Abstract

In this paper we report on a very sensitive biosensor based on gold asymmetric nanoantennas that are capable of enhancing the molecular resonances of C-H bonds. The nanoantennas are arranged as arrays of asymmetric-split H-shape (ASH) structures, tuned to produce plasmonic resonances with reflectance double peaks within the mid-infrared vibrational resonances of C-H bonds for the assay of deposited films of the molecule 17β-estradiol (E2), used as an analyte. Measurements and numerical simulations of the reflectance spectra have enabled an estimated enhancement factor on the order of 105 to be obtained for a thin film of E2 on the ASH array. A high sensitivity value of 2335 nm/RIU was achieved, together with a figure of merit of approximately 8. Our experimental results were corroborated using numerical simulations for the C-H stretch vibrational resonances from the analyte, superimposed on the plasmonic resonances of the ASH nanoantennas.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs)

Basudev Lahiri, Scott G. McMeekin, Richard M. De La Rue, and Nigel P. Johnson
Opt. Express 21(8) 9343-9352 (2013)

Asymmetric split ring resonators for optical sensing of organic materials

Basudev Lahiri, Ali Z. Khokhar, Richard M. De La Rue, Scott G. McMeekin, and Nigel P. Johnson
Opt. Express 17(2) 1107-1115 (2009)

