics 7, 395–404 (2015).
[Crossref] [PubMed]

2014 (2)

K. M. Davies, S. Bohic, A. Carmona, R. Ortega, V. Cottam, D. J. Hare, J. P. M. Finberg, S. Reyes, G. M. Halliday, J. F. B. Mercer, and K. L. Double, “Copper pathology in vulnerable brain regions in parkinson’s disease,” Neurobiol Aging 35, 858–866 (2014).
[Crossref]

A. Zarrouk, A. Vejux, J. Mackrill, Y. O’Callaghan, M. Hammami, N. O’Brien, and G. Lizard, “Involvement of oxysterols in age-related diseases and ageing processes,” Ageing Res. Rev. 18, 148–162 (2014).
[Crossref] [PubMed]

2013 (2)

J. Meiser, D. Weindl, and K. Hiller, “Complexity of dopamine metabolism,” Cell Commun. Signal 11, 34 (2013).
[Crossref] [PubMed]

V. Dias, E. Junn, and M. M. Mouradian, “The role of oxidative stress in parkinson’s disease,” J. Parkinsons Dis. 3, 461–491 (2013).

2012 (2)

M. Szczerbowska-Boruchowska, A. Krygowska-Wajs, and D. Adamek, “Elemental micro-imaging and quantification of human substantia nigra using synchrotron radiation based x-ray fluorescence - in relation to parkinson’s disease,” J. Phys. Condens. Matter 24, 244104 (2012).
[Crossref]

M. Bousquet, I. St-Amour, M. Vandal, P. Julien, F. Cicchetti, and F. Calon, “High-fat diet exacerbates MPTP-induced dopaminergic degeneration in mice,” Neurobiol. Dis. 45, 529–538 (2012).
[Crossref]

2011 (5)

D. Cheng, A. M. Jenner, G. Shui, W. F. Cheong, T. W. Mitchell, J. R. Nealon, W. S. Kim, H. McCann, M. R. Wenk, G. M. Halliday, and B. Garner, “Lipid pathway alterations in parkinson’s disease primary visual cortex,” PLoS One 6, 1–18 (2011).

T. Dučić, S. Quintes, K.-A. Nave, J. Susini, M. Rak, R. Tucoulou, M. Alevra, P. Guttmann, and T. Salditt, “Structure and composition of myelinated axons: A multimodal synchrotron spectro-microscopy study,” J. Struct. Biol. 173, 202–212 (2011).
[Crossref]

S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
[Crossref] [PubMed]

S. C. Dodani, D. W. Domaille, C. I. Nam, E. W. Miller, L. A. Finney, S. Vogt, and C. J. Chang, “Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and x-ray fluorescence microscopy,” Proc. Natl. Acad. Sci. 108, 5980–5985 (2011).
[Crossref] [PubMed]

T. Jensen, M. Bech, O. Bunk, A. Menzel, A. Bouchet, G. L. Duc, R. Feidenhans’l, and F. Pfeiffer, “Molecular x-ray computed tomography of myelin in a rat brain,” NeuroImage 57, 124– 129 (2011).
[Crossref]

2010 (1)

A. Sakdinawat and D. Attwood, “Nanoscale x-ray imaging,” Nat. Photon. 4, 840–848 (2010).
[Crossref]

2008 (3)

A. H. Fischer, K. A. Jacobson, J. Rose, and R. Zeller, “Fixation and permeabilization of cells and tissues,” Cold Spring Harb Protoc 2008, 1–2 (2008).
[Crossref]

S. Bohic, K. Murphy, W. Paulus, P. Cloetens, M. Salomé, J. Susini, and K. Double, “Intracellular chemical imaging of the developmental phases of human neuromelanin using synchrotron x-ray microspectroscopy,” Anal. Chem. 80, 9557–9566 (2008).
[Crossref] [PubMed]

M. Szczerbowska-Boruchowska, “X-ray fluorescence spectrometry, an analytical tool in neurochemical research,” X-Ray Spectrom. 37, 21–31 (2008).
[Crossref]

2007 (3)

C. J. Fahrni, “Biological applications of x-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals,” Curr. Opin. Chem. Biol. 11, 121–127 (2007).
[Crossref] [PubMed]

P. Fratzl and R. Weinkamer, “Nature’s hierarchical materials,” Prog Mater Sci 52, 1263–1334 (2007).
[Crossref]

V. Solé, E. Papillon, M. Cotte, P. Walter, and J. Susini, “A multiplatform code for the analysis of energy-dispersive x-ray fluorescence spectra,” Spectrochim Acta B 62, 63–68 (2007).
[Crossref]

2006 (1)

A. Binolfi, R. M. Rasia, C. W. Bertoncini, M. Ceolin, M. Zweckstetter, C. Griesinger, T. M. Jovin, and C. O. Fernández, “Interaction of α-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement,” J. Am. Chem. Soc. 128, 9893–9901 (2006).
[Crossref] [PubMed]

2005 (1)

L. Bertram and R. E. Tanzi, “The genetic epidemiology of neurodegenerative disease,” J. Clin. Invest. 115, 1449–1457 (2005).
[Crossref] [PubMed]

2004 (1)

M. Szczerbowska-Boruchowska, M. Lankosz, J. Ostachowicz, D. Adamek, A. Krygowska-Wajs, B. Tomik, A. Szczudlik, A. Simionovici, and S. Bohic, “Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation,” X-Ray Spectrom 33, 3–11 (2004).
[Crossref]

2003 (1)

S. Vogt, J. Maser, and C. Jacobsen, “Data analysis for x-ray fluorescence imaging,” J. Phys. IV France 104, 617–622 (2003).
[Crossref]

2002 (1)

A. J. Hughes, S. E. Daniel, Y. Ben-Shlomo, and A. J. Lees, “The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service,” Brain 125, 861 (2002).
[Crossref] [PubMed]

2001 (1)

V. N. Uversky, J. Li, and A. L. Fink, “Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein: A possible molecular link between parkinson’s disease and heavy metal exposure,” J. Biol. Chem. 276, 44284–44296 (2001).
[Crossref] [PubMed]

2000 (1)

D. Sulzer, J. Bogulavsky, K. E. Larsen, G. Behr, E. Karatekin, M. H. Kleinman, N. Turro, D. Krantz, R. H. Edwards, L. A. Greene, and L. Zecca, “Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles,” Proc. Natl. Acad. Sci. 97, 11869–11874 (2000).
[Crossref] [PubMed]

1999 (2)

H. Lichtenegger, M. Müller, O. Paris, C. Riekel, and P. Fratzl, “Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction,” J. Appl. Crystallogr. 32, 1127–1133 (1999).
[Crossref]

S. R. Paik, H.-J. Shin, J.-H. Lee, C.-S. Chang, and J. Kim, “Copper(ii)-induced self-oligomerization of α-synuclein,” Biochem. J. 340, 821–828 (1999).
[Crossref]

1997 (1)

M. G. Spillantini, M. L. Schmidt, V. M.-Y. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in lewy bodies,” Nature 388, 839–840 (1997).
[Crossref] [PubMed]

1996 (1)

L. Zecca, T. Shima, A. Stroppolo, C. Goj, G. Battiston, R. Gerbasi, T. Sarna, and H. Swartz, “Interaction of neuromelanin and iron in substantia nigra and other areas of human brain,” Neuroscience 73, 407–415 (1996).
[Crossref] [PubMed]

1989 (1)

D. T. Dexter, F. R. Wells, A. J. Lee, F. Agid, Y. Agid, P. Jenner, and C. D. Marsden, “Increased nigral iron content and alterations in other metal ions occurring in brain in parkinson’s disease,” J. Neurochem. 52, 1830–1836 (1989).
[Crossref] [PubMed]

1981 (1)

C. R. Worthington and A. R. Worthington, “Effect of heat on frog sciatic nerve determined by x-ray diffraction,” Int. J. Biol. Macromol. 3, 159–164 (1981).
[Crossref]

1980 (1)

D. A. Kirschner and C. J. Hollingshead, “Processing for electron microscopy alters membrane structure and packing in myelin,” J. Ultrastruct. Res. 73, 211–232 (1980).
[Crossref] [PubMed]

1979 (1)

C. R. Loomis, G. G. Shipley, and D. M. Small, “The phase behavior of hydrated cholesterol,” J. Lipid Res. 20, 525–535 (1979).
[PubMed]

1977 (1)

H. S. Shieh, L. G. Hoard, and C. E. Nordman, “Crystal structure of anhydrous cholesterol,” Nature 267, 287–289 (1977).
[Crossref] [PubMed]

1963 (1)

R. T. Joy and J. B. Finean, “A comparison of the effects of freezing and of treatment with hypertonic solutions on the structure of nerve myelin,” J. Ultrastruct. Res. 8, 264–282 (1963).
[Crossref] [PubMed]

1962 (1)

J. B. Finean, “The nature and stability of nerve myelin,” Int. Rev. Cytol. 12, 303–336 (1962).
[Crossref]

1953 (1)

J. Elkes and J. B. Finean, “X-ray diffraction studies on the effect of temperature on the structure of myelin in the sciatic nerve of the frog,” Exp. Cell Res. 4, 69–81 (1953).
[Crossref]

Adamek, D.

A. Surowka, M. Töpperwien, M. Bernhardt, J. Nicolas, M. Osterhoff, T. Salditt, D. Adamek, and M. Szczerbowska-Boruchowska, “Combined in-situ imaging of structural organization and elemental composition of substantia nigra neurons in the elderly,” Talanta 161, 368–376 (2016).
[Crossref] [PubMed]

M. Szczerbowska-Boruchowska, A. Krygowska-Wajs, and D. Adamek, “Elemental micro-imaging and quantification of human substantia nigra using synchrotron radiation based x-ray fluorescence - in relation to parkinson’s disease,” J. Phys. Condens. Matter 24, 244104 (2012).
[Crossref]

M. Szczerbowska-Boruchowska, M. Lankosz, J. Ostachowicz, D. Adamek, A. Krygowska-Wajs, B. Tomik, A. Szczudlik, A. Simionovici, and S. Bohic, “Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation,” X-Ray Spectrom 33, 3–11 (2004).
[Crossref]

Agid, F.

D. T. Dexter, F. R. Wells, A. J. Lee, F. Agid, Y. Agid, P. Jenner, and C. D. Marsden, “Increased nigral iron content and alterations in other metal ions occurring in brain in parkinson’s disease,” J. Neurochem. 52, 1830–1836 (1989).
[Crossref] [PubMed]

Agid, Y.

D. T. Dexter, F. R. Wells, A. J. Lee, F. Agid, Y. Agid, P. Jenner, and C. D. Marsden, “Increased nigral iron content and alterations in other metal ions occurring in brain in parkinson’s disease,” J. Neurochem. 52, 1830–1836 (1989).
[Crossref] [PubMed]

Aharoni, R.

R. Shaharabani, M. Ram-On, R. Avinery, R. Aharoni, R. Arnon, Y. Talmon, and R. Beck, “Structural transition in myelin membrane as initiator of multiple sclerosis,” J. Am. Chem. Soc. 138, 12159–12165 (2016).
[Crossref]

Alevra, M.

T. Dučić, S. Quintes, K.-A. Nave, J. Susini, M. Rak, R. Tucoulou, M. Alevra, P. Guttmann, and T. Salditt, “Structure and composition of myelinated axons: A multimodal synchrotron spectro-microscopy study,” J. Struct. Biol. 173, 202–212 (2011).
[Crossref]

Altissimo, M.

S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
[Crossref] [PubMed]

Arnon, R.

R. Shaharabani, M. Ram-On, R. Avinery, R. Aharoni, R. Arnon, Y. Talmon, and R. Beck, “Structural transition in myelin membrane as initiator of multiple sclerosis,” J. Am. Chem. Soc. 138, 12159–12165 (2016).
[Crossref]

Attwood, D.

A. Sakdinawat and D. Attwood, “Nanoscale x-ray imaging,” Nat. Photon. 4, 840–848 (2010).
[Crossref]

Avinery, R.

R. Shaharabani, M. Ram-On, R. Avinery, R. Aharoni, R. Arnon, Y. Talmon, and R. Beck, “Structural transition in myelin membrane as initiator of multiple sclerosis,” J. Am. Chem. Soc. 138, 12159–12165 (2016).
[Crossref]

Battiston, G.

L. Zecca, T. Shima, A. Stroppolo, C. Goj, G. Battiston, R. Gerbasi, T. Sarna, and H. Swartz, “Interaction of neuromelanin and iron in substantia nigra and other areas of human brain,” Neuroscience 73, 407–415 (1996).
[Crossref] [PubMed]

Bech, M.

