Abstract

Originally described in crane-fly spermatocytes, tethers physically link and transmit force between the ends of separating chromosomes. Optical tweezers and laser scissors were used to sever the tether between chromosomes, create chromosome fragments attached to the tether which move toward the opposite pole, and to trap the tethered fragments. Laser microsurgery in the intracellular space between separating telomeres reduced chromosome strain in half of tested chromosome pairs. When the telomere-containing region was severed from the rest of the chromosome body, the resultant fragment either traveled towards the proper pole (poleward), towards the sister pole (cross-polar), or movement ceased. Fragment travel towards the sister pole varied in distance and always ceased following a cut between telomeres, indicating the tether is responsible for transferring a cross-polar force to the fragment. Optical trapping of cross-polar traveling fragments places an upper boundary on the tethering force of ~1.5 pN.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Technique of laser chromosome welding for chromosome repair and artificial chromosome creation

Yao-Xiong Huang, Lin Li, Liu Yang, and Yi Zhang
Biomed. Opt. Express 9(4) 1783-1794 (2018)

Effect of red light on optically trapped spermatozoa

Kay W. Chow, Daryl Preece, and Michael W. Berns
Biomed. Opt. Express 8(9) 4200-4205 (2017)

Measurement of dynamic cell-induced 3D displacement fields in vitro for traction force optical coherence microscopy

Jeffrey A. Mulligan, François Bordeleau, Cynthia A. Reinhart-King, and Steven G. Adie
Biomed. Opt. Express 8(2) 1152-1171 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Gordon, B. Resio, and D. Pellman, “Causes and consequences of aneuploidy in cancer,” Nat. Rev. Genet. 13(3), 189–203 (2012).
    [PubMed]
  2. T. Hassold, M. Abruzzo, K. Adkins, D. Griffin, M. Merrill, E. Millie, and M. Zaragoza, “Human aneuploidy: Incidence, origin and etiology,” Envir. and Mol. Mutagenesis 28(3), 167–175 (1996).
    [Crossref]
  3. A. Suzuki, B. L. Badger, J. Haase, T. Ohashi, H. P. Erickson, E. D. Salmon, and K. Bloom, “How the kinetochore couples microtubule force and centromere stretch to move chromosomes,” Nature Cell Biol. 18(4), 382–392 (2016).
    [Crossref] [PubMed]
  4. L. Matsson, “Chromatin compaction by condensin I, intra-kinetochore stretch and tension, and anaphase onset, in collective spindle assembly checkpoint interaction,” J. Phys. Condensed Matter 26(15), 155102 (2014).
    [Crossref] [PubMed]
  5. Y. Wang, F. Jin, R. Higgins, and K. McKnight, “The current view for the silencing of the spindle assembly checkpoint,” Cell Cycle bfseries 13(11), 1694–1701 (2014).
    [Crossref]
  6. F. Jin and Y. Wang, “’The signaling network that silences the spindle assembly checkpoint upon the establishment of chromosome bipolar attachment,” PNAS 110(52), 21036–21041 (2013).
    [Crossref] [PubMed]
  7. P. Keating, N. Rachidi, T. U. Tanaka, and M. J. R. Stark, “Ipl1-dependent phosphorylation of Dam1 is reduced by tension applied on kinetochores,” J. Cell Sci. 122, 4375–4382 (2009).
    [Crossref] [PubMed]
  8. D. E. Koshland, T. J. Mitchison, and M. W. Kirschner, “Polewards chromosome movement driven by microtubule depolymerization in vitro,” Nature 331(6156), 499–504 (1988).
    [Crossref] [PubMed]
  9. G. C. Rogers, S. L. Rogers, T. A. Schwimmer, S. C. Ems-McClung, C. E. Walczak, R. D. Vale, and D. J. Sharp, “Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase,” Nature 427(6972), 364–370 (2004).
    [Crossref]
  10. S. Inoué and E. D. Salmon, “Force generation by microtubule assembly/disassembly in mitosis and related movements,” Mol. Biol. Cell 6(12), 1619–1640 (1995).
    [Crossref] [PubMed]
  11. J. F. Marko and M. G. Poirier, “Micromechanics of chromatin and chromosomes,” Biochem. and Cell Biol. 81(3), 209–220 (2003).
    [Crossref]
  12. M. Sun, R. Kawamura, and J. F. Marko, “Micromechanics of human mitotic chromosomes,” Phys. Biol. 8(1), 1–18 (2011).
    [Crossref]
  13. G. Cojoc, R. Roscioli, L. Zhang, A. Garcia-Ulloa, J. V. Shah, M. W. Berns, and J. Gregan, “Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore,” J. Cell Biol. 212(7), 767–776 (2016).
    [Crossref] [PubMed]
  14. W. F. Marshall, J. F. Marko, D. A. Agard, and J. W. Sedat, “Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis,” Current Biology 11(8), 569–578 (2001).
    [Crossref] [PubMed]
  15. R. B. Nicklas, “Measurements of the force produced by the mitotic spindle in anaphase,” J. Cell Biol. 97(2), 542–548 (1983).
    [Crossref] [PubMed]
  16. R. B. Nicklas, “Chromosome Function Velocity During Mitosis As a of Chromosome Size and Position,” J. Cell Biol. 25(1), 119–135 (1965).
    [Crossref]
  17. S. P. Alexander and C. L. Rieder, “Analysis of Force Production by Nascent Kinetochore Fibers,” Cell 113(4), 805–815 (1991).
    [Crossref]
  18. M. W. Berns, W. H. Wright, B. J. Tromberg, G. Profeta, J. J. Andrews, and R. J. Walter, “Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle,” Proceedings of the National Academy of Sciences 86(12), 4539–4543 (1989).
    [Crossref]
  19. H. Liang, W. H. Wright, S. Cheng, W. He, and M. W. Berns, “Micromanipulation of chromosomes in PtK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers),” Exp. Cell. Research 204(1), 110–120 (1993).
    [Crossref]
  20. H. Liang, W. H. Wright, C. L. Rieder, E. Salmon, G. Profeta, J. J. Andrews, and M. W. Berns, “Directed Movement of Chromosome Arms and Fragments in Mitotic Newt Cells Using Optical Scissors and Optical Tweezers,” Experimental Cell Research 213, 308–312 (1994).
    [Crossref]
  21. N. Khatibzadeh, A. B. Stilgoe, A. M. Bui, Y. Rocha, G. M. Cruz, V. Loke, and M. W. Berns, “Determination of motility forces on isolated chromosomes with laser tweezers,” Sci. Rep. 4, 6866 (2014).
    [Crossref] [PubMed]
  22. B. Houchmandzadeh, J. F. Marko, D. Chatenay, and A. Libchaber, “Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration,” J. Cell Biol. 139(1), 1–12 (1997).
    [Crossref] [PubMed]
  23. J. Ferraro-Gideon, R. Sheykhani, Q. Zhu, M. L. Duquette, M. W. Berns, and A. Forer, “Measurements of forces produced by the mitotic spindle using optical tweezers,” Mol. Biol. Cell 24, 1375–1386 (2013).
    [Crossref] [PubMed]
  24. J. R. LaFountain, R. W. Cole, and C. L. Rieder, “Partner telomeres during anaphase in crane-fly spermatocytes are connected by an elastic tether that exerts a backward force and resists poleward motion,” J. Cell Sci. 115(7), 1541–1549 (2002).
    [PubMed]
  25. R. Sheykhani, M. W. Berns, and A. Forer, “Elastic tethers between separating anaphase chromosomes in crane-fly spermatocytes coordinate chromosome movements to the two poles,” Cytoskeleton 74(2), 91–103 (2017).
    [Crossref]
  26. A. Forer, M. L. Duquette, L. Paliuilis, E. Fegaras, M. Ono, D. Preece, and M. W. Berns, “Elastic ‘tethers’ connect separating anaphase chromosomes in a broad range of animal cells,” European Journal of Cell Biology, (to be published).
  27. M. S. Harsono, Q. Zhu, L. Z. Shi, M. L. Duquette, and M. W. Berns, “Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells,” J. Biophoton. 6, 197–204 (2013).
    [Crossref]
  28. M. Ono, D. Preece, M. L. Duquette, and M. W. Berns, “Mitotic tethers connect sister chromosomes during anaphase A in PtK2 cells,” in Optics in the Life Sciences Congress, Optical Trapping Applications 2017 (Optical Society of America, 2017), paper OTM4E.4.
    [Crossref]

