Abstract

This paper presents a simple and accurate method (the projection method) to improve the signal to noise ratio of localized surface plasmon resonance (LSPR). The nanostructures presented in the paper can be readily fabricated by nanoimprint lithography. The finite difference time domain method is used to simulate the structures and generate a reference matrix for the method. The results are validated against experimental data and the proposed method is compared against several other recently published signal processing techniques. We also apply the projection method to biotin-streptavidin binding experimental data and determine the limit of detection (LoD). The method improves the signal to noise ratio (SNR) by one order of magnitude, and hence decreases the limit of detection when compared to the direct measurement of the transmission-dip. The projection method outperforms the established methods in terms of accuracy and achieves the best combination of signal to noise ratio and limit of detection.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design study of nanograting-based surface plasmon resonance biosensor in the near-infrared wavelength

M. Tahmasebpour, M. Bahrami, and A. Asgari
Appl. Opt. 53(7) 1449-1458 (2014)

Effect of surface roughness on the extinction-based localized surface plasmon resonance biosensors

Kyung Min Byun, Soon Joon Yoon, and Donghyun Kim
Appl. Opt. 47(31) 5886-5892 (2008)

Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors

Soon Joon Yoon and Donghyun Kim
J. Opt. Soc. Am. A 25(3) 725-735 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
    [Crossref] [PubMed]
  2. J. Caoa, T. Suna, and K. T.V. Grattana, “Gold nanorod-based localized surface plasmon resonance biosensors: A review,” Sens. Actuators B, Chem. 195, 332–351 (2014).
    [Crossref]
  3. N. Nehru, Y. Linliang, W. Yinan, and J. T. Hastings, “Using U-Shaped Localized Surface Plasmon Resonance Sensors to Compensate for Nonspecific Interactions,” IEEE Trans. Nanotechnology,  13(1), 55–61 (2014).
    [Crossref]
  4. A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4, 6789 (2014).
    [Crossref] [PubMed]
  5. W. Kubo and S. Fujikawa, “Au Double Nanopillars with Nanogap for Plasmonic Sensor,” Nano Letters 11(1), 8–15 (2011).
    [Crossref]
  6. S. J. Zalyubovskiy, M. Bogdanova, A. Deinega, Y. Lozovik, A. D. Pris, K. H. An, W. P. Hall, and R. A. Potyrailo, “Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor,” J. Opt. Soc. Am. A 29(6), 994–1002 (2012).
    [Crossref]
  7. K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photodiode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
    [Crossref]
  8. R. E. Messersmith, G. J. Nusz, and S. M. Reed, “Using the Localized Surface Plasmon Resonance of Gold Nanoparticles to Monitor Lipid Membrane Assembly and Protein Binding,” J. Phys. Chem. C Nanomater Interfaces 117(50), 26725–26733 (2013).
    [Crossref]
  9. G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
    [Crossref]
  10. K. S. Johnston, K. S. Booksh, T. M. Chinowsky, and S. S. Yee, “Performance comparison between high and low resolution spectrophotometers used in a white light surface plasmon resonance sensor,” Sens. Actuators B, Chem. 54(1/2), 80–88 (1999).
    [Crossref]
  11. T. M. Chinowsky, L. S. Jung, and S. S. Yee, “Optimal linear data analysis for surface plasmon resonance biosensors,” Sens. Actuators B, Chem. 54(1/2), 89–97 (1999).
    [Crossref]
  12. E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. 143(2), 513–526 (1991).
    [Crossref]
  13. A. Barnett and E. M. Goldys, “Modeling of the SPR resolution enhancement for conventional and nanoparticle inclusive sensors by using statistical hypothesis testing,” Opt. Express 18(9), 9384–9397 (2010).
    [Crossref] [PubMed]
  14. C. J. Alleyne, A. G. Kirk, W-Y. Chien, and P. G. Charette, “Numerical method for high accuracy index of refraction estimation for spectro-angular surface plasmon resonance systems,” Opt. Express 16(24), 19493–19503 (2008).
    [Crossref] [PubMed]
  15. M. Das, D. Hohertz, R. Nirwan, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Improved Performance of Nanohole Surface Plasmon Resonance Sensors by the Integrated Response Method,” Photonics Journal, IEEE 3(3), 441–449 (2011).
    [Crossref]
  16. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  17. T. D. Visser, “Plasmonics: Surface plasmons at work?” Nature Physics 2(8), 509–510 (2006).
    [Crossref]
  18. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  19. M. Schwind, B. Kasemo, and I. Zorić, “Localized and Propagating Plasmons in Metal Films with Nanoholes,” Nano Letters 13(4), 1743–1750 (2013).
    [PubMed]
  20. M. E. Stewart, J. Tao, J. Maria, S. K. Gray, and J. A. Rogers, “Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals,” Anal. Chem. 81(15), 5980–5989 (2009).
    [Crossref] [PubMed]
  21. OptiFDTD-Designer, version 12.0.0.618, optiwave, http://www.optiwave.com
  22. G.M. Whitesides, E. Ostuni, S. Takayama, X.Y. Jiang, and D.E. Ingber, “Soft lithography in biology and biochemistry,” Ann. Rev.Biomed. Eng. 3, 335 (2001).
    [Crossref]
  23. D.R. Lide, 86th Handbook of Chemistry and Physics (CRC Press, Boca Raton2006) Chap. 8.
  24. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
    [Crossref]
  25. E. Fujiwara, R. T. Takeishi, A. Hase, E. Ono, J. S. Santos, and C.K. Susuki, “Real-time optical fibre sensor for hydro-alcoholic solutions,” Meas. Sci. Technol. 21, 094035 (2010).
    [Crossref]
  26. Nowakowska Janina, The Refractive Indices of Ethyl Alcohol and Water Mixtures, Master’s Theses (Loyola UniversityChicago1939), Paper 668.
  27. S. Zhan, X. Wang, and Y. Liu, “Fast centroid algorithm for determining the surface plasmon resonance angle using the fixed-boundary method,” Meas. Sci. Technol. 22, 025201 (2011).
    [Crossref]
  28. J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, “Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy,” J. Am. Chem. Soc. 132(49), 17358–17359 (2010).
    [Crossref] [PubMed]
  29. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun. 4, 2381 (2013).
    [Crossref] [PubMed]