T. Jensen, M. Bech, O. Bunk, A. Menzel, A. Bouchet, G. L. Duc, R. Feidenhans’l, and F. Pfeiffer, “Molecular x-ray computed tomography of myelin in a rat brain,” NeuroImage 57, 124– 129 (2011).
[Crossref]

Beck, R.

R. Shaharabani, M. Ram-On, R. Avinery, R. Aharoni, R. Arnon, Y. Talmon, and R. Beck, “Structural transition in myelin membrane as initiator of multiple sclerosis,” J. Am. Chem. Soc. 138, 12159–12165 (2016).
[Crossref]

Behr, G.

D. Sulzer, J. Bogulavsky, K. E. Larsen, G. Behr, E. Karatekin, M. H. Kleinman, N. Turro, D. Krantz, R. H. Edwards, L. A. Greene, and L. Zecca, “Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles,” Proc. Natl. Acad. Sci. 97, 11869–11874 (2000).
[Crossref] [PubMed]

Ben-Shlomo, Y.

A. J. Hughes, S. E. Daniel, Y. Ben-Shlomo, and A. J. Lees, “The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service,” Brain 125, 861 (2002).
[Crossref] [PubMed]

Bernhardt, M.

M. Bernhardt, J.-D. Nicolas, M. Eckermann, B. Eltzner, F. Rehfeldt, and T. Salditt, “Anisotropic x-ray scattering and orientation fields in cardiac tissue cells,” New J. Phys. 19, 013012 (2017).
[Crossref]

A. Surowka, M. Töpperwien, M. Bernhardt, J. Nicolas, M. Osterhoff, T. Salditt, D. Adamek, and M. Szczerbowska-Boruchowska, “Combined in-situ imaging of structural organization and elemental composition of substantia nigra neurons in the elderly,” Talanta 161, 368–376 (2016).
[Crossref] [PubMed]

Bertoncini, C. W.

A. Binolfi, R. M. Rasia, C. W. Bertoncini, M. Ceolin, M. Zweckstetter, C. Griesinger, T. M. Jovin, and C. O. Fernández, “Interaction of α-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement,” J. Am. Chem. Soc. 128, 9893–9901 (2006).
[Crossref] [PubMed]

Bertram, L.

L. Bertram and R. E. Tanzi, “The genetic epidemiology of neurodegenerative disease,” J. Clin. Invest. 115, 1449–1457 (2005).
[Crossref] [PubMed]

Binolfi, A.

A. Binolfi, R. M. Rasia, C. W. Bertoncini, M. Ceolin, M. Zweckstetter, C. Griesinger, T. M. Jovin, and C. O. Fernández, “Interaction of α-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement,” J. Am. Chem. Soc. 128, 9893–9901 (2006).
[Crossref] [PubMed]

Bogulavsky, J.

D. Sulzer, J. Bogulavsky, K. E. Larsen, G. Behr, E. Karatekin, M. H. Kleinman, N. Turro, D. Krantz, R. H. Edwards, L. A. Greene, and L. Zecca, “Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles,” Proc. Natl. Acad. Sci. 97, 11869–11874 (2000).
[Crossref] [PubMed]

Bohic, S.

K. M. Davies, S. Bohic, A. Carmona, R. Ortega, V. Cottam, D. J. Hare, J. P. M. Finberg, S. Reyes, G. M. Halliday, J. F. B. Mercer, and K. L. Double, “Copper pathology in vulnerable brain regions in parkinson’s disease,” Neurobiol Aging 35, 858–866 (2014).
[Crossref]

S. Bohic, K. Murphy, W. Paulus, P. Cloetens, M. Salomé, J. Susini, and K. Double, “Intracellular chemical imaging of the developmental phases of human neuromelanin using synchrotron x-ray microspectroscopy,” Anal. Chem. 80, 9557–9566 (2008).
[Crossref] [PubMed]

M. Szczerbowska-Boruchowska, M. Lankosz, J. Ostachowicz, D. Adamek, A. Krygowska-Wajs, B. Tomik, A. Szczudlik, A. Simionovici, and S. Bohic, “Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation,” X-Ray Spectrom 33, 3–11 (2004).
[Crossref]

Bouchet, A.

T. Jensen, M. Bech, O. Bunk, A. Menzel, A. Bouchet, G. L. Duc, R. Feidenhans’l, and F. Pfeiffer, “Molecular x-ray computed tomography of myelin in a rat brain,” NeuroImage 57, 124– 129 (2011).
[Crossref]

Bousquet, M.

M. Bousquet, I. St-Amour, M. Vandal, P. Julien, F. Cicchetti, and F. Calon, “High-fat diet exacerbates MPTP-induced dopaminergic degeneration in mice,” Neurobiol. Dis. 45, 529–538 (2012).
[Crossref]

Bunk, O.

T. Jensen, M. Bech, O. Bunk, A. Menzel, A. Bouchet, G. L. Duc, R. Feidenhans’l, and F. Pfeiffer, “Molecular x-ray computed tomography of myelin in a rat brain,” NeuroImage 57, 124– 129 (2011).
[Crossref]

Burghammer, M.

C. Riekel, M. Burghammer, T. G. Dane, C. Ferrero, and M. Rosenthal, “Nanoscale structural features in major ampullate spider silk,” Biomacromolecules 18, 231–241 (2017).
[Crossref]

Calon, F.

M. Bousquet, I. St-Amour, M. Vandal, P. Julien, F. Cicchetti, and F. Calon, “High-fat diet exacerbates MPTP-induced dopaminergic degeneration in mice,” Neurobiol. Dis. 45, 529–538 (2012).
[Crossref]

Carbone, D.

J. Stangl, C. Mocuta, V. Chamard, and D. Carbone, Nanobeam X-ray Scattering: Probing Matter at the Nanoscale (WILEY-VCH Verlag GmbH & Co. KGaA, 2014).

Carboni, E.

E. Carboni and P. Lingor, “Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease,” Metallomics 7, 395–404 (2015).
[Crossref] [PubMed]

Carmona, A.

K. M. Davies, S. Bohic, A. Carmona, R. Ortega, V. Cottam, D. J. Hare, J. P. M. Finberg, S. Reyes, G. M. Halliday, J. F. B. Mercer, and K. L. Double, “Copper pathology in vulnerable brain regions in parkinson’s disease,” Neurobiol Aging 35, 858–866 (2014).
[Crossref]

Casella, L.

F. A. Zucca, J. Segura-Aguilar, E. Ferrari, P. Muñoz, I. Paris, D. Sulzer, T. Sarna, L. Casella, and L. Zecca, “Interactions of iron, dopamine and neuromelanin pathways in brain aging and parkinson’s disease,” Prog. Neurobiol. 155, 96–119 (2017).
[Crossref]

Ceolin, M.

A. Binolfi, R. M. Rasia, C. W. Bertoncini, M. Ceolin, M. Zweckstetter, C. Griesinger, T. M. Jovin, and C. O. Fernández, “Interaction of α-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement,” J. Am. Chem. Soc. 128, 9893–9901 (2006).
[Crossref] [PubMed]

Chamard, V.

J. Stangl, C. Mocuta, V. Chamard, and D. Carbone, Nanobeam X-ray Scattering: Probing Matter at the Nanoscale (WILEY-VCH Verlag GmbH & Co. KGaA, 2014).

Chang, C. J.

S. C. Dodani, D. W. Domaille, C. I. Nam, E. W. Miller, L. A. Finney, S. Vogt, and C. J. Chang, “Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and x-ray fluorescence microscopy,” Proc. Natl. Acad. Sci. 108, 5980–5985 (2011).
[Crossref] [PubMed]

Chang, C.-S.

S. R. Paik, H.-J. Shin, J.-H. Lee, C.-S. Chang, and J. Kim, “Copper(ii)-induced self-oligomerization of α-synuclein,” Biochem. J. 340, 821–828 (1999).
[Crossref]

Cheng, D.

D. Cheng, A. M. Jenner, G. Shui, W. F. Cheong, T. W. Mitchell, J. R. Nealon, W. S. Kim, H. McCann, M. R. Wenk, G. M. Halliday, and B. Garner, “Lipid pathway alterations in parkinson’s disease primary visual cortex,” PLoS One 6, 1–18 (2011).

Cheong, W. F.

D. Cheng, A. M. Jenner, G. Shui, W. F. Cheong, T. W. Mitchell, J. R. Nealon, W. S. Kim, H. McCann, M. R. Wenk, G. M. Halliday, and B. Garner, “Lipid pathway alterations in parkinson’s disease primary visual cortex,” PLoS One 6, 1–18 (2011).

Cicchetti, F.

M. Bousquet, I. St-Amour, M. Vandal, P. Julien, F. Cicchetti, and F. Calon, “High-fat diet exacerbates MPTP-induced dopaminergic degeneration in mice,” Neurobiol. Dis. 45, 529–538 (2012).
[Crossref]

Cloetens, P.

S. Bohic, K. Murphy, W. Paulus, P. Cloetens, M. Salomé, J. Susini, and K. Double, “Intracellular chemical imaging of the developmental phases of human neuromelanin using synchrotron x-ray microspectroscopy,” Anal. Chem. 80, 9557–9566 (2008).
[Crossref] [PubMed]

Costantino, I.

J. Liu, I. Costantino, N. Venugopalan, R. F. Fischetti, B. T. Hyman, M. P. Frosch, T. Gomez-Isla, and L. Makowski, “Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue,” Sci. Rep. 6, 33079 (2016).
[Crossref] [PubMed]

Cottam, V.

K. M. Davies, S. Bohic, A. Carmona, R. Ortega, V. Cottam, D. J. Hare, J. P. M. Finberg, S. Reyes, G. M. Halliday, J. F. B. Mercer, and K. L. Double, “Copper pathology in vulnerable brain regions in parkinson’s disease,” Neurobiol Aging 35, 858–866 (2014).
[Crossref]

Cotte, M.

V. Solé, E. Papillon, M. Cotte, P. Walter, and J. Susini, “A multiplatform code for the analysis of energy-dispersive x-ray fluorescence spectra,” Spectrochim Acta B 62, 63–68 (2007).
[Crossref]

Dane, T. G.

C. Riekel, M. Burghammer, T. G. Dane, C. Ferrero, and M. Rosenthal, “Nanoscale structural features in major ampullate spider silk,” Biomacromolecules 18, 231–241 (2017).
[Crossref]

Daniel, S. E.

A. J. Hughes, S. E. Daniel, Y. Ben-Shlomo, and A. J. Lees, “The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service,” Brain 125, 861 (2002).
[Crossref] [PubMed]

Davies, K. M.

K. M. Davies, S. Bohic, A. Carmona, R. Ortega, V. Cottam, D. J. Hare, J. P. M. Finberg, S. Reyes, G. M. Halliday, J. F. B. Mercer, and K. L. Double, “Copper pathology in vulnerable brain regions in parkinson’s disease,” Neurobiol Aging 35, 858–866 (2014).
[Crossref]

de Jonge, M. D.

S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
[Crossref] [PubMed]

Dexter, D. T.

D. T. Dexter, F. R. Wells, A. J. Lee, F. Agid, Y. Agid, P. Jenner, and C. D. Marsden, “Increased nigral iron content and alterations in other metal ions occurring in brain in parkinson’s disease,” J. Neurochem. 52, 1830–1836 (1989).
[Crossref] [PubMed]

Dias, V.

V. Dias, E. Junn, and M. M. Mouradian, “The role of oxidative stress in parkinson’s disease,” J. Parkinsons Dis. 3, 461–491 (2013).

Dodani, S. C.

S. C. Dodani, D. W. Domaille, C. I. Nam, E. W. Miller, L. A. Finney, S. Vogt, and C. J. Chang, “Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and x-ray fluorescence microscopy,” Proc. Natl. Acad. Sci. 108, 5980–5985 (2011).
[Crossref] [PubMed]

Domaille, D. W.

S. C. Dodani, D. W. Domaille, C. I. Nam, E. W. Miller, L. A. Finney, S. Vogt, and C. J. Chang, “Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and x-ray fluorescence microscopy,” Proc. Natl. Acad. Sci. 108, 5980–5985 (2011).
[Crossref] [PubMed]

Doria, M.

M. Doria, L. Maugest, T. Moreau, G. Lizard, and A. Vejux, “Contribution of cholesterol and oxysterols to the pathophysiology of parkinson’s disease,” Free Radic. Biol. Med. 101, 393–400 (2016).
[Crossref] [PubMed]

Double, K.