2017 (1)

R. Sheykhani, M. W. Berns, and A. Forer, “Elastic tethers between separating anaphase chromosomes in crane-fly spermatocytes coordinate chromosome movements to the two poles,” Cytoskeleton 74(2), 91–103 (2017).
[Crossref]

2016 (2)

A. Suzuki, B. L. Badger, J. Haase, T. Ohashi, H. P. Erickson, E. D. Salmon, and K. Bloom, “How the kinetochore couples microtubule force and centromere stretch to move chromosomes,” Nature Cell Biol. 18(4), 382–392 (2016).
[Crossref] [PubMed]

G. Cojoc, R. Roscioli, L. Zhang, A. Garcia-Ulloa, J. V. Shah, M. W. Berns, and J. Gregan, “Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore,” J. Cell Biol. 212(7), 767–776 (2016).
[Crossref] [PubMed]

2014 (3)

L. Matsson, “Chromatin compaction by condensin I, intra-kinetochore stretch and tension, and anaphase onset, in collective spindle assembly checkpoint interaction,” J. Phys. Condensed Matter 26(15), 155102 (2014).
[Crossref] [PubMed]

Y. Wang, F. Jin, R. Higgins, and K. McKnight, “The current view for the silencing of the spindle assembly checkpoint,” Cell Cycle bfseries 13(11), 1694–1701 (2014).
[Crossref]

N. Khatibzadeh, A. B. Stilgoe, A. M. Bui, Y. Rocha, G. M. Cruz, V. Loke, and M. W. Berns, “Determination of motility forces on isolated chromosomes with laser tweezers,” Sci. Rep. 4, 6866 (2014).
[Crossref] [PubMed]

2013 (3)

M. S. Harsono, Q. Zhu, L. Z. Shi, M. L. Duquette, and M. W. Berns, “Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells,” J. Biophoton. 6, 197–204 (2013).
[Crossref]

J. Ferraro-Gideon, R. Sheykhani, Q. Zhu, M. L. Duquette, M. W. Berns, and A. Forer, “Measurements of forces produced by the mitotic spindle using optical tweezers,” Mol. Biol. Cell 24, 1375–1386 (2013).
[Crossref] [PubMed]

F. Jin and Y. Wang, “’The signaling network that silences the spindle assembly checkpoint upon the establishment of chromosome bipolar attachment,” PNAS 110(52), 21036–21041 (2013).
[Crossref] [PubMed]

2012 (1)

D. J. Gordon, B. Resio, and D. Pellman, “Causes and consequences of aneuploidy in cancer,” Nat. Rev. Genet. 13(3), 189–203 (2012).
[PubMed]

2011 (1)

M. Sun, R. Kawamura, and J. F. Marko, “Micromechanics of human mitotic chromosomes,” Phys. Biol. 8(1), 1–18 (2011).
[Crossref]

2009 (1)

P. Keating, N. Rachidi, T. U. Tanaka, and M. J. R. Stark, “Ipl1-dependent phosphorylation of Dam1 is reduced by tension applied on kinetochores,” J. Cell Sci. 122, 4375–4382 (2009).
[Crossref] [PubMed]

2004 (1)

G. C. Rogers, S. L. Rogers, T. A. Schwimmer, S. C. Ems-McClung, C. E. Walczak, R. D. Vale, and D. J. Sharp, “Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase,” Nature 427(6972), 364–370 (2004).
[Crossref]

2003 (1)

J. F. Marko and M. G. Poirier, “Micromechanics of chromatin and chromosomes,” Biochem. and Cell Biol. 81(3), 209–220 (2003).
[Crossref]

2002 (1)

J. R. LaFountain, R. W. Cole, and C. L. Rieder, “Partner telomeres during anaphase in crane-fly spermatocytes are connected by an elastic tether that exerts a backward force and resists poleward motion,” J. Cell Sci. 115(7), 1541–1549 (2002).
[PubMed]

2001 (1)

W. F. Marshall, J. F. Marko, D. A. Agard, and J. W. Sedat, “Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis,” Current Biology 11(8), 569–578 (2001).
[Crossref] [PubMed]

1997 (1)

B. Houchmandzadeh, J. F. Marko, D. Chatenay, and A. Libchaber, “Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration,” J. Cell Biol. 139(1), 1–12 (1997).
[Crossref] [PubMed]

1996 (1)

T. Hassold, M. Abruzzo, K. Adkins, D. Griffin, M. Merrill, E. Millie, and M. Zaragoza, “Human aneuploidy: Incidence, origin and etiology,” Envir. and Mol. Mutagenesis 28(3), 167–175 (1996).
[Crossref]

1995 (1)

S. Inoué and E. D. Salmon, “Force generation by microtubule assembly/disassembly in mitosis and related movements,” Mol. Biol. Cell 6(12), 1619–1640 (1995).
[Crossref] [PubMed]

1994 (1)

H. Liang, W. H. Wright, C. L. Rieder, E. Salmon, G. Profeta, J. J. Andrews, and M. W. Berns, “Directed Movement of Chromosome Arms and Fragments in Mitotic Newt Cells Using Optical Scissors and Optical Tweezers,” Experimental Cell Research 213, 308–312 (1994).
[Crossref]

1993 (1)

H. Liang, W. H. Wright, S. Cheng, W. He, and M. W. Berns, “Micromanipulation of chromosomes in PtK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers),” Exp. Cell. Research 204(1), 110–120 (1993).
[Crossref]