Surface enhanced infrared spectroscopy with gold strip gratings

Tao Wang, Vu Hoa Nguyen, Andreas Buchenauer, Uwe Schnakenberg, and Thomas Taubner
Opt. Express 21(7) 9005-9010 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic Technology: Novel Approach to Ultrasensitive Immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
    [Crossref] [PubMed]
  2. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
    [Crossref] [PubMed]
  3. L. L. Spada, F. Bilotti, and L. Vegni, “Metamaterial biosensor for cancer detection,” IEEE Sens. J. 3(11), 627–630 (2011).
  4. T. Chen, S. Li, and H. Sun, “Metamaterials Application in Sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
    [Crossref] [PubMed]
  5. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref] [PubMed]
  6. E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Immunoassays based on directional surface plasmon-coupled emission,” J. Immunol. Methods 286(1-2), 133–140 (2004).
    [Crossref] [PubMed]
  7. L. La Spada, F. Bilotti, and L. Vegni, “Metamaterial-Based Sensor Design Working in Infrared Frequency Range,” Prog. Electromag. Res. B 34, 205–223 (2011).
    [Crossref]
  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  9. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [Crossref] [PubMed]
  10. B. Lahiri, S. G. McMeekin, R. M. De la Rue, and N. P. Johnson, “Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs),” Opt. Express 21(8), 9343–9352 (2013).
    [Crossref] [PubMed]
  11. H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy,” Nanoscale 5(22), 10794–10805 (2013).
    [Crossref] [PubMed]
  12. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
    [Crossref] [PubMed]
  13. K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [Crossref] [PubMed]
  14. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
    [Crossref] [PubMed]
  15. A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi, B Basic Res. 247(8), 2071–2074 (2010).
    [Crossref]
  16. B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nano Lett. 13(7), 3218–3224 (2013).
    [Crossref] [PubMed]
  17. M. W. Kim, T. T. Kim, J. E. Kim, and H. Y. Park, “Surface plasmon polariton resonance and transmission enhancement of light through subwavelength slit arrays in metallic films,” Opt. Express 17(15), 12315–12322 (2009).
    [Crossref] [PubMed]
  18. W. Liang, C. Jin-Xiang, L. You, L. Lei, D. Yin-Chang, and W. Jian, “Anomalous microwave reflection from a metal surface induced by spoof surface plasmon,” Chin. Phys. B 21(1), 017301 (2012).
    [Crossref]
  19. R. I. Stefan-van Staden, L. A. Gugoaşă, B. Calenic, and J. Legler, “Pattern recognition of estradiol, testosterone and dihydrotestosterone in children’s saliva samples using stochastic microsensors,” Sci. Rep. 4, 5579 (2014).
    [PubMed]
  20. Y. Zhang, J. L. Zhou, and B. Ning, “Photodegradation of estrone and 17β-estradiol in water,” Science Direct 41(1), 19–26 (2007).
  21. L. M. Brown, L. Gent, K. Davis, and D. J. Clegg, “Metabolic impact of sex hormones on obesity,” Brain Res. 1350, 77–85 (2010).
    [Crossref] [PubMed]
  22. Y. S. Kim, H. S. Jung, T. Matsuura, H. Y. Lee, T. Kawai, and M. B. Gu, “Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip,” Biosens. Bioelectron. 22(11), 2525–2531 (2007).
    [Crossref] [PubMed]
  23. R. M. Pemberton, T. T. Mottram, and J. P. Hart, “Development of a screen-printed carbon electrochemical immunosensor for picomolar concentrations of estradiol in human serum extracts,” J. Biochem. Biophys. Methods 63(3), 201–212 (2005).
    [Crossref] [PubMed]
  24. K. Prokai-Tatrai, D. Bonds, and L. Prokai, “Simultaneous Measurement of 17β-Estradiol, 17α-Estradiol and Estrone by GC-Isotope Dilution MS/MS,” Chromatographia 71(3-4), 311–315 (2010).
    [Crossref] [PubMed]
  25. X. Liu, X. Wang, J. Zhang, H. Feng, X. Liu, and D. K. Wong, “Detection of estradiol at an electrochemical immunosensor with a Cu UPD|DTBP-Protein G scaffold,” Biosens. Bioelectron. 35(1), 56–62 (2012).
    [Crossref] [PubMed]
  26. N. Yildirim, F. Long, C. Gao, M. He, H.-C. Shi, and A.-Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
    [Crossref] [PubMed]
  27. L. Zhao, J. M. Lin, Z. Li, and X. Ying, “Development of a highly sensitive, second antibody format chemiluminescence enzyme immunoassay for the determination of 17β-estradiol in wastewater,” Anal. Chim. Acta 558(1-2), 290–295 (2006).
    [Crossref]
  28. S. Zhu, Q. Zhang, and L. H. Guo, “Part-Per-Trillion Level Detection of Estradiol by Competitive Fluorescence Immunoassay Using DNA/Dye Conjugate as Antibody Multiple Labels,” Anal. Chim. Acta 624(1), 141–146 (2008).
    [Crossref] [PubMed]
  29. Y. Yang and E. P. Lai, “Optimization of molecularly imprinted polymer method for rapid screening of 17β-estradiol in water by fluorescence quenching,” Int. J. Anal. Chem. 2011, 214747 (2011).
    [Crossref] [PubMed]