S. Bohic, K. Murphy, W. Paulus, P. Cloetens, M. Salomé, J. Susini, and K. Double, “Intracellular chemical imaging of the developmental phases of human neuromelanin using synchrotron x-ray microspectroscopy,” Anal. Chem. 80, 9557–9566 (2008).
[Crossref] [PubMed]

Double, K. L.

K. M. Davies, S. Bohic, A. Carmona, R. Ortega, V. Cottam, D. J. Hare, J. P. M. Finberg, S. Reyes, G. M. Halliday, J. F. B. Mercer, and K. L. Double, “Copper pathology in vulnerable brain regions in parkinson’s disease,” Neurobiol Aging 35, 858–866 (2014).
[Crossref]

Duc, G. L.

T. Jensen, M. Bech, O. Bunk, A. Menzel, A. Bouchet, G. L. Duc, R. Feidenhans’l, and F. Pfeiffer, “Molecular x-ray computed tomography of myelin in a rat brain,” NeuroImage 57, 124– 129 (2011).
[Crossref]

Ducic, T.

T. Dučić, S. Quintes, K.-A. Nave, J. Susini, M. Rak, R. Tucoulou, M. Alevra, P. Guttmann, and T. Salditt, “Structure and composition of myelinated axons: A multimodal synchrotron spectro-microscopy study,” J. Struct. Biol. 173, 202–212 (2011).
[Crossref]

T. Salditt and T. Dučić, Super-Resolution Microscopy Techniques in the Neurosciences (Humana Press, Totowa, NJ, 2014), Chap. X-Ray Microscopy for Neuroscience: Novel Opportunities by Coherent Optics, pp. 257–290.
[Crossref]

Eckermann, M.

M. Bernhardt, J.-D. Nicolas, M. Eckermann, B. Eltzner, F. Rehfeldt, and T. Salditt, “Anisotropic x-ray scattering and orientation fields in cardiac tissue cells,” New J. Phys. 19, 013012 (2017).
[Crossref]

Edwards, R. H.

D. Sulzer, J. Bogulavsky, K. E. Larsen, G. Behr, E. Karatekin, M. H. Kleinman, N. Turro, D. Krantz, R. H. Edwards, L. A. Greene, and L. Zecca, “Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles,” Proc. Natl. Acad. Sci. 97, 11869–11874 (2000).
[Crossref] [PubMed]

Elkes, J.

J. Elkes and J. B. Finean, “X-ray diffraction studies on the effect of temperature on the structure of myelin in the sciatic nerve of the frog,” Exp. Cell Res. 4, 69–81 (1953).
[Crossref]

Eltzner, B.

M. Bernhardt, J.-D. Nicolas, M. Eckermann, B. Eltzner, F. Rehfeldt, and T. Salditt, “Anisotropic x-ray scattering and orientation fields in cardiac tissue cells,” New J. Phys. 19, 013012 (2017).
[Crossref]

Fahrni, C. J.

C. J. Fahrni, “Biological applications of x-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals,” Curr. Opin. Chem. Biol. 11, 121–127 (2007).
[Crossref] [PubMed]

Feidenhans’l, R.

T. Jensen, M. Bech, O. Bunk, A. Menzel, A. Bouchet, G. L. Duc, R. Feidenhans’l, and F. Pfeiffer, “Molecular x-ray computed tomography of myelin in a rat brain,” NeuroImage 57, 124– 129 (2011).
[Crossref]

Fernández, C. O.

A. Binolfi, R. M. Rasia, C. W. Bertoncini, M. Ceolin, M. Zweckstetter, C. Griesinger, T. M. Jovin, and C. O. Fernández, “Interaction of α-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement,” J. Am. Chem. Soc. 128, 9893–9901 (2006).
[Crossref] [PubMed]

Ferrari, E.

F. A. Zucca, J. Segura-Aguilar, E. Ferrari, P. Muñoz, I. Paris, D. Sulzer, T. Sarna, L. Casella, and L. Zecca, “Interactions of iron, dopamine and neuromelanin pathways in brain aging and parkinson’s disease,” Prog. Neurobiol. 155, 96–119 (2017).
[Crossref]

Ferrero, C.

C. Riekel, M. Burghammer, T. G. Dane, C. Ferrero, and M. Rosenthal, “Nanoscale structural features in major ampullate spider silk,” Biomacromolecules 18, 231–241 (2017).
[Crossref]

Finberg, J. P. M.

K. M. Davies, S. Bohic, A. Carmona, R. Ortega, V. Cottam, D. J. Hare, J. P. M. Finberg, S. Reyes, G. M. Halliday, J. F. B. Mercer, and K. L. Double, “Copper pathology in vulnerable brain regions in parkinson’s disease,” Neurobiol Aging 35, 858–866 (2014).
[Crossref]

Finean, J. B.

R. T. Joy and J. B. Finean, “A comparison of the effects of freezing and of treatment with hypertonic solutions on the structure of nerve myelin,” J. Ultrastruct. Res. 8, 264–282 (1963).
[Crossref] [PubMed]

J. B. Finean, “The nature and stability of nerve myelin,” Int. Rev. Cytol. 12, 303–336 (1962).
[Crossref]

J. Elkes and J. B. Finean, “X-ray diffraction studies on the effect of temperature on the structure of myelin in the sciatic nerve of the frog,” Exp. Cell Res. 4, 69–81 (1953).
[Crossref]

Fink, A. L.

V. N. Uversky, J. Li, and A. L. Fink, “Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein: A possible molecular link between parkinson’s disease and heavy metal exposure,” J. Biol. Chem. 276, 44284–44296 (2001).
[Crossref] [PubMed]

Finney, L. A.

S. C. Dodani, D. W. Domaille, C. I. Nam, E. W. Miller, L. A. Finney, S. Vogt, and C. J. Chang, “Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and x-ray fluorescence microscopy,” Proc. Natl. Acad. Sci. 108, 5980–5985 (2011).
[Crossref] [PubMed]

Fischer, A. H.

A. H. Fischer, K. A. Jacobson, J. Rose, and R. Zeller, “Fixation and permeabilization of cells and tissues,” Cold Spring Harb Protoc 2008, 1–2 (2008).
[Crossref]

Fischetti, R. F.

J. Liu, I. Costantino, N. Venugopalan, R. F. Fischetti, B. T. Hyman, M. P. Frosch, T. Gomez-Isla, and L. Makowski, “Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue,” Sci. Rep. 6, 33079 (2016).
[Crossref] [PubMed]

Fratzl, P.

P. Fratzl and R. Weinkamer, “Nature’s hierarchical materials,” Prog Mater Sci 52, 1263–1334 (2007).
[Crossref]

H. Lichtenegger, M. Müller, O. Paris, C. Riekel, and P. Fratzl, “Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction,” J. Appl. Crystallogr. 32, 1127–1133 (1999).
[Crossref]

Frosch, M. P.

J. Liu, I. Costantino, N. Venugopalan, R. F. Fischetti, B. T. Hyman, M. P. Frosch, T. Gomez-Isla, and L. Makowski, “Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue,” Sci. Rep. 6, 33079 (2016).
[Crossref] [PubMed]

Garner, B.

D. Cheng, A. M. Jenner, G. Shui, W. F. Cheong, T. W. Mitchell, J. R. Nealon, W. S. Kim, H. McCann, M. R. Wenk, G. M. Halliday, and B. Garner, “Lipid pathway alterations in parkinson’s disease primary visual cortex,” PLoS One 6, 1–18 (2011).

Gerbasi, R.

L. Zecca, T. Shima, A. Stroppolo, C. Goj, G. Battiston, R. Gerbasi, T. Sarna, and H. Swartz, “Interaction of neuromelanin and iron in substantia nigra and other areas of human brain,” Neuroscience 73, 407–415 (1996).
[Crossref] [PubMed]

Goedert, M.

M. G. Spillantini, M. L. Schmidt, V. M.-Y. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in lewy bodies,” Nature 388, 839–840 (1997).
[Crossref] [PubMed]

Goj, C.

L. Zecca, T. Shima, A. Stroppolo, C. Goj, G. Battiston, R. Gerbasi, T. Sarna, and H. Swartz, “Interaction of neuromelanin and iron in substantia nigra and other areas of human brain,” Neuroscience 73, 407–415 (1996).
[Crossref] [PubMed]

Gomez-Isla, T.

J. Liu, I. Costantino, N. Venugopalan, R. F. Fischetti, B. T. Hyman, M. P. Frosch, T. Gomez-Isla, and L. Makowski, “Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue,” Sci. Rep. 6, 33079 (2016).
[Crossref] [PubMed]

Greene, L. A.

D. Sulzer, J. Bogulavsky, K. E. Larsen, G. Behr, E. Karatekin, M. H. Kleinman, N. Turro, D. Krantz, R. H. Edwards, L. A. Greene, and L. Zecca, “Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles,” Proc. Natl. Acad. Sci. 97, 11869–11874 (2000).
[Crossref] [PubMed]

Griesinger, C.

A. Binolfi, R. M. Rasia, C. W. Bertoncini, M. Ceolin, M. Zweckstetter, C. Griesinger, T. M. Jovin, and C. O. Fernández, “Interaction of α-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement,” J. Am. Chem. Soc. 128, 9893–9901 (2006).
[Crossref] [PubMed]

Guttmann, P.

T. Dučić, S. Quintes, K.-A. Nave, J. Susini, M. Rak, R. Tucoulou, M. Alevra, P. Guttmann, and T. Salditt, “Structure and composition of myelinated axons: A multimodal synchrotron spectro-microscopy study,” J. Struct. Biol. 173, 202–212 (2011).
[Crossref]

Halliday, G. M.

K. M. Davies, S. Bohic, A. Carmona, R. Ortega, V. Cottam, D. J. Hare, J. P. M. Finberg, S. Reyes, G. M. Halliday, J. F. B. Mercer, and K. L. Double, “Copper pathology in vulnerable brain regions in parkinson’s disease,” Neurobiol Aging 35, 858–866 (2014).
[Crossref]

D. Cheng, A. M. Jenner, G. Shui, W. F. Cheong, T. W. Mitchell, J. R. Nealon, W. S. Kim, H. McCann, M. R. Wenk, G. M. Halliday, and B. Garner, “Lipid pathway alterations in parkinson’s disease primary visual cortex,” PLoS One 6, 1–18 (2011).

Hammami, M.

A. Zarrouk, A. Vejux, J. Mackrill, Y. O’Callaghan, M. Hammami, N. O’Brien, and G. Lizard, “Involvement of oxysterols in age-related diseases and ageing processes,” Ageing Res. Rev. 18, 148–162 (2014).
[Crossref] [PubMed]

Hare, D. J.

K. M. Davies, S. Bohic, A. Carmona, R. Ortega, V. Cottam, D. J. Hare, J. P. M. Finberg, S. Reyes, G. M. Halliday, J. F. B. Mercer, and K. L. Double, “Copper pathology in vulnerable brain regions in parkinson’s disease,” Neurobiol Aging 35, 858–866 (2014).
[Crossref]

Hiller, K.

J. Meiser, D. Weindl, and K. Hiller, “Complexity of dopamine metabolism,” Cell Commun. Signal 11, 34 (2013).
[Crossref] [PubMed]

Hoard, L. G.

H. S. Shieh, L. G. Hoard, and C. E. Nordman, “Crystal structure of anhydrous cholesterol,” Nature 267, 287–289 (1977).
[Crossref] [PubMed]

Hollingshead, C. J.

D. A. Kirschner and C. J. Hollingshead, “Processing for electron microscopy alters membrane structure and packing in myelin,” J. Ultrastruct. Res. 73, 211–232 (1980).
[Crossref] [PubMed]

Hoobin, P.

S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
[Crossref] [PubMed]

Howard, D. L.

S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
[Crossref] [PubMed]

Hughes, A. J.

A. J. Hughes, S. E. Daniel, Y. Ben-Shlomo, and A. J. Lees, “The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service,” Brain 125, 861 (2002).
[Crossref] [PubMed]

Hyman, B. T.

J. Liu, I. Costantino, N. Venugopalan, R. F. Fischetti, B. T. Hyman, M. P. Frosch, T. Gomez-Isla, and L. Makowski, “Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue,” Sci. Rep. 6, 33079 (2016).
[Crossref] [PubMed]

Inwood, M. J.

M. J. Lynch, S. S. Raphael, L. D. Mellor, P. D. Spare, and M. J. Inwood, Medical Laboratory Technology and Clinical Pathology (WB Saunders Co., 1969), 2nd ed.

Israelachvili, J. N.

J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, 2015).

Jacobsen, C.