1991 (1)

S. P. Alexander and C. L. Rieder, “Analysis of Force Production by Nascent Kinetochore Fibers,” Cell 113(4), 805–815 (1991).
[Crossref]

1989 (1)

M. W. Berns, W. H. Wright, B. J. Tromberg, G. Profeta, J. J. Andrews, and R. J. Walter, “Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle,” Proceedings of the National Academy of Sciences 86(12), 4539–4543 (1989).
[Crossref]

1988 (1)

D. E. Koshland, T. J. Mitchison, and M. W. Kirschner, “Polewards chromosome movement driven by microtubule depolymerization in vitro,” Nature 331(6156), 499–504 (1988).
[Crossref] [PubMed]

1983 (1)

R. B. Nicklas, “Measurements of the force produced by the mitotic spindle in anaphase,” J. Cell Biol. 97(2), 542–548 (1983).
[Crossref] [PubMed]

1965 (1)

R. B. Nicklas, “Chromosome Function Velocity During Mitosis As a of Chromosome Size and Position,” J. Cell Biol. 25(1), 119–135 (1965).
[Crossref]

Abruzzo, M.

T. Hassold, M. Abruzzo, K. Adkins, D. Griffin, M. Merrill, E. Millie, and M. Zaragoza, “Human aneuploidy: Incidence, origin and etiology,” Envir. and Mol. Mutagenesis 28(3), 167–175 (1996).
[Crossref]

Adkins, K.

T. Hassold, M. Abruzzo, K. Adkins, D. Griffin, M. Merrill, E. Millie, and M. Zaragoza, “Human aneuploidy: Incidence, origin and etiology,” Envir. and Mol. Mutagenesis 28(3), 167–175 (1996).
[Crossref]

Agard, D. A.

W. F. Marshall, J. F. Marko, D. A. Agard, and J. W. Sedat, “Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis,” Current Biology 11(8), 569–578 (2001).
[Crossref] [PubMed]

Alexander, S. P.

S. P. Alexander and C. L. Rieder, “Analysis of Force Production by Nascent Kinetochore Fibers,” Cell 113(4), 805–815 (1991).
[Crossref]

Andrews, J. J.

H. Liang, W. H. Wright, C. L. Rieder, E. Salmon, G. Profeta, J. J. Andrews, and M. W. Berns, “Directed Movement of Chromosome Arms and Fragments in Mitotic Newt Cells Using Optical Scissors and Optical Tweezers,” Experimental Cell Research 213, 308–312 (1994).
[Crossref]

M. W. Berns, W. H. Wright, B. J. Tromberg, G. Profeta, J. J. Andrews, and R. J. Walter, “Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle,” Proceedings of the National Academy of Sciences 86(12), 4539–4543 (1989).
[Crossref]

Badger, B. L.

A. Suzuki, B. L. Badger, J. Haase, T. Ohashi, H. P. Erickson, E. D. Salmon, and K. Bloom, “How the kinetochore couples microtubule force and centromere stretch to move chromosomes,” Nature Cell Biol. 18(4), 382–392 (2016).
[Crossref] [PubMed]

Berns, M. W.

R. Sheykhani, M. W. Berns, and A. Forer, “Elastic tethers between separating anaphase chromosomes in crane-fly spermatocytes coordinate chromosome movements to the two poles,” Cytoskeleton 74(2), 91–103 (2017).
[Crossref]

G. Cojoc, R. Roscioli, L. Zhang, A. Garcia-Ulloa, J. V. Shah, M. W. Berns, and J. Gregan, “Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore,” J. Cell Biol. 212(7), 767–776 (2016).
[Crossref] [PubMed]

N. Khatibzadeh, A. B. Stilgoe, A. M. Bui, Y. Rocha, G. M. Cruz, V. Loke, and M. W. Berns, “Determination of motility forces on isolated chromosomes with laser tweezers,” Sci. Rep. 4, 6866 (2014).
[Crossref] [PubMed]

J. Ferraro-Gideon, R. Sheykhani, Q. Zhu, M. L. Duquette, M. W. Berns, and A. Forer, “Measurements of forces produced by the mitotic spindle using optical tweezers,” Mol. Biol. Cell 24, 1375–1386 (2013).
[Crossref] [PubMed]

M. S. Harsono, Q. Zhu, L. Z. Shi, M. L. Duquette, and M. W. Berns, “Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells,” J. Biophoton. 6, 197–204 (2013).
[Crossref]

H. Liang, W. H. Wright, C. L. Rieder, E. Salmon, G. Profeta, J. J. Andrews, and M. W. Berns, “Directed Movement of Chromosome Arms and Fragments in Mitotic Newt Cells Using Optical Scissors and Optical Tweezers,” Experimental Cell Research 213, 308–312 (1994).
[Crossref]

H. Liang, W. H. Wright, S. Cheng, W. He, and M. W. Berns, “Micromanipulation of chromosomes in PtK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers),” Exp. Cell. Research 204(1), 110–120 (1993).
[Crossref]

M. W. Berns, W. H. Wright, B. J. Tromberg, G. Profeta, J. J. Andrews, and R. J. Walter, “Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle,” Proceedings of the National Academy of Sciences 86(12), 4539–4543 (1989).
[Crossref]

A. Forer, M. L. Duquette, L. Paliuilis, E. Fegaras, M. Ono, D. Preece, and M. W. Berns, “Elastic ‘tethers’ connect separating anaphase chromosomes in a broad range of animal cells,” European Journal of Cell Biology, (to be published).

M. Ono, D. Preece, M. L. Duquette, and M. W. Berns, “Mitotic tethers connect sister chromosomes during anaphase A in PtK2 cells,” in Optics in the Life Sciences Congress, Optical Trapping Applications 2017 (Optical Society of America, 2017), paper OTM4E.4.
[Crossref]

Bloom, K.

A. Suzuki, B. L. Badger, J. Haase, T. Ohashi, H. P. Erickson, E. D. Salmon, and K. Bloom, “How the kinetochore couples microtubule force and centromere stretch to move chromosomes,” Nature Cell Biol. 18(4), 382–392 (2016).
[Crossref] [PubMed]

Bui, A. M.

N. Khatibzadeh, A. B. Stilgoe, A. M. Bui, Y. Rocha, G. M. Cruz, V. Loke, and M. W. Berns, “Determination of motility forces on isolated chromosomes with laser tweezers,” Sci. Rep. 4, 6866 (2014).
[Crossref] [PubMed]

Chatenay, D.

B. Houchmandzadeh, J. F. Marko, D. Chatenay, and A. Libchaber, “Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration,” J. Cell Biol. 139(1), 1–12 (1997).
[Crossref] [PubMed]

Cheng, S.

H. Liang, W. H. Wright, S. Cheng, W. He, and M. W. Berns, “Micromanipulation of chromosomes in PtK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers),” Exp. Cell. Research 204(1), 110–120 (1993).
[Crossref]

Cojoc, G.