  30. C. Desbrow, E. J. Routledge, G. C. Brighty, J. P. Sumpter, and M. Waldock, “Identification of Estrogenic Chemicals in STW Effluent. 1. Chemical Fractionation and in Vitro Biological Screening,” Environ. Sci. Technol. Lett. 32(11), 1549–1558 (1998).
    [Crossref]
  31. Q. Zhang, Y. Wang, A. Mateescu, K. Sergelen, A. Kibrom, U. Jonas, T. Wei, and J. Dostalek, “Biosensor based on hydrogel optical waveguide spectroscopy for the detection of 17β-estradiol,” Talanta 104, 149–154 (2013).
    [Crossref] [PubMed]
  32. M. Miyashita, T. Shimada, H. Miyagawa, and M. Akamatsu, “Surface plasmon resonance-based immunoassay for 17beta-estradiol and its application to the measurement of estrogen receptor-binding activity,” Anal. Bioanal. Chem. 381(3), 667–673 (2005).
    [Crossref] [PubMed]
  33. R. A. Olowu, P. M. Ndangili, A. A. Baleg, C. O. Ikpo, N. Njomo, P. Baker, and E. Iwuoha, “Spectroelectrochemical Dynamics of Dendritic Poly (propylene imine)-Polythiophene Star Copolymer Aptameric 17 β-Estradiol Biosensor,” J. Electrochem. Soc. 6, 1686–1708 (2011).
  34. U. Latif, J. Qian, S. Can, and F. L. Dickert, “Biomimetic receptors for bioanalyte detection by quartz crystal microbalances - from molecules to cells,” Sensors (Basel) 14(12), 23419–23438 (2014).
    [Crossref] [PubMed]
  35. J. Liu, W. Bai, S. Niu, C. Zhu, S. Yang, and A. Chen, “Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles,” Sci. Rep. 4, 7571 (2014).
    [Crossref] [PubMed]
  36. H. Ou, Z. Luo, H. Jiang, H. Zhou, X. Wang, and C. Song, “Indirect Inhibitive Immunoassay for Estradiol Using Surface Plasmon Resonance Coupled to Online In-Tube SPME,” Anal. Lett. 42(17), 2758–2773 (2009).
    [Crossref]
  37. W. W. Zhang, Y. C. Chen, Z. F. Luo, J. Y. Wang, and D. Y. Ma, “Analysis of 17 beta-estradiol from sewage in coastal marine environment by surface plasmon resonance technique,” Chem. Res. Chin. Univ. 23(4), 404–407 (2007).
    [Crossref]
  38. E. Kim, S. J. Lee, H.-C. Kim, S. G. Lee, T.-J. Go, C. S. Baek, and S. W. Jeong, “Selective detection of estradiol using a molecularly imprinted self-assembled monolayer on gold surface,” Toxicology and Environmental Health Sciences 1(2), 117–121 (2009).
    [Crossref]
  39. E. D. Son, J. Y. Lee, S. Lee, M. S. Kim, B. G. Lee, I. S. Chang, and J. H. Chung, “Topical application of 17beta-estradiol increases extracellular matrix protein synthesis by stimulating tgf-Beta signaling in aged human skin in vivo,” J. Invest. Dermatol. 124(6), 1149–1161 (2005).
    [Crossref] [PubMed]
  40. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
    [Crossref] [PubMed]
  41. E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split Ring Resonator Sensors for Infrared Detection of Single Molecular Monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
    [Crossref]
  42. C.-K. Chen, M.-H. Chang, H.-T. Wu, Y.-C. Lee, and T.-J. Yen, “Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array,” Biosens. Bioelectron. 60, 343–350 (2014).
    [Crossref] [PubMed]
  43. D.H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry (McGraw-Hill, 1973), Chap 4.
  44. I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Gold asymmetric split ring resonators (A-SRRs) for nano sensing of estradiol,” Proc. SPIE 9125, 91251O (2014).
    [Crossref]
  45. I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Matching plasmon resonances to the C=C and C-H bonds in estradiol,” Proc. SPIE 9340, 93400G (2015).
    [Crossref]
  46. R. F. Peters, L. Gutierrez-Rivera, S. K. Dew, and M. Stepanova, “Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates,” J. Vis. Exp. 97(97), 52712 (2015).
    [PubMed]
  47. D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 184104 (2006).
    [Crossref]
  48. W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett. 11(1), 8–15 (2011).
    [Crossref] [PubMed]
  49. D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
    [Crossref] [PubMed]
  50. P. Pavaskar, J. Theiss, and S. B. Cronin, “Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles,” Opt. Express 20(13), 14656–14662 (2012).
    [Crossref] [PubMed]
  51. Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
    [Crossref] [PubMed]
  52. H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas,” Nano Lett. 7, 669–675 (2012).
  53. P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Photonic crystal resonator integrated in a microfluidic system,” Opt. Lett. 33(14), 1623–1625 (2008).
    [Crossref] [PubMed]
  54. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press 1985).
  55. http://www.chemnet.com/cas/en/50-28-2/%CE%B2-estradiol.html , (2016).
  56. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
    [Crossref] [PubMed]
  57. J. Kundu, F. Le, P. Nordlander, and N. J. Halas, “Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates,” Chem. Phys. Lett. 452(1-3), 115–119 (2008).
    [Crossref]
  58. R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
    [Crossref] [PubMed]