2014 (3)

J. Caoa, T. Suna, and K. T.V. Grattana, “Gold nanorod-based localized surface plasmon resonance biosensors: A review,” Sens. Actuators B, Chem. 195, 332–351 (2014).
[Crossref]

N. Nehru, Y. Linliang, W. Yinan, and J. T. Hastings, “Using U-Shaped Localized Surface Plasmon Resonance Sensors to Compensate for Nonspecific Interactions,” IEEE Trans. Nanotechnology,  13(1), 55–61 (2014).
[Crossref]

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4, 6789 (2014).
[Crossref] [PubMed]

2013 (3)

R. E. Messersmith, G. J. Nusz, and S. M. Reed, “Using the Localized Surface Plasmon Resonance of Gold Nanoparticles to Monitor Lipid Membrane Assembly and Protein Binding,” J. Phys. Chem. C Nanomater Interfaces 117(50), 26725–26733 (2013).
[Crossref]

M. Schwind, B. Kasemo, and I. Zorić, “Localized and Propagating Plasmons in Metal Films with Nanoholes,” Nano Letters 13(4), 1743–1750 (2013).
[PubMed]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun. 4, 2381 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

S. Zhan, X. Wang, and Y. Liu, “Fast centroid algorithm for determining the surface plasmon resonance angle using the fixed-boundary method,” Meas. Sci. Technol. 22, 025201 (2011).
[Crossref]

M. Das, D. Hohertz, R. Nirwan, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Improved Performance of Nanohole Surface Plasmon Resonance Sensors by the Integrated Response Method,” Photonics Journal, IEEE 3(3), 441–449 (2011).
[Crossref]

W. Kubo and S. Fujikawa, “Au Double Nanopillars with Nanogap for Plasmonic Sensor,” Nano Letters 11(1), 8–15 (2011).
[Crossref]

2010 (3)

E. Fujiwara, R. T. Takeishi, A. Hase, E. Ono, J. S. Santos, and C.K. Susuki, “Real-time optical fibre sensor for hydro-alcoholic solutions,” Meas. Sci. Technol. 21, 094035 (2010).
[Crossref]

J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, “Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy,” J. Am. Chem. Soc. 132(49), 17358–17359 (2010).
[Crossref] [PubMed]

A. Barnett and E. M. Goldys, “Modeling of the SPR resolution enhancement for conventional and nanoparticle inclusive sensors by using statistical hypothesis testing,” Opt. Express 18(9), 9384–9397 (2010).
[Crossref] [PubMed]

2009 (1)