G. Cojoc, R. Roscioli, L. Zhang, A. Garcia-Ulloa, J. V. Shah, M. W. Berns, and J. Gregan, “Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore,” J. Cell Biol. 212(7), 767–776 (2016).
[Crossref] [PubMed]

Cole, R. W.

J. R. LaFountain, R. W. Cole, and C. L. Rieder, “Partner telomeres during anaphase in crane-fly spermatocytes are connected by an elastic tether that exerts a backward force and resists poleward motion,” J. Cell Sci. 115(7), 1541–1549 (2002).
[PubMed]

Cruz, G. M.

N. Khatibzadeh, A. B. Stilgoe, A. M. Bui, Y. Rocha, G. M. Cruz, V. Loke, and M. W. Berns, “Determination of motility forces on isolated chromosomes with laser tweezers,” Sci. Rep. 4, 6866 (2014).
[Crossref] [PubMed]

Duquette, M. L.

J. Ferraro-Gideon, R. Sheykhani, Q. Zhu, M. L. Duquette, M. W. Berns, and A. Forer, “Measurements of forces produced by the mitotic spindle using optical tweezers,” Mol. Biol. Cell 24, 1375–1386 (2013).
[Crossref] [PubMed]

M. S. Harsono, Q. Zhu, L. Z. Shi, M. L. Duquette, and M. W. Berns, “Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells,” J. Biophoton. 6, 197–204 (2013).
[Crossref]

A. Forer, M. L. Duquette, L. Paliuilis, E. Fegaras, M. Ono, D. Preece, and M. W. Berns, “Elastic ‘tethers’ connect separating anaphase chromosomes in a broad range of animal cells,” European Journal of Cell Biology, (to be published).

M. Ono, D. Preece, M. L. Duquette, and M. W. Berns, “Mitotic tethers connect sister chromosomes during anaphase A in PtK2 cells,” in Optics in the Life Sciences Congress, Optical Trapping Applications 2017 (Optical Society of America, 2017), paper OTM4E.4.
[Crossref]

Ems-McClung, S. C.

G. C. Rogers, S. L. Rogers, T. A. Schwimmer, S. C. Ems-McClung, C. E. Walczak, R. D. Vale, and D. J. Sharp, “Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase,” Nature 427(6972), 364–370 (2004).
[Crossref]

Erickson, H. P.

A. Suzuki, B. L. Badger, J. Haase, T. Ohashi, H. P. Erickson, E. D. Salmon, and K. Bloom, “How the kinetochore couples microtubule force and centromere stretch to move chromosomes,” Nature Cell Biol. 18(4), 382–392 (2016).
[Crossref] [PubMed]

Fegaras, E.

A. Forer, M. L. Duquette, L. Paliuilis, E. Fegaras, M. Ono, D. Preece, and M. W. Berns, “Elastic ‘tethers’ connect separating anaphase chromosomes in a broad range of animal cells,” European Journal of Cell Biology, (to be published).

Ferraro-Gideon, J.

J. Ferraro-Gideon, R. Sheykhani, Q. Zhu, M. L. Duquette, M. W. Berns, and A. Forer, “Measurements of forces produced by the mitotic spindle using optical tweezers,” Mol. Biol. Cell 24, 1375–1386 (2013).
[Crossref] [PubMed]

Forer, A.

R. Sheykhani, M. W. Berns, and A. Forer, “Elastic tethers between separating anaphase chromosomes in crane-fly spermatocytes coordinate chromosome movements to the two poles,” Cytoskeleton 74(2), 91–103 (2017).
[Crossref]

J. Ferraro-Gideon, R. Sheykhani, Q. Zhu, M. L. Duquette, M. W. Berns, and A. Forer, “Measurements of forces produced by the mitotic spindle using optical tweezers,” Mol. Biol. Cell 24, 1375–1386 (2013).
[Crossref] [PubMed]

A. Forer, M. L. Duquette, L. Paliuilis, E. Fegaras, M. Ono, D. Preece, and M. W. Berns, “Elastic ‘tethers’ connect separating anaphase chromosomes in a broad range of animal cells,” European Journal of Cell Biology, (to be published).

Garcia-Ulloa, A.

G. Cojoc, R. Roscioli, L. Zhang, A. Garcia-Ulloa, J. V. Shah, M. W. Berns, and J. Gregan, “Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore,” J. Cell Biol. 212(7), 767–776 (2016).
[Crossref] [PubMed]

Gordon, D. J.

D. J. Gordon, B. Resio, and D. Pellman, “Causes and consequences of aneuploidy in cancer,” Nat. Rev. Genet. 13(3), 189–203 (2012).
[PubMed]

Gregan, J.

G. Cojoc, R. Roscioli, L. Zhang, A. Garcia-Ulloa, J. V. Shah, M. W. Berns, and J. Gregan, “Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore,” J. Cell Biol. 212(7), 767–776 (2016).
[Crossref] [PubMed]

Griffin, D.

T. Hassold, M. Abruzzo, K. Adkins, D. Griffin, M. Merrill, E. Millie, and M. Zaragoza, “Human aneuploidy: Incidence, origin and etiology,” Envir. and Mol. Mutagenesis 28(3), 167–175 (1996).
[Crossref]

Haase, J.

A. Suzuki, B. L. Badger, J. Haase, T. Ohashi, H. P. Erickson, E. D. Salmon, and K. Bloom, “How the kinetochore couples microtubule force and centromere stretch to move chromosomes,” Nature Cell Biol. 18(4), 382–392 (2016).
[Crossref] [PubMed]

Harsono, M. S.

M. S. Harsono, Q. Zhu, L. Z. Shi, M. L. Duquette, and M. W. Berns, “Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells,” J. Biophoton. 6, 197–204 (2013).
[Crossref]

Hassold, T.

T. Hassold, M. Abruzzo, K. Adkins, D. Griffin, M. Merrill, E. Millie, and M. Zaragoza, “Human aneuploidy: Incidence, origin and etiology,” Envir. and Mol. Mutagenesis 28(3), 167–175 (1996).
[Crossref]

He, W.

H. Liang, W. H. Wright, S. Cheng, W. He, and M. W. Berns, “Micromanipulation of chromosomes in PtK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers),” Exp. Cell. Research 204(1), 110–120 (1993).
[Crossref]

Higgins, R.

Y. Wang, F. Jin, R. Higgins, and K. McKnight, “The current view for the silencing of the spindle assembly checkpoint,” Cell Cycle bfseries 13(11), 1694–1701 (2014).
[Crossref]

Houchmandzadeh, B.

B. Houchmandzadeh, J. F. Marko, D. Chatenay, and A. Libchaber, “Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration,” J. Cell Biol. 139(1), 1–12 (1997).
[Crossref] [PubMed]

Inoué, S.

S. Inoué and E. D. Salmon, “Force generation by microtubule assembly/disassembly in mitosis and related movements,” Mol. Biol. Cell 6(12), 1619–1640 (1995).
[Crossref] [PubMed]

Jin, F.