2015 (3)

I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Matching plasmon resonances to the C=C and C-H bonds in estradiol,” Proc. SPIE 9340, 93400G (2015).
[Crossref]

R. F. Peters, L. Gutierrez-Rivera, S. K. Dew, and M. Stepanova, “Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates,” J. Vis. Exp. 97(97), 52712 (2015).
[PubMed]

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

2014 (5)

C.-K. Chen, M.-H. Chang, H.-T. Wu, Y.-C. Lee, and T.-J. Yen, “Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array,” Biosens. Bioelectron. 60, 343–350 (2014).
[Crossref] [PubMed]

I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Gold asymmetric split ring resonators (A-SRRs) for nano sensing of estradiol,” Proc. SPIE 9125, 91251O (2014).
[Crossref]

R. I. Stefan-van Staden, L. A. Gugoaşă, B. Calenic, and J. Legler, “Pattern recognition of estradiol, testosterone and dihydrotestosterone in children’s saliva samples using stochastic microsensors,” Sci. Rep. 4, 5579 (2014).
[PubMed]

U. Latif, J. Qian, S. Can, and F. L. Dickert, “Biomimetic receptors for bioanalyte detection by quartz crystal microbalances - from molecules to cells,” Sensors (Basel) 14(12), 23419–23438 (2014).
[Crossref] [PubMed]

J. Liu, W. Bai, S. Niu, C. Zhu, S. Yang, and A. Chen, “Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles,” Sci. Rep. 4, 7571 (2014).
[Crossref] [PubMed]

2013 (4)

Q. Zhang, Y. Wang, A. Mateescu, K. Sergelen, A. Kibrom, U. Jonas, T. Wei, and J. Dostalek, “Biosensor based on hydrogel optical waveguide spectroscopy for the detection of 17β-estradiol,” Talanta 104, 149–154 (2013).
[Crossref] [PubMed]

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nano Lett. 13(7), 3218–3224 (2013).
[Crossref] [PubMed]

B. Lahiri, S. G. McMeekin, R. M. De la Rue, and N. P. Johnson, “Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs),” Opt. Express 21(8), 9343–9352 (2013).
[Crossref] [PubMed]

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy,” Nanoscale 5(22), 10794–10805 (2013).
[Crossref] [PubMed]

2012 (7)

T. Chen, S. Li, and H. Sun, “Metamaterials Application in Sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

W. Liang, C. Jin-Xiang, L. You, L. Lei, D. Yin-Chang, and W. Jian, “Anomalous microwave reflection from a metal surface induced by spoof surface plasmon,” Chin. Phys. B 21(1), 017301 (2012).
[Crossref]

X. Liu, X. Wang, J. Zhang, H. Feng, X. Liu, and D. K. Wong, “Detection of estradiol at an electrochemical immunosensor with a Cu UPD|DTBP-Protein G scaffold,” Biosens. Bioelectron. 35(1), 56–62 (2012).
[Crossref] [PubMed]

N. Yildirim, F. Long, C. Gao, M. He, H.-C. Shi, and A.-Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas,” Nano Lett. 7, 669–675 (2012).

P. Pavaskar, J. Theiss, and S. B. Cronin, “Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles,” Opt. Express 20(13), 14656–14662 (2012).
[Crossref] [PubMed]

2011 (7)

R. A. Olowu, P. M. Ndangili, A. A. Baleg, C. O. Ikpo, N. Njomo, P. Baker, and E. Iwuoha, “Spectroelectrochemical Dynamics of Dendritic Poly (propylene imine)-Polythiophene Star Copolymer Aptameric 17 β-Estradiol Biosensor,” J. Electrochem. Soc. 6, 1686–1708 (2011).

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett. 11(1), 8–15 (2011).
[Crossref] [PubMed]

Y. Yang and E. P. Lai, “Optimization of molecularly imprinted polymer method for rapid screening of 17β-estradiol in water by fluorescence quenching,” Int. J. Anal. Chem. 2011, 214747 (2011).
[Crossref] [PubMed]

L. L. Spada, F. Bilotti, and L. Vegni, “Metamaterial biosensor for cancer detection,” IEEE Sens. J. 3(11), 627–630 (2011).

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

L. La Spada, F. Bilotti, and L. Vegni, “Metamaterial-Based Sensor Design Working in Infrared Frequency Range,” Prog. Electromag. Res. B 34, 205–223 (2011).
[Crossref]

2010 (3)

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi, B Basic Res. 247(8), 2071–2074 (2010).
[Crossref]

K. Prokai-Tatrai, D. Bonds, and L. Prokai, “Simultaneous Measurement of 17β-Estradiol, 17α-Estradiol and Estrone by GC-Isotope Dilution MS/MS,” Chromatographia 71(3-4), 311–315 (2010).
[Crossref] [PubMed]