M. E. Stewart, J. Tao, J. Maria, S. K. Gray, and J. A. Rogers, “Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals,” Anal. Chem. 81(15), 5980–5989 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

2006 (1)

T. D. Visser, “Plasmonics: Surface plasmons at work?” Nature Physics 2(8), 509–510 (2006).
[Crossref]

2002 (2)

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref] [PubMed]

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
[Crossref]

2001 (1)

G.M. Whitesides, E. Ostuni, S. Takayama, X.Y. Jiang, and D.E. Ingber, “Soft lithography in biology and biochemistry,” Ann. Rev.Biomed. Eng. 3, 335 (2001).
[Crossref]

2000 (1)

K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photodiode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

1999 (2)

K. S. Johnston, K. S. Booksh, T. M. Chinowsky, and S. S. Yee, “Performance comparison between high and low resolution spectrophotometers used in a white light surface plasmon resonance sensor,” Sens. Actuators B, Chem. 54(1/2), 80–88 (1999).
[Crossref]

T. M. Chinowsky, L. S. Jung, and S. S. Yee, “Optimal linear data analysis for surface plasmon resonance biosensors,” Sens. Actuators B, Chem. 54(1/2), 89–97 (1999).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1991 (1)

E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. 143(2), 513–526 (1991).
[Crossref]

Alleyne, C. J.

Altug, H.

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4, 6789 (2014).
[Crossref] [PubMed]

Alvarez, D. A.

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4, 6789 (2014).
[Crossref] [PubMed]

An, K. H.

Anker, J. N.

J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, “Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy,” J. Am. Chem. Soc. 132(49), 17358–17359 (2010).
[Crossref] [PubMed]

Barnett, A.

Bingham, J. M.

J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, “Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy,” J. Am. Chem. Soc. 132(49), 17358–17359 (2010).
[Crossref] [PubMed]

Bogdanova, M.

Booksh, K. S.

K. S. Johnston, K. S. Booksh, T. M. Chinowsky, and S. S. Yee, “Performance comparison between high and low resolution spectrophotometers used in a white light surface plasmon resonance sensor,” Sens. Actuators B, Chem. 54(1/2), 80–88 (1999).
[Crossref]

Brolo, A. G.

M. Das, D. Hohertz, R. Nirwan, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Improved Performance of Nanohole Surface Plasmon Resonance Sensors by the Integrated Response Method,” Photonics Journal, IEEE 3(3), 441–449 (2011).
[Crossref]

Caoa, J.

J. Caoa, T. Suna, and K. T.V. Grattana, “Gold nanorod-based localized surface plasmon resonance biosensors: A review,” Sens. Actuators B, Chem. 195, 332–351 (2014).
[Crossref]

Cetin, A. E.

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4, 6789 (2014).
[Crossref] [PubMed]

Charette, P. G.

Chien, W-Y.

Chinowsky, T. M.

K. S. Johnston, K. S. Booksh, T. M. Chinowsky, and S. S. Yee, “Performance comparison between high and low resolution spectrophotometers used in a white light surface plasmon resonance sensor,” Sens. Actuators B, Chem. 54(1/2), 80–88 (1999).
[Crossref]

T. M. Chinowsky, L. S. Jung, and S. S. Yee, “Optimal linear data analysis for surface plasmon resonance biosensors,” Sens. Actuators B, Chem. 54(1/2), 89–97 (1999).
[Crossref]

Coskun, A. F.

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4, 6789 (2014).
[Crossref] [PubMed]

Das, M.

M. Das, D. Hohertz, R. Nirwan, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Improved Performance of Nanohole Surface Plasmon Resonance Sensors by the Integrated Response Method,” Photonics Journal, IEEE 3(3), 441–449 (2011).
[Crossref]

Deinega, A.

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Fujikawa, S.

W. Kubo and S. Fujikawa, “Au Double Nanopillars with Nanogap for Plasmonic Sensor,” Nano Letters 11(1), 8–15 (2011).
[Crossref]

Fujiwara, E.

E. Fujiwara, R. T. Takeishi, A. Hase, E. Ono, J. S. Santos, and C.K. Susuki, “Real-time optical fibre sensor for hydro-alcoholic solutions,” Meas. Sci. Technol. 21, 094035 (2010).
[Crossref]

Galarreta, B. C.

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4, 6789 (2014).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Giessen, H.

Gissibl, T.

Goldys, E. M.

Gordon, R.