S. Vogt, J. Maser, and C. Jacobsen, “Data analysis for x-ray fluorescence imaging,” J. Phys. IV France 104, 617–622 (2003).
[Crossref]

Jacobson, K. A.

A. H. Fischer, K. A. Jacobson, J. Rose, and R. Zeller, “Fixation and permeabilization of cells and tissues,” Cold Spring Harb Protoc 2008, 1–2 (2008).
[Crossref]

Jakes, R.

M. G. Spillantini, M. L. Schmidt, V. M.-Y. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in lewy bodies,” Nature 388, 839–840 (1997).
[Crossref] [PubMed]

James, S. A.

S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
[Crossref] [PubMed]

Jenner, A. M.

D. Cheng, A. M. Jenner, G. Shui, W. F. Cheong, T. W. Mitchell, J. R. Nealon, W. S. Kim, H. McCann, M. R. Wenk, G. M. Halliday, and B. Garner, “Lipid pathway alterations in parkinson’s disease primary visual cortex,” PLoS One 6, 1–18 (2011).

Jenner, P.

D. T. Dexter, F. R. Wells, A. J. Lee, F. Agid, Y. Agid, P. Jenner, and C. D. Marsden, “Increased nigral iron content and alterations in other metal ions occurring in brain in parkinson’s disease,” J. Neurochem. 52, 1830–1836 (1989).
[Crossref] [PubMed]

Jensen, T.

T. Jensen, M. Bech, O. Bunk, A. Menzel, A. Bouchet, G. L. Duc, R. Feidenhans’l, and F. Pfeiffer, “Molecular x-ray computed tomography of myelin in a rat brain,” NeuroImage 57, 124– 129 (2011).
[Crossref]

Jovin, T. M.

A. Binolfi, R. M. Rasia, C. W. Bertoncini, M. Ceolin, M. Zweckstetter, C. Griesinger, T. M. Jovin, and C. O. Fernández, “Interaction of α-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement,” J. Am. Chem. Soc. 128, 9893–9901 (2006).
[Crossref] [PubMed]

Joy, R. T.

R. T. Joy and J. B. Finean, “A comparison of the effects of freezing and of treatment with hypertonic solutions on the structure of nerve myelin,” J. Ultrastruct. Res. 8, 264–282 (1963).
[Crossref] [PubMed]

Julien, P.

M. Bousquet, I. St-Amour, M. Vandal, P. Julien, F. Cicchetti, and F. Calon, “High-fat diet exacerbates MPTP-induced dopaminergic degeneration in mice,” Neurobiol. Dis. 45, 529–538 (2012).
[Crossref]

Junn, E.

V. Dias, E. Junn, and M. M. Mouradian, “The role of oxidative stress in parkinson’s disease,” J. Parkinsons Dis. 3, 461–491 (2013).

Karatekin, E.

D. Sulzer, J. Bogulavsky, K. E. Larsen, G. Behr, E. Karatekin, M. H. Kleinman, N. Turro, D. Krantz, R. H. Edwards, L. A. Greene, and L. Zecca, “Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles,” Proc. Natl. Acad. Sci. 97, 11869–11874 (2000).
[Crossref] [PubMed]

Kim, J.

S. R. Paik, H.-J. Shin, J.-H. Lee, C.-S. Chang, and J. Kim, “Copper(ii)-induced self-oligomerization of α-synuclein,” Biochem. J. 340, 821–828 (1999).
[Crossref]

Kim, W. S.

D. Cheng, A. M. Jenner, G. Shui, W. F. Cheong, T. W. Mitchell, J. R. Nealon, W. S. Kim, H. McCann, M. R. Wenk, G. M. Halliday, and B. Garner, “Lipid pathway alterations in parkinson’s disease primary visual cortex,” PLoS One 6, 1–18 (2011).

Kirschner, D. A.

D. A. Kirschner and C. J. Hollingshead, “Processing for electron microscopy alters membrane structure and packing in myelin,” J. Ultrastruct. Res. 73, 211–232 (1980).
[Crossref] [PubMed]

Kleinman, M. H.

D. Sulzer, J. Bogulavsky, K. E. Larsen, G. Behr, E. Karatekin, M. H. Kleinman, N. Turro, D. Krantz, R. H. Edwards, L. A. Greene, and L. Zecca, “Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles,” Proc. Natl. Acad. Sci. 97, 11869–11874 (2000).
[Crossref] [PubMed]

Krantz, D.

D. Sulzer, J. Bogulavsky, K. E. Larsen, G. Behr, E. Karatekin, M. H. Kleinman, N. Turro, D. Krantz, R. H. Edwards, L. A. Greene, and L. Zecca, “Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles,” Proc. Natl. Acad. Sci. 97, 11869–11874 (2000).
[Crossref] [PubMed]

Krygowska-Wajs, A.

M. Szczerbowska-Boruchowska, A. Krygowska-Wajs, and D. Adamek, “Elemental micro-imaging and quantification of human substantia nigra using synchrotron radiation based x-ray fluorescence - in relation to parkinson’s disease,” J. Phys. Condens. Matter 24, 244104 (2012).
[Crossref]

M. Szczerbowska-Boruchowska, M. Lankosz, J. Ostachowicz, D. Adamek, A. Krygowska-Wajs, B. Tomik, A. Szczudlik, A. Simionovici, and S. Bohic, “Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation,” X-Ray Spectrom 33, 3–11 (2004).
[Crossref]

Lankosz, M.

M. Szczerbowska-Boruchowska, M. Lankosz, J. Ostachowicz, D. Adamek, A. Krygowska-Wajs, B. Tomik, A. Szczudlik, A. Simionovici, and S. Bohic, “Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation,” X-Ray Spectrom 33, 3–11 (2004).
[Crossref]

Larsen, K. E.

D. Sulzer, J. Bogulavsky, K. E. Larsen, G. Behr, E. Karatekin, M. H. Kleinman, N. Turro, D. Krantz, R. H. Edwards, L. A. Greene, and L. Zecca, “Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles,” Proc. Natl. Acad. Sci. 97, 11869–11874 (2000).
[Crossref] [PubMed]

Lee, A. J.

D. T. Dexter, F. R. Wells, A. J. Lee, F. Agid, Y. Agid, P. Jenner, and C. D. Marsden, “Increased nigral iron content and alterations in other metal ions occurring in brain in parkinson’s disease,” J. Neurochem. 52, 1830–1836 (1989).
[Crossref] [PubMed]

Lee, J.-H.

S. R. Paik, H.-J. Shin, J.-H. Lee, C.-S. Chang, and J. Kim, “Copper(ii)-induced self-oligomerization of α-synuclein,” Biochem. J. 340, 821–828 (1999).
[Crossref]

Lee, V. M.-Y.

M. G. Spillantini, M. L. Schmidt, V. M.-Y. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in lewy bodies,” Nature 388, 839–840 (1997).
[Crossref] [PubMed]

Lees, A. J.

A. J. Hughes, S. E. Daniel, Y. Ben-Shlomo, and A. J. Lees, “The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service,” Brain 125, 861 (2002).
[Crossref] [PubMed]

Li, J.

V. N. Uversky, J. Li, and A. L. Fink, “Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein: A possible molecular link between parkinson’s disease and heavy metal exposure,” J. Biol. Chem. 276, 44284–44296 (2001).
[Crossref] [PubMed]

Li, Z.

Z. Li, J. Zhang, and H. Sun, “Increased plasma levels of phospholipid in parkinson’s disease with mild cognitive impairment,” J. Clin. Neurosci. 22, 1268–1271 (2015).
[Crossref] [PubMed]

Lichtenegger, H.

H. Lichtenegger, M. Müller, O. Paris, C. Riekel, and P. Fratzl, “Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction,” J. Appl. Crystallogr. 32, 1127–1133 (1999).
[Crossref]

Lingor, P.

E. Carboni and P. Lingor, “Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease,” Metallomics 7, 395–404 (2015).
[Crossref] [PubMed]

Liu, J.

J. Liu, I. Costantino, N. Venugopalan, R. F. Fischetti, B. T. Hyman, M. P. Frosch, T. Gomez-Isla, and L. Makowski, “Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue,” Sci. Rep. 6, 33079 (2016).
[Crossref] [PubMed]

Lizard, G.

M. Doria, L. Maugest, T. Moreau, G. Lizard, and A. Vejux, “Contribution of cholesterol and oxysterols to the pathophysiology of parkinson’s disease,” Free Radic. Biol. Med. 101, 393–400 (2016).
[Crossref] [PubMed]

A. Zarrouk, A. Vejux, J. Mackrill, Y. O’Callaghan, M. Hammami, N. O’Brien, and G. Lizard, “Involvement of oxysterols in age-related diseases and ageing processes,” Ageing Res. Rev. 18, 148–162 (2014).
[Crossref] [PubMed]

Loomis, C. R.

C. R. Loomis, G. G. Shipley, and D. M. Small, “The phase behavior of hydrated cholesterol,” J. Lipid Res. 20, 525–535 (1979).
[PubMed]

Lynch, M. J.

M. J. Lynch, S. S. Raphael, L. D. Mellor, P. D. Spare, and M. J. Inwood, Medical Laboratory Technology and Clinical Pathology (WB Saunders Co., 1969), 2nd ed.

Mackrill, J.

A. Zarrouk, A. Vejux, J. Mackrill, Y. O’Callaghan, M. Hammami, N. O’Brien, and G. Lizard, “Involvement of oxysterols in age-related diseases and ageing processes,” Ageing Res. Rev. 18, 148–162 (2014).
[Crossref] [PubMed]

Makowski, L.

J. Liu, I. Costantino, N. Venugopalan, R. F. Fischetti, B. T. Hyman, M. P. Frosch, T. Gomez-Isla, and L. Makowski, “Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue,” Sci. Rep. 6, 33079 (2016).
[Crossref] [PubMed]

Marsden, C. D.

D. T. Dexter, F. R. Wells, A. J. Lee, F. Agid, Y. Agid, P. Jenner, and C. D. Marsden, “Increased nigral iron content and alterations in other metal ions occurring in brain in parkinson’s disease,” J. Neurochem. 52, 1830–1836 (1989).
[Crossref] [PubMed]

Maser, J.

S. Vogt, J. Maser, and C. Jacobsen, “Data analysis for x-ray fluorescence imaging,” J. Phys. IV France 104, 617–622 (2003).
[Crossref]

Maugest, L.

M. Doria, L. Maugest, T. Moreau, G. Lizard, and A. Vejux, “Contribution of cholesterol and oxysterols to the pathophysiology of parkinson’s disease,” Free Radic. Biol. Med. 101, 393–400 (2016).
[Crossref] [PubMed]

Mayo, S. C.

S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
[Crossref] [PubMed]

McCann, H.

D. Cheng, A. M. Jenner, G. Shui, W. F. Cheong, T. W. Mitchell, J. R. Nealon, W. S. Kim, H. McCann, M. R. Wenk, G. M. Halliday, and B. Garner, “Lipid pathway alterations in parkinson’s disease primary visual cortex,” PLoS One 6, 1–18 (2011).

Meiser, J.

J. Meiser, D. Weindl, and K. Hiller, “Complexity of dopamine metabolism,” Cell Commun. Signal 11, 34 (2013).
[Crossref] [PubMed]

Mellor, L. D.

M. J. Lynch, S. S. Raphael, L. D. Mellor, P. D. Spare, and M. J. Inwood, Medical Laboratory Technology and Clinical Pathology (WB Saunders Co., 1969), 2nd ed.

Menzel, A.

T. Jensen, M. Bech, O. Bunk, A. Menzel, A. Bouchet, G. L. Duc, R. Feidenhans’l, and F. Pfeiffer, “Molecular x-ray computed tomography of myelin in a rat brain,” NeuroImage 57, 124– 129 (2011).
[Crossref]

Mercer, J. F. B.

K. M. Davies, S. Bohic, A. Carmona, R. Ortega, V. Cottam, D. J. Hare, J. P. M. Finberg, S. Reyes, G. M. Halliday, J. F. B. Mercer, and K. L. Double, “Copper pathology in vulnerable brain regions in parkinson’s disease,” Neurobiol Aging 35, 858–866 (2014).
[Crossref]

Miller, E. W.

S. C. Dodani, D. W. Domaille, C. I. Nam, E. W. Miller, L. A. Finney, S. Vogt, and C. J. Chang, “Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and x-ray fluorescence microscopy,” Proc. Natl. Acad. Sci. 108, 5980–5985 (2011).
[Crossref] [PubMed]

Mitchell, T. W.