Y. Wang, F. Jin, R. Higgins, and K. McKnight, “The current view for the silencing of the spindle assembly checkpoint,” Cell Cycle bfseries 13(11), 1694–1701 (2014).
[Crossref]

F. Jin and Y. Wang, “’The signaling network that silences the spindle assembly checkpoint upon the establishment of chromosome bipolar attachment,” PNAS 110(52), 21036–21041 (2013).
[Crossref] [PubMed]

Kawamura, R.

M. Sun, R. Kawamura, and J. F. Marko, “Micromechanics of human mitotic chromosomes,” Phys. Biol. 8(1), 1–18 (2011).
[Crossref]

Keating, P.

P. Keating, N. Rachidi, T. U. Tanaka, and M. J. R. Stark, “Ipl1-dependent phosphorylation of Dam1 is reduced by tension applied on kinetochores,” J. Cell Sci. 122, 4375–4382 (2009).
[Crossref] [PubMed]

Khatibzadeh, N.

N. Khatibzadeh, A. B. Stilgoe, A. M. Bui, Y. Rocha, G. M. Cruz, V. Loke, and M. W. Berns, “Determination of motility forces on isolated chromosomes with laser tweezers,” Sci. Rep. 4, 6866 (2014).
[Crossref] [PubMed]

Kirschner, M. W.

D. E. Koshland, T. J. Mitchison, and M. W. Kirschner, “Polewards chromosome movement driven by microtubule depolymerization in vitro,” Nature 331(6156), 499–504 (1988).
[Crossref] [PubMed]

Koshland, D. E.

D. E. Koshland, T. J. Mitchison, and M. W. Kirschner, “Polewards chromosome movement driven by microtubule depolymerization in vitro,” Nature 331(6156), 499–504 (1988).
[Crossref] [PubMed]

LaFountain, J. R.

J. R. LaFountain, R. W. Cole, and C. L. Rieder, “Partner telomeres during anaphase in crane-fly spermatocytes are connected by an elastic tether that exerts a backward force and resists poleward motion,” J. Cell Sci. 115(7), 1541–1549 (2002).
[PubMed]

Liang, H.

H. Liang, W. H. Wright, C. L. Rieder, E. Salmon, G. Profeta, J. J. Andrews, and M. W. Berns, “Directed Movement of Chromosome Arms and Fragments in Mitotic Newt Cells Using Optical Scissors and Optical Tweezers,” Experimental Cell Research 213, 308–312 (1994).
[Crossref]

H. Liang, W. H. Wright, S. Cheng, W. He, and M. W. Berns, “Micromanipulation of chromosomes in PtK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers),” Exp. Cell. Research 204(1), 110–120 (1993).
[Crossref]

Libchaber, A.

B. Houchmandzadeh, J. F. Marko, D. Chatenay, and A. Libchaber, “Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration,” J. Cell Biol. 139(1), 1–12 (1997).
[Crossref] [PubMed]

Loke, V.

N. Khatibzadeh, A. B. Stilgoe, A. M. Bui, Y. Rocha, G. M. Cruz, V. Loke, and M. W. Berns, “Determination of motility forces on isolated chromosomes with laser tweezers,” Sci. Rep. 4, 6866 (2014).
[Crossref] [PubMed]

Marko, J. F.

M. Sun, R. Kawamura, and J. F. Marko, “Micromechanics of human mitotic chromosomes,” Phys. Biol. 8(1), 1–18 (2011).
[Crossref]

J. F. Marko and M. G. Poirier, “Micromechanics of chromatin and chromosomes,” Biochem. and Cell Biol. 81(3), 209–220 (2003).
[Crossref]

W. F. Marshall, J. F. Marko, D. A. Agard, and J. W. Sedat, “Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis,” Current Biology 11(8), 569–578 (2001).
[Crossref] [PubMed]

B. Houchmandzadeh, J. F. Marko, D. Chatenay, and A. Libchaber, “Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration,” J. Cell Biol. 139(1), 1–12 (1997).
[Crossref] [PubMed]

Marshall, W. F.

W. F. Marshall, J. F. Marko, D. A. Agard, and J. W. Sedat, “Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis,” Current Biology 11(8), 569–578 (2001).
[Crossref] [PubMed]

Matsson, L.

L. Matsson, “Chromatin compaction by condensin I, intra-kinetochore stretch and tension, and anaphase onset, in collective spindle assembly checkpoint interaction,” J. Phys. Condensed Matter 26(15), 155102 (2014).
[Crossref] [PubMed]

McKnight, K.

Y. Wang, F. Jin, R. Higgins, and K. McKnight, “The current view for the silencing of the spindle assembly checkpoint,” Cell Cycle bfseries 13(11), 1694–1701 (2014).
[Crossref]

Merrill, M.

T. Hassold, M. Abruzzo, K. Adkins, D. Griffin, M. Merrill, E. Millie, and M. Zaragoza, “Human aneuploidy: Incidence, origin and etiology,” Envir. and Mol. Mutagenesis 28(3), 167–175 (1996).
[Crossref]

Millie, E.

T. Hassold, M. Abruzzo, K. Adkins, D. Griffin, M. Merrill, E. Millie, and M. Zaragoza, “Human aneuploidy: Incidence, origin and etiology,” Envir. and Mol. Mutagenesis 28(3), 167–175 (1996).
[Crossref]

Mitchison, T. J.

D. E. Koshland, T. J. Mitchison, and M. W. Kirschner, “Polewards chromosome movement driven by microtubule depolymerization in vitro,” Nature 331(6156), 499–504 (1988).
[Crossref] [PubMed]

Nicklas, R. B.

R. B. Nicklas, “Measurements of the force produced by the mitotic spindle in anaphase,” J. Cell Biol. 97(2), 542–548 (1983).
[Crossref] [PubMed]

R. B. Nicklas, “Chromosome Function Velocity During Mitosis As a of Chromosome Size and Position,” J. Cell Biol. 25(1), 119–135 (1965).
[Crossref]

Ohashi, T.

A. Suzuki, B. L. Badger, J. Haase, T. Ohashi, H. P. Erickson, E. D. Salmon, and K. Bloom, “How the kinetochore couples microtubule force and centromere stretch to move chromosomes,” Nature Cell Biol. 18(4), 382–392 (2016).
[Crossref] [PubMed]

Ono, M.

A. Forer, M. L. Duquette, L. Paliuilis, E. Fegaras, M. Ono, D. Preece, and M. W. Berns, “Elastic ‘tethers’ connect separating anaphase chromosomes in a broad range of animal cells,” European Journal of Cell Biology, (to be published).

M. Ono, D. Preece, M. L. Duquette, and M. W. Berns, “Mitotic tethers connect sister chromosomes during anaphase A in PtK2 cells,” in Optics in the Life Sciences Congress, Optical Trapping Applications 2017 (Optical Society of America, 2017), paper OTM4E.4.
[Crossref]

Paliuilis, L.