M. Das, D. Hohertz, R. Nirwan, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Improved Performance of Nanohole Surface Plasmon Resonance Sensors by the Integrated Response Method,” Photonics Journal, IEEE 3(3), 441–449 (2011).
[Crossref]

Grattana, K. T.V.

J. Caoa, T. Suna, and K. T.V. Grattana, “Gold nanorod-based localized surface plasmon resonance biosensors: A review,” Sens. Actuators B, Chem. 195, 332–351 (2014).
[Crossref]

Gray, S. K.

M. E. Stewart, J. Tao, J. Maria, S. K. Gray, and J. A. Rogers, “Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals,” Anal. Chem. 81(15), 5980–5989 (2009).
[Crossref] [PubMed]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref] [PubMed]

Hall, W. P.

Hase, A.

E. Fujiwara, R. T. Takeishi, A. Hase, E. Ono, J. S. Santos, and C.K. Susuki, “Real-time optical fibre sensor for hydro-alcoholic solutions,” Meas. Sci. Technol. 21, 094035 (2010).
[Crossref]

Hastings, J. T.

N. Nehru, Y. Linliang, W. Yinan, and J. T. Hastings, “Using U-Shaped Localized Surface Plasmon Resonance Sensors to Compensate for Nonspecific Interactions,” IEEE Trans. Nanotechnology,  13(1), 55–61 (2014).
[Crossref]

Hohertz, D.

M. Das, D. Hohertz, R. Nirwan, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Improved Performance of Nanohole Surface Plasmon Resonance Sensors by the Integrated Response Method,” Photonics Journal, IEEE 3(3), 441–449 (2011).
[Crossref]

Homola, J.

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
[Crossref]

Ingber, D.E.

G.M. Whitesides, E. Ostuni, S. Takayama, X.Y. Jiang, and D.E. Ingber, “Soft lithography in biology and biochemistry,” Ann. Rev.Biomed. Eng. 3, 335 (2001).
[Crossref]

Janina, Nowakowska

Nowakowska Janina, The Refractive Indices of Ethyl Alcohol and Water Mixtures, Master’s Theses (Loyola UniversityChicago1939), Paper 668.

Jiang, R.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Jiang, X.Y.

G.M. Whitesides, E. Ostuni, S. Takayama, X.Y. Jiang, and D.E. Ingber, “Soft lithography in biology and biochemistry,” Ann. Rev.Biomed. Eng. 3, 335 (2001).
[Crossref]

Jin, C.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Johansen, K.

K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photodiode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

Johnston, K. S.

K. S. Johnston, K. S. Booksh, T. M. Chinowsky, and S. S. Yee, “Performance comparison between high and low resolution spectrophotometers used in a white light surface plasmon resonance sensor,” Sens. Actuators B, Chem. 54(1/2), 80–88 (1999).
[Crossref]

Jung, L. S.

T. M. Chinowsky, L. S. Jung, and S. S. Yee, “Optimal linear data analysis for surface plasmon resonance biosensors,” Sens. Actuators B, Chem. 54(1/2), 89–97 (1999).
[Crossref]

Kasemo, B.

M. Schwind, B. Kasemo, and I. Zorić, “Localized and Propagating Plasmons in Metal Films with Nanoholes,” Nano Letters 13(4), 1743–1750 (2013).
[PubMed]

Kavanagh, K. L.

M. Das, D. Hohertz, R. Nirwan, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Improved Performance of Nanohole Surface Plasmon Resonance Sensors by the Integrated Response Method,” Photonics Journal, IEEE 3(3), 441–449 (2011).
[Crossref]

Kedenburg, S.

Kirk, A. G.

Kreno, L. E.

J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, “Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy,” J. Am. Chem. Soc. 132(49), 17358–17359 (2010).
[Crossref] [PubMed]

Kubo, W.

W. Kubo and S. Fujikawa, “Au Double Nanopillars with Nanogap for Plasmonic Sensor,” Nano Letters 11(1), 8–15 (2011).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Lide, D.R.

D.R. Lide, 86th Handbook of Chemistry and Physics (CRC Press, Boca Raton2006) Chap. 8.

Liedberg, B.

K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photodiode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

Linliang, Y.

N. Nehru, Y. Linliang, W. Yinan, and J. T. Hastings, “Using U-Shaped Localized Surface Plasmon Resonance Sensors to Compensate for Nonspecific Interactions,” IEEE Trans. Nanotechnology,  13(1), 55–61 (2014).
[Crossref]

Liu, M.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Liu, T.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Liu, Y.