D. Cheng, A. M. Jenner, G. Shui, W. F. Cheong, T. W. Mitchell, J. R. Nealon, W. S. Kim, H. McCann, M. R. Wenk, G. M. Halliday, and B. Garner, “Lipid pathway alterations in parkinson’s disease primary visual cortex,” PLoS One 6, 1–18 (2011).

Mocuta, C.

J. Stangl, C. Mocuta, V. Chamard, and D. Carbone, Nanobeam X-ray Scattering: Probing Matter at the Nanoscale (WILEY-VCH Verlag GmbH & Co. KGaA, 2014).

Moorhead, G. F.

S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
[Crossref] [PubMed]

Moreau, T.

M. Doria, L. Maugest, T. Moreau, G. Lizard, and A. Vejux, “Contribution of cholesterol and oxysterols to the pathophysiology of parkinson’s disease,” Free Radic. Biol. Med. 101, 393–400 (2016).
[Crossref] [PubMed]

Mouradian, M. M.

V. Dias, E. Junn, and M. M. Mouradian, “The role of oxidative stress in parkinson’s disease,” J. Parkinsons Dis. 3, 461–491 (2013).

Müller, M.

H. Lichtenegger, M. Müller, O. Paris, C. Riekel, and P. Fratzl, “Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction,” J. Appl. Crystallogr. 32, 1127–1133 (1999).
[Crossref]

Muñoz, P.

F. A. Zucca, J. Segura-Aguilar, E. Ferrari, P. Muñoz, I. Paris, D. Sulzer, T. Sarna, L. Casella, and L. Zecca, “Interactions of iron, dopamine and neuromelanin pathways in brain aging and parkinson’s disease,” Prog. Neurobiol. 155, 96–119 (2017).
[Crossref]

Murphy, K.

S. Bohic, K. Murphy, W. Paulus, P. Cloetens, M. Salomé, J. Susini, and K. Double, “Intracellular chemical imaging of the developmental phases of human neuromelanin using synchrotron x-ray microspectroscopy,” Anal. Chem. 80, 9557–9566 (2008).
[Crossref] [PubMed]

Myers, D. E.

S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
[Crossref] [PubMed]

Nam, C. I.

S. C. Dodani, D. W. Domaille, C. I. Nam, E. W. Miller, L. A. Finney, S. Vogt, and C. J. Chang, “Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and x-ray fluorescence microscopy,” Proc. Natl. Acad. Sci. 108, 5980–5985 (2011).
[Crossref] [PubMed]

Nave, K.-A.

T. Dučić, S. Quintes, K.-A. Nave, J. Susini, M. Rak, R. Tucoulou, M. Alevra, P. Guttmann, and T. Salditt, “Structure and composition of myelinated axons: A multimodal synchrotron spectro-microscopy study,” J. Struct. Biol. 173, 202–212 (2011).
[Crossref]

Nealon, J. R.

D. Cheng, A. M. Jenner, G. Shui, W. F. Cheong, T. W. Mitchell, J. R. Nealon, W. S. Kim, H. McCann, M. R. Wenk, G. M. Halliday, and B. Garner, “Lipid pathway alterations in parkinson’s disease primary visual cortex,” PLoS One 6, 1–18 (2011).

Nicolas, J.

A. Surowka, M. Töpperwien, M. Bernhardt, J. Nicolas, M. Osterhoff, T. Salditt, D. Adamek, and M. Szczerbowska-Boruchowska, “Combined in-situ imaging of structural organization and elemental composition of substantia nigra neurons in the elderly,” Talanta 161, 368–376 (2016).
[Crossref] [PubMed]

Nicolas, J.-D.

M. Bernhardt, J.-D. Nicolas, M. Eckermann, B. Eltzner, F. Rehfeldt, and T. Salditt, “Anisotropic x-ray scattering and orientation fields in cardiac tissue cells,” New J. Phys. 19, 013012 (2017).
[Crossref]

Nordman, C. E.

H. S. Shieh, L. G. Hoard, and C. E. Nordman, “Crystal structure of anhydrous cholesterol,” Nature 267, 287–289 (1977).
[Crossref] [PubMed]

O’Brien, N.

A. Zarrouk, A. Vejux, J. Mackrill, Y. O’Callaghan, M. Hammami, N. O’Brien, and G. Lizard, “Involvement of oxysterols in age-related diseases and ageing processes,” Ageing Res. Rev. 18, 148–162 (2014).
[Crossref] [PubMed]

O’Callaghan, Y.

A. Zarrouk, A. Vejux, J. Mackrill, Y. O’Callaghan, M. Hammami, N. O’Brien, and G. Lizard, “Involvement of oxysterols in age-related diseases and ageing processes,” Ageing Res. Rev. 18, 148–162 (2014).
[Crossref] [PubMed]

Ortega, R.

K. M. Davies, S. Bohic, A. Carmona, R. Ortega, V. Cottam, D. J. Hare, J. P. M. Finberg, S. Reyes, G. M. Halliday, J. F. B. Mercer, and K. L. Double, “Copper pathology in vulnerable brain regions in parkinson’s disease,” Neurobiol Aging 35, 858–866 (2014).
[Crossref]

Ostachowicz, J.

M. Szczerbowska-Boruchowska, M. Lankosz, J. Ostachowicz, D. Adamek, A. Krygowska-Wajs, B. Tomik, A. Szczudlik, A. Simionovici, and S. Bohic, “Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation,” X-Ray Spectrom 33, 3–11 (2004).
[Crossref]

Osterhoff, M.

A. Surowka, M. Töpperwien, M. Bernhardt, J. Nicolas, M. Osterhoff, T. Salditt, D. Adamek, and M. Szczerbowska-Boruchowska, “Combined in-situ imaging of structural organization and elemental composition of substantia nigra neurons in the elderly,” Talanta 161, 368–376 (2016).
[Crossref] [PubMed]

Paik, S. R.

S. R. Paik, H.-J. Shin, J.-H. Lee, C.-S. Chang, and J. Kim, “Copper(ii)-induced self-oligomerization of α-synuclein,” Biochem. J. 340, 821–828 (1999).
[Crossref]

Papillon, E.

V. Solé, E. Papillon, M. Cotte, P. Walter, and J. Susini, “A multiplatform code for the analysis of energy-dispersive x-ray fluorescence spectra,” Spectrochim Acta B 62, 63–68 (2007).
[Crossref]

Paris, I.

F. A. Zucca, J. Segura-Aguilar, E. Ferrari, P. Muñoz, I. Paris, D. Sulzer, T. Sarna, L. Casella, and L. Zecca, “Interactions of iron, dopamine and neuromelanin pathways in brain aging and parkinson’s disease,” Prog. Neurobiol. 155, 96–119 (2017).
[Crossref]

Paris, O.

H. Lichtenegger, M. Müller, O. Paris, C. Riekel, and P. Fratzl, “Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction,” J. Appl. Crystallogr. 32, 1127–1133 (1999).
[Crossref]

Paterson, D.

S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
[Crossref] [PubMed]

Paulus, W.

S. Bohic, K. Murphy, W. Paulus, P. Cloetens, M. Salomé, J. Susini, and K. Double, “Intracellular chemical imaging of the developmental phases of human neuromelanin using synchrotron x-ray microspectroscopy,” Anal. Chem. 80, 9557–9566 (2008).
[Crossref] [PubMed]

Pfeiffer, F.

T. Jensen, M. Bech, O. Bunk, A. Menzel, A. Bouchet, G. L. Duc, R. Feidenhans’l, and F. Pfeiffer, “Molecular x-ray computed tomography of myelin in a rat brain,” NeuroImage 57, 124– 129 (2011).
[Crossref]

Quintes, S.

T. Dučić, S. Quintes, K.-A. Nave, J. Susini, M. Rak, R. Tucoulou, M. Alevra, P. Guttmann, and T. Salditt, “Structure and composition of myelinated axons: A multimodal synchrotron spectro-microscopy study,” J. Struct. Biol. 173, 202–212 (2011).
[Crossref]

Rak, M.

T. Dučić, S. Quintes, K.-A. Nave, J. Susini, M. Rak, R. Tucoulou, M. Alevra, P. Guttmann, and T. Salditt, “Structure and composition of myelinated axons: A multimodal synchrotron spectro-microscopy study,” J. Struct. Biol. 173, 202–212 (2011).
[Crossref]

Ram-On, M.

R. Shaharabani, M. Ram-On, R. Avinery, R. Aharoni, R. Arnon, Y. Talmon, and R. Beck, “Structural transition in myelin membrane as initiator of multiple sclerosis,” J. Am. Chem. Soc. 138, 12159–12165 (2016).
[Crossref]

Raphael, S. S.

M. J. Lynch, S. S. Raphael, L. D. Mellor, P. D. Spare, and M. J. Inwood, Medical Laboratory Technology and Clinical Pathology (WB Saunders Co., 1969), 2nd ed.

Rasia, R. M.

A. Binolfi, R. M. Rasia, C. W. Bertoncini, M. Ceolin, M. Zweckstetter, C. Griesinger, T. M. Jovin, and C. O. Fernández, “Interaction of α-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement,” J. Am. Chem. Soc. 128, 9893–9901 (2006).
[Crossref] [PubMed]

Rehfeldt, F.

M. Bernhardt, J.-D. Nicolas, M. Eckermann, B. Eltzner, F. Rehfeldt, and T. Salditt, “Anisotropic x-ray scattering and orientation fields in cardiac tissue cells,” New J. Phys. 19, 013012 (2017).
[Crossref]

Reyes, S.

K. M. Davies, S. Bohic, A. Carmona, R. Ortega, V. Cottam, D. J. Hare, J. P. M. Finberg, S. Reyes, G. M. Halliday, J. F. B. Mercer, and K. L. Double, “Copper pathology in vulnerable brain regions in parkinson’s disease,” Neurobiol Aging 35, 858–866 (2014).
[Crossref]

Riekel, C.

C. Riekel, M. Burghammer, T. G. Dane, C. Ferrero, and M. Rosenthal, “Nanoscale structural features in major ampullate spider silk,” Biomacromolecules 18, 231–241 (2017).
[Crossref]

H. Lichtenegger, M. Müller, O. Paris, C. Riekel, and P. Fratzl, “Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction,” J. Appl. Crystallogr. 32, 1127–1133 (1999).
[Crossref]

Rose, J.

A. H. Fischer, K. A. Jacobson, J. Rose, and R. Zeller, “Fixation and permeabilization of cells and tissues,” Cold Spring Harb Protoc 2008, 1–2 (2008).
[Crossref]

Rosenthal, M.

C. Riekel, M. Burghammer, T. G. Dane, C. Ferrero, and M. Rosenthal, “Nanoscale structural features in major ampullate spider silk,” Biomacromolecules 18, 231–241 (2017).
[Crossref]

Ryan, C. G.

S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
[Crossref] [PubMed]

Sakdinawat, A.

A. Sakdinawat and D. Attwood, “Nanoscale x-ray imaging,” Nat. Photon. 4, 840–848 (2010).
[Crossref]

Salditt, T.

M. Bernhardt, J.-D. Nicolas, M. Eckermann, B. Eltzner, F. Rehfeldt, and T. Salditt, “Anisotropic x-ray scattering and orientation fields in cardiac tissue cells,” New J. Phys. 19, 013012 (2017).
[Crossref]

A. Surowka, M. Töpperwien, M. Bernhardt, J. Nicolas, M. Osterhoff, T. Salditt, D. Adamek, and M. Szczerbowska-Boruchowska, “Combined in-situ imaging of structural organization and elemental composition of substantia nigra neurons in the elderly,” Talanta 161, 368–376 (2016).
[Crossref] [PubMed]

T. Dučić, S. Quintes, K.-A. Nave, J. Susini, M. Rak, R. Tucoulou, M. Alevra, P. Guttmann, and T. Salditt, “Structure and composition of myelinated axons: A multimodal synchrotron spectro-microscopy study,” J. Struct. Biol. 173, 202–212 (2011).
[Crossref]

T. Salditt and T. Dučić, Super-Resolution Microscopy Techniques in the Neurosciences (Humana Press, Totowa, NJ, 2014), Chap. X-Ray Microscopy for Neuroscience: Novel Opportunities by Coherent Optics, pp. 257–290.
[Crossref]

Salomé, M.

S. Bohic, K. Murphy, W. Paulus, P. Cloetens, M. Salomé, J. Susini, and K. Double, “Intracellular chemical imaging of the developmental phases of human neuromelanin using synchrotron x-ray microspectroscopy,” Anal. Chem. 80, 9557–9566 (2008).
[Crossref] [PubMed]

Sarna, T.