A. Forer, M. L. Duquette, L. Paliuilis, E. Fegaras, M. Ono, D. Preece, and M. W. Berns, “Elastic ‘tethers’ connect separating anaphase chromosomes in a broad range of animal cells,” European Journal of Cell Biology, (to be published).

Pellman, D.

D. J. Gordon, B. Resio, and D. Pellman, “Causes and consequences of aneuploidy in cancer,” Nat. Rev. Genet. 13(3), 189–203 (2012).
[PubMed]

Poirier, M. G.

J. F. Marko and M. G. Poirier, “Micromechanics of chromatin and chromosomes,” Biochem. and Cell Biol. 81(3), 209–220 (2003).
[Crossref]

Preece, D.

A. Forer, M. L. Duquette, L. Paliuilis, E. Fegaras, M. Ono, D. Preece, and M. W. Berns, “Elastic ‘tethers’ connect separating anaphase chromosomes in a broad range of animal cells,” European Journal of Cell Biology, (to be published).

M. Ono, D. Preece, M. L. Duquette, and M. W. Berns, “Mitotic tethers connect sister chromosomes during anaphase A in PtK2 cells,” in Optics in the Life Sciences Congress, Optical Trapping Applications 2017 (Optical Society of America, 2017), paper OTM4E.4.
[Crossref]

Profeta, G.

H. Liang, W. H. Wright, C. L. Rieder, E. Salmon, G. Profeta, J. J. Andrews, and M. W. Berns, “Directed Movement of Chromosome Arms and Fragments in Mitotic Newt Cells Using Optical Scissors and Optical Tweezers,” Experimental Cell Research 213, 308–312 (1994).
[Crossref]

M. W. Berns, W. H. Wright, B. J. Tromberg, G. Profeta, J. J. Andrews, and R. J. Walter, “Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle,” Proceedings of the National Academy of Sciences 86(12), 4539–4543 (1989).
[Crossref]

Rachidi, N.

P. Keating, N. Rachidi, T. U. Tanaka, and M. J. R. Stark, “Ipl1-dependent phosphorylation of Dam1 is reduced by tension applied on kinetochores,” J. Cell Sci. 122, 4375–4382 (2009).
[Crossref] [PubMed]

Resio, B.

D. J. Gordon, B. Resio, and D. Pellman, “Causes and consequences of aneuploidy in cancer,” Nat. Rev. Genet. 13(3), 189–203 (2012).
[PubMed]

Rieder, C. L.

J. R. LaFountain, R. W. Cole, and C. L. Rieder, “Partner telomeres during anaphase in crane-fly spermatocytes are connected by an elastic tether that exerts a backward force and resists poleward motion,” J. Cell Sci. 115(7), 1541–1549 (2002).
[PubMed]

H. Liang, W. H. Wright, C. L. Rieder, E. Salmon, G. Profeta, J. J. Andrews, and M. W. Berns, “Directed Movement of Chromosome Arms and Fragments in Mitotic Newt Cells Using Optical Scissors and Optical Tweezers,” Experimental Cell Research 213, 308–312 (1994).
[Crossref]

S. P. Alexander and C. L. Rieder, “Analysis of Force Production by Nascent Kinetochore Fibers,” Cell 113(4), 805–815 (1991).
[Crossref]

Rocha, Y.

N. Khatibzadeh, A. B. Stilgoe, A. M. Bui, Y. Rocha, G. M. Cruz, V. Loke, and M. W. Berns, “Determination of motility forces on isolated chromosomes with laser tweezers,” Sci. Rep. 4, 6866 (2014).
[Crossref] [PubMed]

Rogers, G. C.

G. C. Rogers, S. L. Rogers, T. A. Schwimmer, S. C. Ems-McClung, C. E. Walczak, R. D. Vale, and D. J. Sharp, “Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase,” Nature 427(6972), 364–370 (2004).
[Crossref]

Rogers, S. L.

G. C. Rogers, S. L. Rogers, T. A. Schwimmer, S. C. Ems-McClung, C. E. Walczak, R. D. Vale, and D. J. Sharp, “Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase,” Nature 427(6972), 364–370 (2004).
[Crossref]

Roscioli, R.

G. Cojoc, R. Roscioli, L. Zhang, A. Garcia-Ulloa, J. V. Shah, M. W. Berns, and J. Gregan, “Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore,” J. Cell Biol. 212(7), 767–776 (2016).
[Crossref] [PubMed]

Salmon, E.

H. Liang, W. H. Wright, C. L. Rieder, E. Salmon, G. Profeta, J. J. Andrews, and M. W. Berns, “Directed Movement of Chromosome Arms and Fragments in Mitotic Newt Cells Using Optical Scissors and Optical Tweezers,” Experimental Cell Research 213, 308–312 (1994).
[Crossref]

Salmon, E. D.

A. Suzuki, B. L. Badger, J. Haase, T. Ohashi, H. P. Erickson, E. D. Salmon, and K. Bloom, “How the kinetochore couples microtubule force and centromere stretch to move chromosomes,” Nature Cell Biol. 18(4), 382–392 (2016).
[Crossref] [PubMed]

S. Inoué and E. D. Salmon, “Force generation by microtubule assembly/disassembly in mitosis and related movements,” Mol. Biol. Cell 6(12), 1619–1640 (1995).
[Crossref] [PubMed]

Schwimmer, T. A.

G. C. Rogers, S. L. Rogers, T. A. Schwimmer, S. C. Ems-McClung, C. E. Walczak, R. D. Vale, and D. J. Sharp, “Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase,” Nature 427(6972), 364–370 (2004).
[Crossref]

Sedat, J. W.

W. F. Marshall, J. F. Marko, D. A. Agard, and J. W. Sedat, “Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis,” Current Biology 11(8), 569–578 (2001).
[Crossref] [PubMed]

Shah, J. V.

G. Cojoc, R. Roscioli, L. Zhang, A. Garcia-Ulloa, J. V. Shah, M. W. Berns, and J. Gregan, “Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore,” J. Cell Biol. 212(7), 767–776 (2016).
[Crossref] [PubMed]

Sharp, D. J.

G. C. Rogers, S. L. Rogers, T. A. Schwimmer, S. C. Ems-McClung, C. E. Walczak, R. D. Vale, and D. J. Sharp, “Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase,” Nature 427(6972), 364–370 (2004).
[Crossref]

Sheykhani, R.

R. Sheykhani, M. W. Berns, and A. Forer, “Elastic tethers between separating anaphase chromosomes in crane-fly spermatocytes coordinate chromosome movements to the two poles,” Cytoskeleton 74(2), 91–103 (2017).
[Crossref]

J. Ferraro-Gideon, R. Sheykhani, Q. Zhu, M. L. Duquette, M. W. Berns, and A. Forer, “Measurements of forces produced by the mitotic spindle using optical tweezers,” Mol. Biol. Cell 24, 1375–1386 (2013).
[Crossref] [PubMed]

Shi, L. Z.