S. Zhan, X. Wang, and Y. Liu, “Fast centroid algorithm for determining the surface plasmon resonance angle using the fixed-boundary method,” Meas. Sci. Technol. 22, 025201 (2011).
[Crossref]

Lozovik, Y.

Lundstrom, I.

K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photodiode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

Maria, J.

M. E. Stewart, J. Tao, J. Maria, S. K. Gray, and J. A. Rogers, “Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals,” Anal. Chem. 81(15), 5980–5989 (2009).
[Crossref] [PubMed]

Messersmith, R. E.

R. E. Messersmith, G. J. Nusz, and S. M. Reed, “Using the Localized Surface Plasmon Resonance of Gold Nanoparticles to Monitor Lipid Membrane Assembly and Protein Binding,” J. Phys. Chem. C Nanomater Interfaces 117(50), 26725–26733 (2013).
[Crossref]

Nehru, N.

N. Nehru, Y. Linliang, W. Yinan, and J. T. Hastings, “Using U-Shaped Localized Surface Plasmon Resonance Sensors to Compensate for Nonspecific Interactions,” IEEE Trans. Nanotechnology,  13(1), 55–61 (2014).
[Crossref]

Nenninger, G. G.

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
[Crossref]

Nirwan, R.

M. Das, D. Hohertz, R. Nirwan, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Improved Performance of Nanohole Surface Plasmon Resonance Sensors by the Integrated Response Method,” Photonics Journal, IEEE 3(3), 441–449 (2011).
[Crossref]

Nusz, G. J.

R. E. Messersmith, G. J. Nusz, and S. M. Reed, “Using the Localized Surface Plasmon Resonance of Gold Nanoparticles to Monitor Lipid Membrane Assembly and Protein Binding,” J. Phys. Chem. C Nanomater Interfaces 117(50), 26725–26733 (2013).
[Crossref]

Ono, E.

E. Fujiwara, R. T. Takeishi, A. Hase, E. Ono, J. S. Santos, and C.K. Susuki, “Real-time optical fibre sensor for hydro-alcoholic solutions,” Meas. Sci. Technol. 21, 094035 (2010).
[Crossref]

Ostuni, E.

G.M. Whitesides, E. Ostuni, S. Takayama, X.Y. Jiang, and D.E. Ingber, “Soft lithography in biology and biochemistry,” Ann. Rev.Biomed. Eng. 3, 335 (2001).
[Crossref]

Ozcan, A.

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4, 6789 (2014).
[Crossref] [PubMed]

Persson, B.

E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. 143(2), 513–526 (1991).
[Crossref]

Piliarik, M.

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
[Crossref]

Potyrailo, R. A.

Pris, A. D.

Reed, S. M.

R. E. Messersmith, G. J. Nusz, and S. M. Reed, “Using the Localized Surface Plasmon Resonance of Gold Nanoparticles to Monitor Lipid Membrane Assembly and Protein Binding,” J. Phys. Chem. C Nanomater Interfaces 117(50), 26725–26733 (2013).
[Crossref]

Rogers, J. A.

M. E. Stewart, J. Tao, J. Maria, S. K. Gray, and J. A. Rogers, “Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals,” Anal. Chem. 81(15), 5980–5989 (2009).
[Crossref] [PubMed]

Roos, H.

E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. 143(2), 513–526 (1991).
[Crossref]

Santos, J. S.

E. Fujiwara, R. T. Takeishi, A. Hase, E. Ono, J. S. Santos, and C.K. Susuki, “Real-time optical fibre sensor for hydro-alcoholic solutions,” Meas. Sci. Technol. 21, 094035 (2010).
[Crossref]

Schwind, M.

M. Schwind, B. Kasemo, and I. Zorić, “Localized and Propagating Plasmons in Metal Films with Nanoholes,” Nano Letters 13(4), 1743–1750 (2013).
[PubMed]

Shen, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Stalberg, R.

K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photodiode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

Stenberg, E.

E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. 143(2), 513–526 (1991).
[Crossref]

Stewart, M. E.

M. E. Stewart, J. Tao, J. Maria, S. K. Gray, and J. A. Rogers, “Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals,” Anal. Chem. 81(15), 5980–5989 (2009).
[Crossref] [PubMed]

Suna, T.