F. A. Zucca, J. Segura-Aguilar, E. Ferrari, P. Muñoz, I. Paris, D. Sulzer, T. Sarna, L. Casella, and L. Zecca, “Interactions of iron, dopamine and neuromelanin pathways in brain aging and parkinson’s disease,” Prog. Neurobiol. 155, 96–119 (2017).
[Crossref]

L. Zecca, T. Shima, A. Stroppolo, C. Goj, G. Battiston, R. Gerbasi, T. Sarna, and H. Swartz, “Interaction of neuromelanin and iron in substantia nigra and other areas of human brain,” Neuroscience 73, 407–415 (1996).
[Crossref] [PubMed]

Schmidt, M. L.

M. G. Spillantini, M. L. Schmidt, V. M.-Y. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in lewy bodies,” Nature 388, 839–840 (1997).
[Crossref] [PubMed]

Segura-Aguilar, J.

F. A. Zucca, J. Segura-Aguilar, E. Ferrari, P. Muñoz, I. Paris, D. Sulzer, T. Sarna, L. Casella, and L. Zecca, “Interactions of iron, dopamine and neuromelanin pathways in brain aging and parkinson’s disease,” Prog. Neurobiol. 155, 96–119 (2017).
[Crossref]

Sexton, B. A.

S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
[Crossref] [PubMed]

Shaharabani, R.

R. Shaharabani, M. Ram-On, R. Avinery, R. Aharoni, R. Arnon, Y. Talmon, and R. Beck, “Structural transition in myelin membrane as initiator of multiple sclerosis,” J. Am. Chem. Soc. 138, 12159–12165 (2016).
[Crossref]

Shieh, H. S.

H. S. Shieh, L. G. Hoard, and C. E. Nordman, “Crystal structure of anhydrous cholesterol,” Nature 267, 287–289 (1977).
[Crossref] [PubMed]

Shima, T.

L. Zecca, T. Shima, A. Stroppolo, C. Goj, G. Battiston, R. Gerbasi, T. Sarna, and H. Swartz, “Interaction of neuromelanin and iron in substantia nigra and other areas of human brain,” Neuroscience 73, 407–415 (1996).
[Crossref] [PubMed]

Shin, H.-J.

S. R. Paik, H.-J. Shin, J.-H. Lee, C.-S. Chang, and J. Kim, “Copper(ii)-induced self-oligomerization of α-synuclein,” Biochem. J. 340, 821–828 (1999).
[Crossref]

Shipley, G. G.

C. R. Loomis, G. G. Shipley, and D. M. Small, “The phase behavior of hydrated cholesterol,” J. Lipid Res. 20, 525–535 (1979).
[PubMed]

Shui, G.

D. Cheng, A. M. Jenner, G. Shui, W. F. Cheong, T. W. Mitchell, J. R. Nealon, W. S. Kim, H. McCann, M. R. Wenk, G. M. Halliday, and B. Garner, “Lipid pathway alterations in parkinson’s disease primary visual cortex,” PLoS One 6, 1–18 (2011).

Simionovici, A.

M. Szczerbowska-Boruchowska, M. Lankosz, J. Ostachowicz, D. Adamek, A. Krygowska-Wajs, B. Tomik, A. Szczudlik, A. Simionovici, and S. Bohic, “Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation,” X-Ray Spectrom 33, 3–11 (2004).
[Crossref]

Small, D. M.

C. R. Loomis, G. G. Shipley, and D. M. Small, “The phase behavior of hydrated cholesterol,” J. Lipid Res. 20, 525–535 (1979).
[PubMed]

Solé, V.

V. Solé, E. Papillon, M. Cotte, P. Walter, and J. Susini, “A multiplatform code for the analysis of energy-dispersive x-ray fluorescence spectra,” Spectrochim Acta B 62, 63–68 (2007).
[Crossref]

Spare, P. D.

M. J. Lynch, S. S. Raphael, L. D. Mellor, P. D. Spare, and M. J. Inwood, Medical Laboratory Technology and Clinical Pathology (WB Saunders Co., 1969), 2nd ed.

Spillantini, M. G.

M. G. Spillantini, M. L. Schmidt, V. M.-Y. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in lewy bodies,” Nature 388, 839–840 (1997).
[Crossref] [PubMed]

St-Amour, I.

M. Bousquet, I. St-Amour, M. Vandal, P. Julien, F. Cicchetti, and F. Calon, “High-fat diet exacerbates MPTP-induced dopaminergic degeneration in mice,” Neurobiol. Dis. 45, 529–538 (2012).
[Crossref]

Stangl, J.

J. Stangl, C. Mocuta, V. Chamard, and D. Carbone, Nanobeam X-ray Scattering: Probing Matter at the Nanoscale (WILEY-VCH Verlag GmbH & Co. KGaA, 2014).

Stroppolo, A.

L. Zecca, T. Shima, A. Stroppolo, C. Goj, G. Battiston, R. Gerbasi, T. Sarna, and H. Swartz, “Interaction of neuromelanin and iron in substantia nigra and other areas of human brain,” Neuroscience 73, 407–415 (1996).
[Crossref] [PubMed]

Sulzer, D.

F. A. Zucca, J. Segura-Aguilar, E. Ferrari, P. Muñoz, I. Paris, D. Sulzer, T. Sarna, L. Casella, and L. Zecca, “Interactions of iron, dopamine and neuromelanin pathways in brain aging and parkinson’s disease,” Prog. Neurobiol. 155, 96–119 (2017).
[Crossref]

D. Sulzer, J. Bogulavsky, K. E. Larsen, G. Behr, E. Karatekin, M. H. Kleinman, N. Turro, D. Krantz, R. H. Edwards, L. A. Greene, and L. Zecca, “Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles,” Proc. Natl. Acad. Sci. 97, 11869–11874 (2000).
[Crossref] [PubMed]

Sun, H.

Z. Li, J. Zhang, and H. Sun, “Increased plasma levels of phospholipid in parkinson’s disease with mild cognitive impairment,” J. Clin. Neurosci. 22, 1268–1271 (2015).
[Crossref] [PubMed]

Surowka, A.

A. Surowka, M. Töpperwien, M. Bernhardt, J. Nicolas, M. Osterhoff, T. Salditt, D. Adamek, and M. Szczerbowska-Boruchowska, “Combined in-situ imaging of structural organization and elemental composition of substantia nigra neurons in the elderly,” Talanta 161, 368–376 (2016).
[Crossref] [PubMed]

Susini, J.

T. Dučić, S. Quintes, K.-A. Nave, J. Susini, M. Rak, R. Tucoulou, M. Alevra, P. Guttmann, and T. Salditt, “Structure and composition of myelinated axons: A multimodal synchrotron spectro-microscopy study,” J. Struct. Biol. 173, 202–212 (2011).
[Crossref]

S. Bohic, K. Murphy, W. Paulus, P. Cloetens, M. Salomé, J. Susini, and K. Double, “Intracellular chemical imaging of the developmental phases of human neuromelanin using synchrotron x-ray microspectroscopy,” Anal. Chem. 80, 9557–9566 (2008).
[Crossref] [PubMed]

V. Solé, E. Papillon, M. Cotte, P. Walter, and J. Susini, “A multiplatform code for the analysis of energy-dispersive x-ray fluorescence spectra,” Spectrochim Acta B 62, 63–68 (2007).
[Crossref]

Swartz, H.

L. Zecca, T. Shima, A. Stroppolo, C. Goj, G. Battiston, R. Gerbasi, T. Sarna, and H. Swartz, “Interaction of neuromelanin and iron in substantia nigra and other areas of human brain,” Neuroscience 73, 407–415 (1996).
[Crossref] [PubMed]

Szczerbowska-Boruchowska, M.

A. Surowka, M. Töpperwien, M. Bernhardt, J. Nicolas, M. Osterhoff, T. Salditt, D. Adamek, and M. Szczerbowska-Boruchowska, “Combined in-situ imaging of structural organization and elemental composition of substantia nigra neurons in the elderly,” Talanta 161, 368–376 (2016).
[Crossref] [PubMed]

M. Szczerbowska-Boruchowska, A. Krygowska-Wajs, and D. Adamek, “Elemental micro-imaging and quantification of human substantia nigra using synchrotron radiation based x-ray fluorescence - in relation to parkinson’s disease,” J. Phys. Condens. Matter 24, 244104 (2012).
[Crossref]

M. Szczerbowska-Boruchowska, “X-ray fluorescence spectrometry, an analytical tool in neurochemical research,” X-Ray Spectrom. 37, 21–31 (2008).
[Crossref]

M. Szczerbowska-Boruchowska, M. Lankosz, J. Ostachowicz, D. Adamek, A. Krygowska-Wajs, B. Tomik, A. Szczudlik, A. Simionovici, and S. Bohic, “Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation,” X-Ray Spectrom 33, 3–11 (2004).
[Crossref]

Szczudlik, A.

M. Szczerbowska-Boruchowska, M. Lankosz, J. Ostachowicz, D. Adamek, A. Krygowska-Wajs, B. Tomik, A. Szczudlik, A. Simionovici, and S. Bohic, “Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation,” X-Ray Spectrom 33, 3–11 (2004).
[Crossref]

Talmon, Y.

R. Shaharabani, M. Ram-On, R. Avinery, R. Aharoni, R. Arnon, Y. Talmon, and R. Beck, “Structural transition in myelin membrane as initiator of multiple sclerosis,” J. Am. Chem. Soc. 138, 12159–12165 (2016).
[Crossref]

Tanzi, R. E.

L. Bertram and R. E. Tanzi, “The genetic epidemiology of neurodegenerative disease,” J. Clin. Invest. 115, 1449–1457 (2005).
[Crossref] [PubMed]

Tomik, B.

M. Szczerbowska-Boruchowska, M. Lankosz, J. Ostachowicz, D. Adamek, A. Krygowska-Wajs, B. Tomik, A. Szczudlik, A. Simionovici, and S. Bohic, “Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation,” X-Ray Spectrom 33, 3–11 (2004).
[Crossref]

Töpperwien, M.

A. Surowka, M. Töpperwien, M. Bernhardt, J. Nicolas, M. Osterhoff, T. Salditt, D. Adamek, and M. Szczerbowska-Boruchowska, “Combined in-situ imaging of structural organization and elemental composition of substantia nigra neurons in the elderly,” Talanta 161, 368–376 (2016).
[Crossref] [PubMed]

Trojanowski, J. Q.

M. G. Spillantini, M. L. Schmidt, V. M.-Y. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in lewy bodies,” Nature 388, 839–840 (1997).
[Crossref] [PubMed]

Tucoulou, R.

T. Dučić, S. Quintes, K.-A. Nave, J. Susini, M. Rak, R. Tucoulou, M. Alevra, P. Guttmann, and T. Salditt, “Structure and composition of myelinated axons: A multimodal synchrotron spectro-microscopy study,” J. Struct. Biol. 173, 202–212 (2011).
[Crossref]

Turro, N.

D. Sulzer, J. Bogulavsky, K. E. Larsen, G. Behr, E. Karatekin, M. H. Kleinman, N. Turro, D. Krantz, R. H. Edwards, L. A. Greene, and L. Zecca, “Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles,” Proc. Natl. Acad. Sci. 97, 11869–11874 (2000).
[Crossref] [PubMed]

Uversky, V. N.

V. N. Uversky, J. Li, and A. L. Fink, “Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein: A possible molecular link between parkinson’s disease and heavy metal exposure,” J. Biol. Chem. 276, 44284–44296 (2001).
[Crossref] [PubMed]

van Maarschalkerweerd, A.

A. van Maarschalkerweerd, V. Vetri, and B. Vestergaard, “Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes,” FEBS Lett. 589, 2661–2667 (2015).
[Crossref] [PubMed]

Vandal, M.

M. Bousquet, I. St-Amour, M. Vandal, P. Julien, F. Cicchetti, and F. Calon, “High-fat diet exacerbates MPTP-induced dopaminergic degeneration in mice,” Neurobiol. Dis. 45, 529–538 (2012).
[Crossref]

Vejux, A.

M. Doria, L. Maugest, T. Moreau, G. Lizard, and A. Vejux, “Contribution of cholesterol and oxysterols to the pathophysiology of parkinson’s disease,” Free Radic. Biol. Med. 101, 393–400 (2016).
[Crossref] [PubMed]

A. Zarrouk, A. Vejux, J. Mackrill, Y. O’Callaghan, M. Hammami, N. O’Brien, and G. Lizard, “Involvement of oxysterols in age-related diseases and ageing processes,” Ageing Res. Rev. 18, 148–162 (2014).
[Crossref] [PubMed]

Venugopalan, N.