L. M. Brown, L. Gent, K. Davis, and D. J. Clegg, “Metabolic impact of sex hormones on obesity,” Brain Res. 1350, 77–85 (2010).
[Crossref] [PubMed]

2009 (7)

E. Kim, S. J. Lee, H.-C. Kim, S. G. Lee, T.-J. Go, C. S. Baek, and S. W. Jeong, “Selective detection of estradiol using a molecularly imprinted self-assembled monolayer on gold surface,” Toxicology and Environmental Health Sciences 1(2), 117–121 (2009).
[Crossref]

H. Ou, Z. Luo, H. Jiang, H. Zhou, X. Wang, and C. Song, “Indirect Inhibitive Immunoassay for Estradiol Using Surface Plasmon Resonance Coupled to Online In-Tube SPME,” Anal. Lett. 42(17), 2758–2773 (2009).
[Crossref]

M. W. Kim, T. T. Kim, J. E. Kim, and H. Y. Park, “Surface plasmon polariton resonance and transmission enhancement of light through subwavelength slit arrays in metallic films,” Opt. Express 17(15), 12315–12322 (2009).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
[Crossref] [PubMed]

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split Ring Resonator Sensors for Infrared Detection of Single Molecular Monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

2008 (6)

J. Kundu, F. Le, P. Nordlander, and N. J. Halas, “Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates,” Chem. Phys. Lett. 452(1-3), 115–119 (2008).
[Crossref]

P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Photonic crystal resonator integrated in a microfluidic system,” Opt. Lett. 33(14), 1623–1625 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

S. Zhu, Q. Zhang, and L. H. Guo, “Part-Per-Trillion Level Detection of Estradiol by Competitive Fluorescence Immunoassay Using DNA/Dye Conjugate as Antibody Multiple Labels,” Anal. Chim. Acta 624(1), 141–146 (2008).
[Crossref] [PubMed]

2007 (4)

Y. S. Kim, H. S. Jung, T. Matsuura, H. Y. Lee, T. Kawai, and M. B. Gu, “Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip,” Biosens. Bioelectron. 22(11), 2525–2531 (2007).
[Crossref] [PubMed]

W. W. Zhang, Y. C. Chen, Z. F. Luo, J. Y. Wang, and D. Y. Ma, “Analysis of 17 beta-estradiol from sewage in coastal marine environment by surface plasmon resonance technique,” Chem. Res. Chin. Univ. 23(4), 404–407 (2007).
[Crossref]

Y. Zhang, J. L. Zhou, and B. Ning, “Photodegradation of estrone and 17β-estradiol in water,” Science Direct 41(1), 19–26 (2007).

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

2006 (2)

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 184104 (2006).
[Crossref]

L. Zhao, J. M. Lin, Z. Li, and X. Ying, “Development of a highly sensitive, second antibody format chemiluminescence enzyme immunoassay for the determination of 17β-estradiol in wastewater,” Anal. Chim. Acta 558(1-2), 290–295 (2006).
[Crossref]

2005 (4)

R. M. Pemberton, T. T. Mottram, and J. P. Hart, “Development of a screen-printed carbon electrochemical immunosensor for picomolar concentrations of estradiol in human serum extracts,” J. Biochem. Biophys. Methods 63(3), 201–212 (2005).
[Crossref] [PubMed]

E. D. Son, J. Y. Lee, S. Lee, M. S. Kim, B. G. Lee, I. S. Chang, and J. H. Chung, “Topical application of 17beta-estradiol increases extracellular matrix protein synthesis by stimulating tgf-Beta signaling in aged human skin in vivo,” J. Invest. Dermatol. 124(6), 1149–1161 (2005).
[Crossref] [PubMed]

M. Miyashita, T. Shimada, H. Miyagawa, and M. Akamatsu, “Surface plasmon resonance-based immunoassay for 17beta-estradiol and its application to the measurement of estrogen receptor-binding activity,” Anal. Bioanal. Chem. 381(3), 667–673 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic Technology: Novel Approach to Ultrasensitive Immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

2004 (1)

E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Immunoassays based on directional surface plasmon-coupled emission,” J. Immunol. Methods 286(1-2), 133–140 (2004).
[Crossref] [PubMed]

2001 (1)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
[Crossref] [PubMed]

1998 (1)

C. Desbrow, E. J. Routledge, G. C. Brighty, J. P. Sumpter, and M. Waldock, “Identification of Estrogenic Chemicals in STW Effluent. 1. Chemical Fractionation and in Vitro Biological Screening,” Environ. Sci. Technol. Lett. 32(11), 1549–1558 (1998).
[Crossref]

Adato, R.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Aizpurua, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Akamatsu, M.