J. Caoa, T. Suna, and K. T.V. Grattana, “Gold nanorod-based localized surface plasmon resonance biosensors: A review,” Sens. Actuators B, Chem. 195, 332–351 (2014).
[Crossref]

Susuki, C.K.

E. Fujiwara, R. T. Takeishi, A. Hase, E. Ono, J. S. Santos, and C.K. Susuki, “Real-time optical fibre sensor for hydro-alcoholic solutions,” Meas. Sci. Technol. 21, 094035 (2010).
[Crossref]

Takayama, S.

G.M. Whitesides, E. Ostuni, S. Takayama, X.Y. Jiang, and D.E. Ingber, “Soft lithography in biology and biochemistry,” Ann. Rev.Biomed. Eng. 3, 335 (2001).
[Crossref]

Takeishi, R. T.

E. Fujiwara, R. T. Takeishi, A. Hase, E. Ono, J. S. Santos, and C.K. Susuki, “Real-time optical fibre sensor for hydro-alcoholic solutions,” Meas. Sci. Technol. 21, 094035 (2010).
[Crossref]

Tao, J.

M. E. Stewart, J. Tao, J. Maria, S. K. Gray, and J. A. Rogers, “Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals,” Anal. Chem. 81(15), 5980–5989 (2009).
[Crossref] [PubMed]

Tao, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Urbaniczky, C.

E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. 143(2), 513–526 (1991).
[Crossref]

Van Duyne, R. P.

J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, “Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy,” J. Am. Chem. Soc. 132(49), 17358–17359 (2010).
[Crossref] [PubMed]

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref] [PubMed]

Vieweg, M.

Visser, T. D.

T. D. Visser, “Plasmonics: Surface plasmons at work?” Nature Physics 2(8), 509–510 (2006).
[Crossref]

Wang, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Wang, X.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun. 4, 2381 (2013).
[Crossref] [PubMed]

S. Zhan, X. Wang, and Y. Liu, “Fast centroid algorithm for determining the surface plasmon resonance angle using the fixed-boundary method,” Meas. Sci. Technol. 22, 025201 (2011).
[Crossref]

Whitesides, G.M.

G.M. Whitesides, E. Ostuni, S. Takayama, X.Y. Jiang, and D.E. Ingber, “Soft lithography in biology and biochemistry,” Ann. Rev.Biomed. Eng. 3, 335 (2001).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Xiao, G.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Yee, S. S.

T. M. Chinowsky, L. S. Jung, and S. S. Yee, “Optimal linear data analysis for surface plasmon resonance biosensors,” Sens. Actuators B, Chem. 54(1/2), 89–97 (1999).
[Crossref]

K. S. Johnston, K. S. Booksh, T. M. Chinowsky, and S. S. Yee, “Performance comparison between high and low resolution spectrophotometers used in a white light surface plasmon resonance sensor,” Sens. Actuators B, Chem. 54(1/2), 80–88 (1999).
[Crossref]

Yinan, W.

N. Nehru, Y. Linliang, W. Yinan, and J. T. Hastings, “Using U-Shaped Localized Surface Plasmon Resonance Sensors to Compensate for Nonspecific Interactions,” IEEE Trans. Nanotechnology,  13(1), 55–61 (2014).
[Crossref]

Zalyubovskiy, S. J.

Zhan, S.

S. Zhan, X. Wang, and Y. Liu, “Fast centroid algorithm for determining the surface plasmon resonance angle using the fixed-boundary method,” Meas. Sci. Technol. 22, 025201 (2011).
[Crossref]

Zhou, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Zhou, Z-K.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Zhu, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Zoric, I.

M. Schwind, B. Kasemo, and I. Zorić, “Localized and Propagating Plasmons in Metal Films with Nanoholes,” Nano Letters 13(4), 1743–1750 (2013).
[PubMed]

Anal. Chem. (1)

M. E. Stewart, J. Tao, J. Maria, S. K. Gray, and J. A. Rogers, “Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals,” Anal. Chem. 81(15), 5980–5989 (2009).
[Crossref] [PubMed]

Ann. Rev.Biomed. Eng. (1)

G.M. Whitesides, E. Ostuni, S. Takayama, X.Y. Jiang, and D.E. Ingber, “Soft lithography in biology and biochemistry,” Ann. Rev.Biomed. Eng. 3, 335 (2001).
[Crossref]

IEEE Trans. Nanotechnology (1)