J. Liu, I. Costantino, N. Venugopalan, R. F. Fischetti, B. T. Hyman, M. P. Frosch, T. Gomez-Isla, and L. Makowski, “Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue,” Sci. Rep. 6, 33079 (2016).
[Crossref] [PubMed]

Vestergaard, B.

A. van Maarschalkerweerd, V. Vetri, and B. Vestergaard, “Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes,” FEBS Lett. 589, 2661–2667 (2015).
[Crossref] [PubMed]

Vetri, V.

A. van Maarschalkerweerd, V. Vetri, and B. Vestergaard, “Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes,” FEBS Lett. 589, 2661–2667 (2015).
[Crossref] [PubMed]

Vogt, S.

S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
[Crossref] [PubMed]

S. C. Dodani, D. W. Domaille, C. I. Nam, E. W. Miller, L. A. Finney, S. Vogt, and C. J. Chang, “Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and x-ray fluorescence microscopy,” Proc. Natl. Acad. Sci. 108, 5980–5985 (2011).
[Crossref] [PubMed]

S. Vogt, J. Maser, and C. Jacobsen, “Data analysis for x-ray fluorescence imaging,” J. Phys. IV France 104, 617–622 (2003).
[Crossref]

Walter, P.

V. Solé, E. Papillon, M. Cotte, P. Walter, and J. Susini, “A multiplatform code for the analysis of energy-dispersive x-ray fluorescence spectra,” Spectrochim Acta B 62, 63–68 (2007).
[Crossref]

Weindl, D.

J. Meiser, D. Weindl, and K. Hiller, “Complexity of dopamine metabolism,” Cell Commun. Signal 11, 34 (2013).
[Crossref] [PubMed]

Weinkamer, R.

P. Fratzl and R. Weinkamer, “Nature’s hierarchical materials,” Prog Mater Sci 52, 1263–1334 (2007).
[Crossref]

Wells, F. R.

D. T. Dexter, F. R. Wells, A. J. Lee, F. Agid, Y. Agid, P. Jenner, and C. D. Marsden, “Increased nigral iron content and alterations in other metal ions occurring in brain in parkinson’s disease,” J. Neurochem. 52, 1830–1836 (1989).
[Crossref] [PubMed]

Wenk, M. R.

D. Cheng, A. M. Jenner, G. Shui, W. F. Cheong, T. W. Mitchell, J. R. Nealon, W. S. Kim, H. McCann, M. R. Wenk, G. M. Halliday, and B. Garner, “Lipid pathway alterations in parkinson’s disease primary visual cortex,” PLoS One 6, 1–18 (2011).

Wilkins, S. W.

S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
[Crossref] [PubMed]

Worthington, A. R.

C. R. Worthington and A. R. Worthington, “Effect of heat on frog sciatic nerve determined by x-ray diffraction,” Int. J. Biol. Macromol. 3, 159–164 (1981).
[Crossref]

Worthington, C. R.

C. R. Worthington and A. R. Worthington, “Effect of heat on frog sciatic nerve determined by x-ray diffraction,” Int. J. Biol. Macromol. 3, 159–164 (1981).
[Crossref]

Zarrouk, A.

A. Zarrouk, A. Vejux, J. Mackrill, Y. O’Callaghan, M. Hammami, N. O’Brien, and G. Lizard, “Involvement of oxysterols in age-related diseases and ageing processes,” Ageing Res. Rev. 18, 148–162 (2014).
[Crossref] [PubMed]

Zecca, L.

F. A. Zucca, J. Segura-Aguilar, E. Ferrari, P. Muñoz, I. Paris, D. Sulzer, T. Sarna, L. Casella, and L. Zecca, “Interactions of iron, dopamine and neuromelanin pathways in brain aging and parkinson’s disease,” Prog. Neurobiol. 155, 96–119 (2017).
[Crossref]

D. Sulzer, J. Bogulavsky, K. E. Larsen, G. Behr, E. Karatekin, M. H. Kleinman, N. Turro, D. Krantz, R. H. Edwards, L. A. Greene, and L. Zecca, “Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles,” Proc. Natl. Acad. Sci. 97, 11869–11874 (2000).
[Crossref] [PubMed]

L. Zecca, T. Shima, A. Stroppolo, C. Goj, G. Battiston, R. Gerbasi, T. Sarna, and H. Swartz, “Interaction of neuromelanin and iron in substantia nigra and other areas of human brain,” Neuroscience 73, 407–415 (1996).
[Crossref] [PubMed]

Zeller, R.

A. H. Fischer, K. A. Jacobson, J. Rose, and R. Zeller, “Fixation and permeabilization of cells and tissues,” Cold Spring Harb Protoc 2008, 1–2 (2008).
[Crossref]

Zhang, J.

Z. Li, J. Zhang, and H. Sun, “Increased plasma levels of phospholipid in parkinson’s disease with mild cognitive impairment,” J. Clin. Neurosci. 22, 1268–1271 (2015).
[Crossref] [PubMed]

Zucca, F. A.

F. A. Zucca, J. Segura-Aguilar, E. Ferrari, P. Muñoz, I. Paris, D. Sulzer, T. Sarna, L. Casella, and L. Zecca, “Interactions of iron, dopamine and neuromelanin pathways in brain aging and parkinson’s disease,” Prog. Neurobiol. 155, 96–119 (2017).
[Crossref]

Zweckstetter, M.

A. Binolfi, R. M. Rasia, C. W. Bertoncini, M. Ceolin, M. Zweckstetter, C. Griesinger, T. M. Jovin, and C. O. Fernández, “Interaction of α-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement,” J. Am. Chem. Soc. 128, 9893–9901 (2006).
[Crossref] [PubMed]

Ageing Res. Rev. (1)

A. Zarrouk, A. Vejux, J. Mackrill, Y. O’Callaghan, M. Hammami, N. O’Brien, and G. Lizard, “Involvement of oxysterols in age-related diseases and ageing processes,” Ageing Res. Rev. 18, 148–162 (2014).
[Crossref] [PubMed]

Anal Bioanal Chem (1)

S. A. James, D. E. Myers, M. D. de Jonge, S. Vogt, C. G. Ryan, B. A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, M. Altissimo, G. F. Moorhead, and S. W. Wilkins, “Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue,” Anal Bioanal Chem 401, 853–864 (2011).
[Crossref] [PubMed]

Anal. Chem. (1)

S. Bohic, K. Murphy, W. Paulus, P. Cloetens, M. Salomé, J. Susini, and K. Double, “Intracellular chemical imaging of the developmental phases of human neuromelanin using synchrotron x-ray microspectroscopy,” Anal. Chem. 80, 9557–9566 (2008).
[Crossref] [PubMed]

Biochem. J. (1)

S. R. Paik, H.-J. Shin, J.-H. Lee, C.-S. Chang, and J. Kim, “Copper(ii)-induced self-oligomerization of α-synuclein,” Biochem. J. 340, 821–828 (1999).
[Crossref]

Biomacromolecules (1)

C. Riekel, M. Burghammer, T. G. Dane, C. Ferrero, and M. Rosenthal, “Nanoscale structural features in major ampullate spider silk,” Biomacromolecules 18, 231–241 (2017).
[Crossref]

Brain (1)

A. J. Hughes, S. E. Daniel, Y. Ben-Shlomo, and A. J. Lees, “The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service,” Brain 125, 861 (2002).
[Crossref] [PubMed]

Cell Commun. Signal (1)

J. Meiser, D. Weindl, and K. Hiller, “Complexity of dopamine metabolism,” Cell Commun. Signal 11, 34 (2013).
[Crossref] [PubMed]

Cold Spring Harb Protoc (1)

A. H. Fischer, K. A. Jacobson, J. Rose, and R. Zeller, “Fixation and permeabilization of cells and tissues,” Cold Spring Harb Protoc 2008, 1–2 (2008).
[Crossref]

Curr. Opin. Chem. Biol. (1)

C. J. Fahrni, “Biological applications of x-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals,” Curr. Opin. Chem. Biol. 11, 121–127 (2007).
[Crossref] [PubMed]

Exp. Cell Res. (1)

J. Elkes and J. B. Finean, “X-ray diffraction studies on the effect of temperature on the structure of myelin in the sciatic nerve of the frog,” Exp. Cell Res. 4, 69–81 (1953).
[Crossref]

FEBS Lett. (1)

A. van Maarschalkerweerd, V. Vetri, and B. Vestergaard, “Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes,” FEBS Lett. 589, 2661–2667 (2015).
[Crossref] [PubMed]

Free Radic. Biol. Med. (1)

M. Doria, L. Maugest, T. Moreau, G. Lizard, and A. Vejux, “Contribution of cholesterol and oxysterols to the pathophysiology of parkinson’s disease,” Free Radic. Biol. Med. 101, 393–400 (2016).
[Crossref] [PubMed]

Int. J. Biol. Macromol. (1)

C. R. Worthington and A. R. Worthington, “Effect of heat on frog sciatic nerve determined by x-ray diffraction,” Int. J. Biol. Macromol. 3, 159–164 (1981).
[Crossref]

Int. Rev. Cytol. (1)

J. B. Finean, “The nature and stability of nerve myelin,” Int. Rev. Cytol. 12, 303–336 (1962).
[Crossref]

J. Am. Chem. Soc. (2)

R. Shaharabani, M. Ram-On, R. Avinery, R. Aharoni, R. Arnon, Y. Talmon, and R. Beck, “Structural transition in myelin membrane as initiator of multiple sclerosis,” J. Am. Chem. Soc. 138, 12159–12165 (2016).
[Crossref]

A. Binolfi, R. M. Rasia, C. W. Bertoncini, M. Ceolin, M. Zweckstetter, C. Griesinger, T. M. Jovin, and C. O. Fernández, “Interaction of α-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement,” J. Am. Chem. Soc. 128, 9893–9901 (2006).
[Crossref] [PubMed]

J. Appl. Crystallogr. (1)

H. Lichtenegger, M. Müller, O. Paris, C. Riekel, and P. Fratzl, “Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction,” J. Appl. Crystallogr. 32, 1127–1133 (1999).
[Crossref]

J. Biol. Chem. (1)

V. N. Uversky, J. Li, and A. L. Fink, “Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein: A possible molecular link between parkinson’s disease and heavy metal exposure,” J. Biol. Chem. 276, 44284–44296 (2001).
[Crossref] [PubMed]

J. Clin. Invest. (1)

L. Bertram and R. E. Tanzi, “The genetic epidemiology of neurodegenerative disease,” J. Clin. Invest. 115, 1449–1457 (2005).
[Crossref] [PubMed]

J. Clin. Neurosci. (1)

Z. Li, J. Zhang, and H. Sun, “Increased plasma levels of phospholipid in parkinson’s disease with mild cognitive impairment,” J. Clin. Neurosci. 22, 1268–1271 (2015).
[Crossref] [PubMed]

J. Lipid Res. (1)

C. R. Loomis, G. G. Shipley, and D. M. Small, “The phase behavior of hydrated cholesterol,” J. Lipid Res. 20, 525–535 (1979).
[PubMed]

J. Neurochem. (1)

D. T. Dexter, F. R. Wells, A. J. Lee, F. Agid, Y. Agid, P. Jenner, and C. D. Marsden, “Increased nigral iron content and alterations in other metal ions occurring in brain in parkinson’s disease,” J. Neurochem. 52, 1830–1836 (1989).
[Crossref] [PubMed]

J. Parkinsons Dis. (1)

V. Dias, E. Junn, and M. M. Mouradian, “The role of oxidative stress in parkinson’s disease,” J. Parkinsons Dis. 3, 461–491 (2013).