M. S. Harsono, Q. Zhu, L. Z. Shi, M. L. Duquette, and M. W. Berns, “Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells,” J. Biophoton. 6, 197–204 (2013).
[Crossref]

Stark, M. J. R.

P. Keating, N. Rachidi, T. U. Tanaka, and M. J. R. Stark, “Ipl1-dependent phosphorylation of Dam1 is reduced by tension applied on kinetochores,” J. Cell Sci. 122, 4375–4382 (2009).
[Crossref] [PubMed]

Stilgoe, A. B.

N. Khatibzadeh, A. B. Stilgoe, A. M. Bui, Y. Rocha, G. M. Cruz, V. Loke, and M. W. Berns, “Determination of motility forces on isolated chromosomes with laser tweezers,” Sci. Rep. 4, 6866 (2014).
[Crossref] [PubMed]

Sun, M.

M. Sun, R. Kawamura, and J. F. Marko, “Micromechanics of human mitotic chromosomes,” Phys. Biol. 8(1), 1–18 (2011).
[Crossref]

Suzuki, A.

A. Suzuki, B. L. Badger, J. Haase, T. Ohashi, H. P. Erickson, E. D. Salmon, and K. Bloom, “How the kinetochore couples microtubule force and centromere stretch to move chromosomes,” Nature Cell Biol. 18(4), 382–392 (2016).
[Crossref] [PubMed]

Tanaka, T. U.

P. Keating, N. Rachidi, T. U. Tanaka, and M. J. R. Stark, “Ipl1-dependent phosphorylation of Dam1 is reduced by tension applied on kinetochores,” J. Cell Sci. 122, 4375–4382 (2009).
[Crossref] [PubMed]

Tromberg, B. J.

M. W. Berns, W. H. Wright, B. J. Tromberg, G. Profeta, J. J. Andrews, and R. J. Walter, “Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle,” Proceedings of the National Academy of Sciences 86(12), 4539–4543 (1989).
[Crossref]

Vale, R. D.

G. C. Rogers, S. L. Rogers, T. A. Schwimmer, S. C. Ems-McClung, C. E. Walczak, R. D. Vale, and D. J. Sharp, “Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase,” Nature 427(6972), 364–370 (2004).
[Crossref]

Walczak, C. E.

G. C. Rogers, S. L. Rogers, T. A. Schwimmer, S. C. Ems-McClung, C. E. Walczak, R. D. Vale, and D. J. Sharp, “Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase,” Nature 427(6972), 364–370 (2004).
[Crossref]

Walter, R. J.

M. W. Berns, W. H. Wright, B. J. Tromberg, G. Profeta, J. J. Andrews, and R. J. Walter, “Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle,” Proceedings of the National Academy of Sciences 86(12), 4539–4543 (1989).
[Crossref]

Wang, Y.

Y. Wang, F. Jin, R. Higgins, and K. McKnight, “The current view for the silencing of the spindle assembly checkpoint,” Cell Cycle bfseries 13(11), 1694–1701 (2014).
[Crossref]

F. Jin and Y. Wang, “’The signaling network that silences the spindle assembly checkpoint upon the establishment of chromosome bipolar attachment,” PNAS 110(52), 21036–21041 (2013).
[Crossref] [PubMed]

Wright, W. H.

H. Liang, W. H. Wright, C. L. Rieder, E. Salmon, G. Profeta, J. J. Andrews, and M. W. Berns, “Directed Movement of Chromosome Arms and Fragments in Mitotic Newt Cells Using Optical Scissors and Optical Tweezers,” Experimental Cell Research 213, 308–312 (1994).
[Crossref]

H. Liang, W. H. Wright, S. Cheng, W. He, and M. W. Berns, “Micromanipulation of chromosomes in PtK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers),” Exp. Cell. Research 204(1), 110–120 (1993).
[Crossref]

M. W. Berns, W. H. Wright, B. J. Tromberg, G. Profeta, J. J. Andrews, and R. J. Walter, “Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle,” Proceedings of the National Academy of Sciences 86(12), 4539–4543 (1989).
[Crossref]

Zaragoza, M.

T. Hassold, M. Abruzzo, K. Adkins, D. Griffin, M. Merrill, E. Millie, and M. Zaragoza, “Human aneuploidy: Incidence, origin and etiology,” Envir. and Mol. Mutagenesis 28(3), 167–175 (1996).
[Crossref]

Zhang, L.

G. Cojoc, R. Roscioli, L. Zhang, A. Garcia-Ulloa, J. V. Shah, M. W. Berns, and J. Gregan, “Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore,” J. Cell Biol. 212(7), 767–776 (2016).
[Crossref] [PubMed]

Zhu, Q.

J. Ferraro-Gideon, R. Sheykhani, Q. Zhu, M. L. Duquette, M. W. Berns, and A. Forer, “Measurements of forces produced by the mitotic spindle using optical tweezers,” Mol. Biol. Cell 24, 1375–1386 (2013).
[Crossref] [PubMed]

M. S. Harsono, Q. Zhu, L. Z. Shi, M. L. Duquette, and M. W. Berns, “Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells,” J. Biophoton. 6, 197–204 (2013).
[Crossref]

Biochem. and Cell Biol. (1)

J. F. Marko and M. G. Poirier, “Micromechanics of chromatin and chromosomes,” Biochem. and Cell Biol. 81(3), 209–220 (2003).
[Crossref]

Cell (1)

S. P. Alexander and C. L. Rieder, “Analysis of Force Production by Nascent Kinetochore Fibers,” Cell 113(4), 805–815 (1991).
[Crossref]

Cell Cycle bfseries (1)

Y. Wang, F. Jin, R. Higgins, and K. McKnight, “The current view for the silencing of the spindle assembly checkpoint,” Cell Cycle bfseries 13(11), 1694–1701 (2014).
[Crossref]

Current Biology (1)

W. F. Marshall, J. F. Marko, D. A. Agard, and J. W. Sedat, “Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis,” Current Biology 11(8), 569–578 (2001).
[Crossref] [PubMed]

Cytoskeleton (1)

R. Sheykhani, M. W. Berns, and A. Forer, “Elastic tethers between separating anaphase chromosomes in crane-fly spermatocytes coordinate chromosome movements to the two poles,” Cytoskeleton 74(2), 91–103 (2017).
[Crossref]

Envir. and Mol. Mutagenesis (1)

T. Hassold, M. Abruzzo, K. Adkins, D. Griffin, M. Merrill, E. Millie, and M. Zaragoza, “Human aneuploidy: Incidence, origin and etiology,” Envir. and Mol. Mutagenesis 28(3), 167–175 (1996).
[Crossref]

Exp. Cell. Research (1)

H. Liang, W. H. Wright, S. Cheng, W. He, and M. W. Berns, “Micromanipulation of chromosomes in PtK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers),” Exp. Cell. Research 204(1), 110–120 (1993).
[Crossref]

Experimental Cell Research (1)