N. Nehru, Y. Linliang, W. Yinan, and J. T. Hastings, “Using U-Shaped Localized Surface Plasmon Resonance Sensors to Compensate for Nonspecific Interactions,” IEEE Trans. Nanotechnology,  13(1), 55–61 (2014).
[Crossref]

J. Am. Chem. Soc. (2)

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref] [PubMed]

J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, “Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy,” J. Am. Chem. Soc. 132(49), 17358–17359 (2010).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. 143(2), 513–526 (1991).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C Nanomater Interfaces (1)

R. E. Messersmith, G. J. Nusz, and S. M. Reed, “Using the Localized Surface Plasmon Resonance of Gold Nanoparticles to Monitor Lipid Membrane Assembly and Protein Binding,” J. Phys. Chem. C Nanomater Interfaces 117(50), 26725–26733 (2013).
[Crossref]

Meas. Sci. Technol. (4)

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
[Crossref]

K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photodiode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

E. Fujiwara, R. T. Takeishi, A. Hase, E. Ono, J. S. Santos, and C.K. Susuki, “Real-time optical fibre sensor for hydro-alcoholic solutions,” Meas. Sci. Technol. 21, 094035 (2010).
[Crossref]

S. Zhan, X. Wang, and Y. Liu, “Fast centroid algorithm for determining the surface plasmon resonance angle using the fixed-boundary method,” Meas. Sci. Technol. 22, 025201 (2011).
[Crossref]

Nano Letters (2)

W. Kubo and S. Fujikawa, “Au Double Nanopillars with Nanogap for Plasmonic Sensor,” Nano Letters 11(1), 8–15 (2011).
[Crossref]

M. Schwind, B. Kasemo, and I. Zorić, “Localized and Propagating Plasmons in Metal Films with Nanoholes,” Nano Letters 13(4), 1743–1750 (2013).
[PubMed]

Nat Commun. (1)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Nature Physics (1)

T. D. Visser, “Plasmonics: Surface plasmons at work?” Nature Physics 2(8), 509–510 (2006).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Photonics Journal, IEEE (1)

M. Das, D. Hohertz, R. Nirwan, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Improved Performance of Nanohole Surface Plasmon Resonance Sensors by the Integrated Response Method,” Photonics Journal, IEEE 3(3), 441–449 (2011).
[Crossref]

Sci. Rep. (1)

A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, and A. Ozcan, “Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view,” Sci. Rep. 4, 6789 (2014).
[Crossref] [PubMed]

Sens. Actuators B, Chem. (3)

J. Caoa, T. Suna, and K. T.V. Grattana, “Gold nanorod-based localized surface plasmon resonance biosensors: A review,” Sens. Actuators B, Chem. 195, 332–351 (2014).
[Crossref]

K. S. Johnston, K. S. Booksh, T. M. Chinowsky, and S. S. Yee, “Performance comparison between high and low resolution spectrophotometers used in a white light surface plasmon resonance sensor,” Sens. Actuators B, Chem. 54(1/2), 80–88 (1999).
[Crossref]

T. M. Chinowsky, L. S. Jung, and S. S. Yee, “Optimal linear data analysis for surface plasmon resonance biosensors,” Sens. Actuators B, Chem. 54(1/2), 89–97 (1999).
[Crossref]

Other (3)

Nowakowska Janina, The Refractive Indices of Ethyl Alcohol and Water Mixtures, Master’s Theses (Loyola UniversityChicago1939), Paper 668.

D.R. Lide, 86th Handbook of Chemistry and Physics (CRC Press, Boca Raton2006) Chap. 8.

OptiFDTD-Designer, version 12.0.0.618, optiwave, http://www.optiwave.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A 3-D representation of the projection reference matrix (obtained from the FDTD simulation) for a set of refractive indices spanning the RI range (1.318–1.4), Simulation used 750 wavelength data points (0.2 nm resolution).

Fig. 2
Fig. 2

(a) Normalized transmission vectors for unknown samples (A and B): the curves are affected by noise and high frequency interferences (ripples) that complicates tracking the transmission dip reducing the sensor accuracy. (b): Interpolated curves for the solution row vectors for unknown samples (A and B) revealing estimated refractive indices of 1.3346 and 1.3361, respectively: the entire measured curve in (a) was used here instead of using a single resonance wavelength as in the dip-finding method.

Fig. 3
Fig. 3

(a) Calculated error in the estimated RI change with respect to the RI interval in the reference set, (b) error in estimated RI change, calculated as the difference between the estimated RI changes and the ideal values (1 × 10−5 and 5 × 10−5).