J. Phys. Condens. Matter (1)

M. Szczerbowska-Boruchowska, A. Krygowska-Wajs, and D. Adamek, “Elemental micro-imaging and quantification of human substantia nigra using synchrotron radiation based x-ray fluorescence - in relation to parkinson’s disease,” J. Phys. Condens. Matter 24, 244104 (2012).
[Crossref]

J. Phys. IV France (1)

S. Vogt, J. Maser, and C. Jacobsen, “Data analysis for x-ray fluorescence imaging,” J. Phys. IV France 104, 617–622 (2003).
[Crossref]

J. Struct. Biol. (1)

T. Dučić, S. Quintes, K.-A. Nave, J. Susini, M. Rak, R. Tucoulou, M. Alevra, P. Guttmann, and T. Salditt, “Structure and composition of myelinated axons: A multimodal synchrotron spectro-microscopy study,” J. Struct. Biol. 173, 202–212 (2011).
[Crossref]

J. Ultrastruct. Res. (2)

R. T. Joy and J. B. Finean, “A comparison of the effects of freezing and of treatment with hypertonic solutions on the structure of nerve myelin,” J. Ultrastruct. Res. 8, 264–282 (1963).
[Crossref] [PubMed]

D. A. Kirschner and C. J. Hollingshead, “Processing for electron microscopy alters membrane structure and packing in myelin,” J. Ultrastruct. Res. 73, 211–232 (1980).
[Crossref] [PubMed]

Metallomics (1)

E. Carboni and P. Lingor, “Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease,” Metallomics 7, 395–404 (2015).
[Crossref] [PubMed]

Nat. Photon. (1)

A. Sakdinawat and D. Attwood, “Nanoscale x-ray imaging,” Nat. Photon. 4, 840–848 (2010).
[Crossref]

Nature (2)

M. G. Spillantini, M. L. Schmidt, V. M.-Y. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in lewy bodies,” Nature 388, 839–840 (1997).
[Crossref] [PubMed]

H. S. Shieh, L. G. Hoard, and C. E. Nordman, “Crystal structure of anhydrous cholesterol,” Nature 267, 287–289 (1977).
[Crossref] [PubMed]

Neurobiol Aging (1)

K. M. Davies, S. Bohic, A. Carmona, R. Ortega, V. Cottam, D. J. Hare, J. P. M. Finberg, S. Reyes, G. M. Halliday, J. F. B. Mercer, and K. L. Double, “Copper pathology in vulnerable brain regions in parkinson’s disease,” Neurobiol Aging 35, 858–866 (2014).
[Crossref]

Neurobiol. Dis. (1)

M. Bousquet, I. St-Amour, M. Vandal, P. Julien, F. Cicchetti, and F. Calon, “High-fat diet exacerbates MPTP-induced dopaminergic degeneration in mice,” Neurobiol. Dis. 45, 529–538 (2012).
[Crossref]

NeuroImage (1)

T. Jensen, M. Bech, O. Bunk, A. Menzel, A. Bouchet, G. L. Duc, R. Feidenhans’l, and F. Pfeiffer, “Molecular x-ray computed tomography of myelin in a rat brain,” NeuroImage 57, 124– 129 (2011).
[Crossref]

Neuroscience (1)

L. Zecca, T. Shima, A. Stroppolo, C. Goj, G. Battiston, R. Gerbasi, T. Sarna, and H. Swartz, “Interaction of neuromelanin and iron in substantia nigra and other areas of human brain,” Neuroscience 73, 407–415 (1996).
[Crossref] [PubMed]

New J. Phys. (1)

M. Bernhardt, J.-D. Nicolas, M. Eckermann, B. Eltzner, F. Rehfeldt, and T. Salditt, “Anisotropic x-ray scattering and orientation fields in cardiac tissue cells,” New J. Phys. 19, 013012 (2017).
[Crossref]

PLoS One (1)

D. Cheng, A. M. Jenner, G. Shui, W. F. Cheong, T. W. Mitchell, J. R. Nealon, W. S. Kim, H. McCann, M. R. Wenk, G. M. Halliday, and B. Garner, “Lipid pathway alterations in parkinson’s disease primary visual cortex,” PLoS One 6, 1–18 (2011).

Proc. Natl. Acad. Sci. (2)

S. C. Dodani, D. W. Domaille, C. I. Nam, E. W. Miller, L. A. Finney, S. Vogt, and C. J. Chang, “Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and x-ray fluorescence microscopy,” Proc. Natl. Acad. Sci. 108, 5980–5985 (2011).
[Crossref] [PubMed]

D. Sulzer, J. Bogulavsky, K. E. Larsen, G. Behr, E. Karatekin, M. H. Kleinman, N. Turro, D. Krantz, R. H. Edwards, L. A. Greene, and L. Zecca, “Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles,” Proc. Natl. Acad. Sci. 97, 11869–11874 (2000).
[Crossref] [PubMed]

Prog Mater Sci (1)

P. Fratzl and R. Weinkamer, “Nature’s hierarchical materials,” Prog Mater Sci 52, 1263–1334 (2007).
[Crossref]

Prog. Neurobiol. (1)

F. A. Zucca, J. Segura-Aguilar, E. Ferrari, P. Muñoz, I. Paris, D. Sulzer, T. Sarna, L. Casella, and L. Zecca, “Interactions of iron, dopamine and neuromelanin pathways in brain aging and parkinson’s disease,” Prog. Neurobiol. 155, 96–119 (2017).
[Crossref]

Sci. Rep. (1)

J. Liu, I. Costantino, N. Venugopalan, R. F. Fischetti, B. T. Hyman, M. P. Frosch, T. Gomez-Isla, and L. Makowski, “Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue,” Sci. Rep. 6, 33079 (2016).
[Crossref] [PubMed]

Spectrochim Acta B (1)

V. Solé, E. Papillon, M. Cotte, P. Walter, and J. Susini, “A multiplatform code for the analysis of energy-dispersive x-ray fluorescence spectra,” Spectrochim Acta B 62, 63–68 (2007).
[Crossref]

Talanta (1)

A. Surowka, M. Töpperwien, M. Bernhardt, J. Nicolas, M. Osterhoff, T. Salditt, D. Adamek, and M. Szczerbowska-Boruchowska, “Combined in-situ imaging of structural organization and elemental composition of substantia nigra neurons in the elderly,” Talanta 161, 368–376 (2016).
[Crossref] [PubMed]

X-Ray Spectrom (1)

M. Szczerbowska-Boruchowska, M. Lankosz, J. Ostachowicz, D. Adamek, A. Krygowska-Wajs, B. Tomik, A. Szczudlik, A. Simionovici, and S. Bohic, “Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation,” X-Ray Spectrom 33, 3–11 (2004).
[Crossref]

X-Ray Spectrom. (1)

M. Szczerbowska-Boruchowska, “X-ray fluorescence spectrometry, an analytical tool in neurochemical research,” X-Ray Spectrom. 37, 21–31 (2008).
[Crossref]

Other (4)

T. Salditt and T. Dučić, Super-Resolution Microscopy Techniques in the Neurosciences (Humana Press, Totowa, NJ, 2014), Chap. X-Ray Microscopy for Neuroscience: Novel Opportunities by Coherent Optics, pp. 257–290.
[Crossref]

J. Stangl, C. Mocuta, V. Chamard, and D. Carbone, Nanobeam X-ray Scattering: Probing Matter at the Nanoscale (WILEY-VCH Verlag GmbH & Co. KGaA, 2014).

M. J. Lynch, S. S. Raphael, L. D. Mellor, P. D. Spare, and M. J. Inwood, Medical Laboratory Technology and Clinical Pathology (WB Saunders Co., 1969), 2nd ed.

J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Sketch of the experimental endstation. (a) Monochromatized undulator radiation is focused down to a spot size of 2 × 3 μm2 through a transfocator. The sample (tissue section on solid support, SiN window or polypropylene foil) is placed into the focus of the x-ray beam. Scattered radiation and fluorescence is detected simultaneously on a 2D pixelated detector (Eiger 4M, Dectris) and Vortex EM detector, respectively. An on-axis video microscope facilitates sample positioning and alignment. A circular beamstop blocks unscattered radiation at approx. 10 cm downstream of the focus position. A photograph of the setup is shown in (b). Individual components are highlighted in color: Transfocator exit window (orange), sample holder (red), Vortex EM detector (yellow), He-flushed flighttube (blue), on-axis microscope (green), and Eiger 4M detector (magenta).

Fig. 2
Fig. 2

(a) Optical micrograph corresponding to a region of a single scan on SN of PD sample. (b) Corresponding Zn Kα fluorescence intensity. Dark regions correspond to NM positive cells in the tissue. (c) Defining a fixed threshold of the Zn Kα fluorescence yields a logical map to locate the neuromelanin-positive cells (black). (d) A lower threshold yields a logical map corresponding to the extracellular region (black). Scale bar: 100 μm.

Fig. 3
Fig. 3

(a) Comparison of the averaged fluorescence spectra obtained from the cellular and extracellular regions of the PD and CTR sample. Note, that cells of the PD sample contain a higher amount of Fe with respect to the CTR. (b–e). Spectral decomposition of the data shown in A was done using pyMCA. (b) Spectral decomposition of the intracellular area of CTR. (c) Spectral decomposition of the extracellular area of CTR. (d) Spectral decomposition of the intracellular area of PD. (e) Spectral decomposition of the extracellular area of PD. Meaningful elements were selected for further quantification. (f) Ratios of fitted areas of the elements between PD and CTR. There is a higher concentration of Fe for the PD samples especially in the extracellular area, while the Cu concentration is reduced both in the extra- and intracellular compartment.

Fig. 4
Fig. 4

(a) Overview of an IHC staining of MBP from tissue of the CTR sample in a neighboring section of those that have been investigated using x-rays. The staining is resulting in a brown color due to the product of the reaction between horseradish peroxidase and DAB. The intensity of the color is dependent on the amount on MPB present in the region, Scale bar: 500 μm (b–d) Close-up regions show the myelin content of (b) Crus cerebri, (c) Substantia Nigra, and (d) Red Nucleus. Scale bar: 50 μm.

Fig. 5
Fig. 5

(a–d) Structure factor analysis of the SAXS signal. (a) Darkfield map of SN tissue from CTR sample. Data from region 1, marked in red, was averaged and azimuthally integrated, as shown in (b). (c) Darkfield map of FT tissue from CTR sample. Again, data from region 2, marked in red, was averaged and azimuthally integrated, as shown in (d). (e–f) Principal component analysis of fiber tract tissue of the Crus Cerebri. (e) Anisotropy of the myelin diffraction. (f) Orientation of the long axis of the myelin sheath. Orientation of the axons is both color coded and indicated by superimposed black lines. Scale bar 100 μm.

Fig. 6
Fig. 6

(a) X-ray raster scan (darkfield contrast) of a brain tissue section (SN region) from a Parkinson’s disease patient. Arrows indicate locations at which an hexatic lipid phase could be identified. Scale bar: 100 μm (b, left) Myelin signal as can be observed throughout the scanned sample region, while (b, right) a signal resembling an hexatic lipid bilayer phase can only be found at isolated locations in the sample, as marked by arrows in (a). (c, left) Averaged signal from roi 3 as marked in red in (a). (c, right) Averaged signal from locations where an hexatic phase was identified. (d) Both patterns in (c) have been angular averaged to identify the peak locations and peak widths. (e) Sketch of the myelin sheath surrounding the axon of a nerve cell. A zoom region shows a sketch of the lamellar stacking of lipid bilayers in the myelin sheath with myelin basic protein (MBP) and proteolipid protein (PLP) as major protein constituents of the myelin sheath. Based on the data it can be speculated that the myelin sheath can undergo a phase transition into an inverse hexagonal phase, as shown on the right. MBP: Myelin basic protein, PLP: Myelin proteolipid protein. Subfigure (e) with adaptions from [36].

Fig. 7
Fig. 7

Crystalline reflections from anhydrous cholesterol. (a,b,c) Illustration of the crystal localization procedure. (a) Diffraction pattern showing the presence of crystalline diffraction peaks in the wide-angle region. (b) Thresholded diffraction pattern (background subtracted) for a threshold of 10 counts. (c) Summing the intensity of the reflections identified by the logical masking procedure in (b) for each scan points yields a map of the crystalline domains of the sample. (d) Summed number of scan points exhibiting crystalline reflections within the CTR and PD sample. (e) Azimuthal integration of the maximum projection of the scan (blue lines and dots) with red lines superimposed corresponding to reflections that would result from anhydrous cholesterol.

Fig. 8
Fig. 8

Semitransparent map of the distribution of crystalline aggregates (red areas) overlaying (a) the STXM map (darkfield contrast), (b) optical micrograph, (c) total fluorescence intensity, (d) Zn Kα fluorescence map, (e) Fe Kα fluorescence map and (f) Cu Kα fluorescence map. Scale bar: 100 μm.

Fig. 9
Fig. 9

Histological evaluations of the samples. Each row represents the primary antibody used, both for PD (left column) and CTR (right column) column. The arrows point to Lewy bodies and the star highlights a Lewy neurite. Scale bar: 20 μm.

Tables (1)

Tables Icon

Table 1 Summary of peak positions and peak widths as determined from the respective structure factors shown in Fig. 5 and Fig. 6.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C = ( var ( q y ) cov ( q y , q z ) cov ( q z , q y ) var ( q z ) )
ω = | λ 1 λ 2 | λ 1 + λ 2 .

Metrics