H. Liang, W. H. Wright, C. L. Rieder, E. Salmon, G. Profeta, J. J. Andrews, and M. W. Berns, “Directed Movement of Chromosome Arms and Fragments in Mitotic Newt Cells Using Optical Scissors and Optical Tweezers,” Experimental Cell Research 213, 308–312 (1994).
[Crossref]

J. Biophoton. (1)

M. S. Harsono, Q. Zhu, L. Z. Shi, M. L. Duquette, and M. W. Berns, “Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells,” J. Biophoton. 6, 197–204 (2013).
[Crossref]

J. Cell Biol. (4)

B. Houchmandzadeh, J. F. Marko, D. Chatenay, and A. Libchaber, “Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration,” J. Cell Biol. 139(1), 1–12 (1997).
[Crossref] [PubMed]

R. B. Nicklas, “Measurements of the force produced by the mitotic spindle in anaphase,” J. Cell Biol. 97(2), 542–548 (1983).
[Crossref] [PubMed]

R. B. Nicklas, “Chromosome Function Velocity During Mitosis As a of Chromosome Size and Position,” J. Cell Biol. 25(1), 119–135 (1965).
[Crossref]

G. Cojoc, R. Roscioli, L. Zhang, A. Garcia-Ulloa, J. V. Shah, M. W. Berns, and J. Gregan, “Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore,” J. Cell Biol. 212(7), 767–776 (2016).
[Crossref] [PubMed]

J. Cell Sci. (2)

P. Keating, N. Rachidi, T. U. Tanaka, and M. J. R. Stark, “Ipl1-dependent phosphorylation of Dam1 is reduced by tension applied on kinetochores,” J. Cell Sci. 122, 4375–4382 (2009).
[Crossref] [PubMed]

J. R. LaFountain, R. W. Cole, and C. L. Rieder, “Partner telomeres during anaphase in crane-fly spermatocytes are connected by an elastic tether that exerts a backward force and resists poleward motion,” J. Cell Sci. 115(7), 1541–1549 (2002).
[PubMed]

J. Phys. Condensed Matter (1)

L. Matsson, “Chromatin compaction by condensin I, intra-kinetochore stretch and tension, and anaphase onset, in collective spindle assembly checkpoint interaction,” J. Phys. Condensed Matter 26(15), 155102 (2014).
[Crossref] [PubMed]

Mol. Biol. Cell (2)

S. Inoué and E. D. Salmon, “Force generation by microtubule assembly/disassembly in mitosis and related movements,” Mol. Biol. Cell 6(12), 1619–1640 (1995).
[Crossref] [PubMed]

J. Ferraro-Gideon, R. Sheykhani, Q. Zhu, M. L. Duquette, M. W. Berns, and A. Forer, “Measurements of forces produced by the mitotic spindle using optical tweezers,” Mol. Biol. Cell 24, 1375–1386 (2013).
[Crossref] [PubMed]

Nat. Rev. Genet. (1)

D. J. Gordon, B. Resio, and D. Pellman, “Causes and consequences of aneuploidy in cancer,” Nat. Rev. Genet. 13(3), 189–203 (2012).
[PubMed]

Nature (2)

D. E. Koshland, T. J. Mitchison, and M. W. Kirschner, “Polewards chromosome movement driven by microtubule depolymerization in vitro,” Nature 331(6156), 499–504 (1988).
[Crossref] [PubMed]

G. C. Rogers, S. L. Rogers, T. A. Schwimmer, S. C. Ems-McClung, C. E. Walczak, R. D. Vale, and D. J. Sharp, “Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase,” Nature 427(6972), 364–370 (2004).
[Crossref]

Nature Cell Biol. (1)

A. Suzuki, B. L. Badger, J. Haase, T. Ohashi, H. P. Erickson, E. D. Salmon, and K. Bloom, “How the kinetochore couples microtubule force and centromere stretch to move chromosomes,” Nature Cell Biol. 18(4), 382–392 (2016).
[Crossref] [PubMed]

Phys. Biol. (1)

M. Sun, R. Kawamura, and J. F. Marko, “Micromechanics of human mitotic chromosomes,” Phys. Biol. 8(1), 1–18 (2011).
[Crossref]

PNAS (1)

F. Jin and Y. Wang, “’The signaling network that silences the spindle assembly checkpoint upon the establishment of chromosome bipolar attachment,” PNAS 110(52), 21036–21041 (2013).
[Crossref] [PubMed]

Proceedings of the National Academy of Sciences (1)

M. W. Berns, W. H. Wright, B. J. Tromberg, G. Profeta, J. J. Andrews, and R. J. Walter, “Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle,” Proceedings of the National Academy of Sciences 86(12), 4539–4543 (1989).
[Crossref]

Sci. Rep. (1)

N. Khatibzadeh, A. B. Stilgoe, A. M. Bui, Y. Rocha, G. M. Cruz, V. Loke, and M. W. Berns, “Determination of motility forces on isolated chromosomes with laser tweezers,” Sci. Rep. 4, 6866 (2014).
[Crossref] [PubMed]

Other (2)

M. Ono, D. Preece, M. L. Duquette, and M. W. Berns, “Mitotic tethers connect sister chromosomes during anaphase A in PtK2 cells,” in Optics in the Life Sciences Congress, Optical Trapping Applications 2017 (Optical Society of America, 2017), paper OTM4E.4.
[Crossref]

A. Forer, M. L. Duquette, L. Paliuilis, E. Fegaras, M. Ono, D. Preece, and M. W. Berns, “Elastic ‘tethers’ connect separating anaphase chromosomes in a broad range of animal cells,” European Journal of Cell Biology, (to be published).

Supplementary Material (1)

NameDescription
» Visualization 1       A tethered chromosome arm is severed during anaphase transport with laser scissors (cut path indicated by green/red lines). The fragment travels towards the opposite cell pole and after a brief moment an optical trap centered at the black crosshair (

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Diagram of the optical train illustrating the optical path of the tweezers and scissors into the microscope and the image path into the CCD camera.
Fig. 2
Fig. 2 Cross-Polar displacement (µm) of chromosome fragments from their initial cut position. Positive displacement indicates fragment travel towards the sister chromosome in the cross-polar direction. Fragments exhibit a wide range of travel distances and velocities.
Fig. 3
Fig. 3 Mean fragment velocity (µm/min) after fragmentation (Cut 1) and after the inter-telomere cut (Cut 2); error bars are standard deviation from the mean. All fragments travelling towards the sister pole either stopped or reversed direction following Cut 2 indicating the cut disabled a physical element transmitting force to the fragment.
Fig. 4
Fig. 4 Frames from video of severing and trapping a cross-polar travelling fragment (see Visualization 1). (a) Chromosome arm as the laser cut (red lines) is being performed. (b) 1064 nm optical trap (red circle) over fragment centroid where effective trapping force is negligible. (c) Chromosome fragment continues traveling towards and remains at the trap edge on the sister chromosome side. (d) Fragment returns to the center of the optical trap nearing the end of anaphase.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F = Q P c

Metrics