Fig. 4
Fig. 4

Calculated error with respect to the noise level added to the simulated transmission curves, the projection method is superior to the other methods in terms of accuracy (1 × 10−7RIU error) and stability against noise as the error is as low as 5 × 10−6 (10% error) even with noisy transmission curves (SNR≈ 3).

Fig. 5
Fig. 5

(a): Experimental sensing set-up: Cary 5000 spectrometer was used in the sensing experiment, a baseline with PDMS channel and buffer solution is taken first, then the measurements were performed on the functionalized nanotube structures, the solutions were injected using an automatic pump (Harvard Apparatus-PicoPlus) with 200 μL/min flow speed. The inset shows the PDMS fluidic channel: the grooved part is bonded to the surface of the COP (sandwiching the nanostructures between the PDMS and COP, the inlet/outlet are punched using a biopsy puncher to insert the fluidic tubes). (b): SEM image of the fabricated structures: inner diameter= 200 nm, gold layer thickness= 60 nm, and pitch= 400 nm. The gray scale measures 3 μm and 400 nm with respect to the outer image and the inset, respectively.

Fig. 6
Fig. 6

Real time sensing measurements for ethanol solutions with different concentrations ([1]: 0%, [2]: 2%, [3]: 4%, [4]: 16%, [5]: 30%, [6]: 50%, [7]: 80%, [8]: 100%) in the case of: dip-finding method (left Y-axis); and projection method (right Y-axis) where the refractive index is directly extracted.

Fig. 7
Fig. 7

(a): Calculated refractive index based on the fitted Cauchy parameters in table 1, and the improved Cauchy formula, Eq. (10), at 20 °C and 589.29 nm wavelength: the estimated values agree well with those of reference [23].(b): Sensor response to bulk solutions of different ethanol concentrations using the projection and dip-finding methods: the error bars correspond to repeated experiments (at 20 °C, and 1247 nm resonance wavelength), the reference curve was obtained using Cauchy empirical formula, Eq. (10), and the fitted Cauchy parameters in table 1 — calculated using the polynomial curve fitting — at the same temperature and sensor operating wavelength (20 °C and 1247 nm wavelength).

Fig. 8
Fig. 8

RI change measured by the projection method for ethanol solutions of different concentrations. The RI change estimated by the reference methods are also shown: the measured response of each method in Fig. 6 was used to calculate the RI change using Eq. (9) for a better comparison with the projection method. The standard deviation of the measured refractive indices are represented by error bars for each method, and by the line width for those based on the Cauchy formula.

Fig. 9
Fig. 9

(a),(b) Sensor response to bioten-streptavidin surface binding events, calculated using the projection method and the published counterparts. The scale over the figure shows the sequence of flushing the solutions as [1]: Tris buffer solution was injected for the first 15 minutes to create a baseline, then streptavidin solutions – with [2]: 0.6 mg/mL and [3]: 0.8 mg/mL concentrations – were injected simultaneously. Tris buffer silane was injected as a final step to flush unbound streptavidin. (c) RI change due to the change in streptavidin concentrations. The horizontal lines, corresponding to the RI resolution achieved by each method, intersect the RI curve at the minimum detectable streptavidin concentration (LoD)

Tables (2)

Tables Icon

Table 1 Fitted Cauchy parameters for all the tested ethanol solutions at 20 °C

Tables Icon

Table 2 Comparison between the projection method and the published counterparts.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

T n = T T
M = [ T n 11 T n 12 T n 1 j T n 21 T n 2 j T n i 1 T n i 2 T n i j ]
v n = v v
s = M . v n
λ r = j j ( R thresh R j ) j ( R thresh R j )
λ r = j j R j j ( R j )
I int = ( λ 1 λ 2 | D 2 ( λ ) D 2 ( λ ) ¯ | d λ ) 1 / 2
NDIR = λ 1 λ 2 | R ref ( λ ) R ( λ ) R ref ( λ ) | d λ
n = n 0 + Δ λ r BS , Δ λ r = λ r λ 0
n 2 ( λ ) = C 0 + C 1 λ 2 + C 2 λ 4 + C 3 λ 2
C n = p 0 + p 1 w + p 3 w 2
SNR ( dB ) = 10 × log ( Δ n ¯ σ )
ε = 1 m i = 1 m | Δ n i Δ n true , i | Δ n true , i

Metrics