M. Miyashita, T. Shimada, H. Miyagawa, and M. Akamatsu, “Surface plasmon resonance-based immunoassay for 17beta-estradiol and its application to the measurement of estrogen receptor-binding activity,” Anal. Bioanal. Chem. 381(3), 667–673 (2005).
[Crossref] [PubMed]

Aksyuk, V.

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nano Lett. 13(7), 3218–3224 (2013).
[Crossref] [PubMed]

Altug, H.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Aouani, H.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas,” Nano Lett. 7, 669–675 (2012).

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Atwater, H. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Aydin, K.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Baek, C. S.

E. Kim, S. J. Lee, H.-C. Kim, S. G. Lee, T.-J. Go, C. S. Baek, and S. W. Jeong, “Selective detection of estradiol using a molecularly imprinted self-assembled monolayer on gold surface,” Toxicology and Environmental Health Sciences 1(2), 117–121 (2009).
[Crossref]

Bai, W.

J. Liu, W. Bai, S. Niu, C. Zhu, S. Yang, and A. Chen, “Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles,” Sci. Rep. 4, 7571 (2014).
[Crossref] [PubMed]

Baker, P.

R. A. Olowu, P. M. Ndangili, A. A. Baleg, C. O. Ikpo, N. Njomo, P. Baker, and E. Iwuoha, “Spectroelectrochemical Dynamics of Dendritic Poly (propylene imine)-Polythiophene Star Copolymer Aptameric 17 β-Estradiol Biosensor,” J. Electrochem. Soc. 6, 1686–1708 (2011).

Baleg, A. A.

R. A. Olowu, P. M. Ndangili, A. A. Baleg, C. O. Ikpo, N. Njomo, P. Baker, and E. Iwuoha, “Spectroelectrochemical Dynamics of Dendritic Poly (propylene imine)-Polythiophene Star Copolymer Aptameric 17 β-Estradiol Biosensor,” J. Electrochem. Soc. 6, 1686–1708 (2011).

Bartal, G.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split Ring Resonator Sensors for Infrared Detection of Single Molecular Monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Bergman, D. J.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
[Crossref] [PubMed]

Bilotti, F.

L. La Spada, F. Bilotti, and L. Vegni, “Metamaterial-Based Sensor Design Working in Infrared Frequency Range,” Prog. Electromag. Res. B 34, 205–223 (2011).
[Crossref]

L. L. Spada, F. Bilotti, and L. Vegni, “Metamaterial biosensor for cancer detection,” IEEE Sens. J. 3(11), 627–630 (2011).

Bonds, D.

K. Prokai-Tatrai, D. Bonds, and L. Prokai, “Simultaneous Measurement of 17β-Estradiol, 17α-Estradiol and Estrone by GC-Isotope Dilution MS/MS,” Chromatographia 71(3-4), 311–315 (2010).
[Crossref] [PubMed]

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Brighty, G. C.

C. Desbrow, E. J. Routledge, G. C. Brighty, J. P. Sumpter, and M. Waldock, “Identification of Estrogenic Chemicals in STW Effluent. 1. Chemical Fractionation and in Vitro Biological Screening,” Environ. Sci. Technol. Lett. 32(11), 1549–1558 (1998).
[Crossref]

Brown, L. M.

L. M. Brown, L. Gent, K. Davis, and D. J. Clegg, “Metabolic impact of sex hormones on obesity,” Brain Res. 1350, 77–85 (2010).
[Crossref] [PubMed]

Bukasov, R.

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

Calenic, B.

R. I. Stefan-van Staden, L. A. Gugoaşă, B. Calenic, and J. Legler, “Pattern recognition of estradiol, testosterone and dihydrotestosterone in children’s saliva samples using stochastic microsensors,” Sci. Rep. 4, 5579 (2014).
[PubMed]

Can, S.

U. Latif, J. Qian, S. Can, and F. L. Dickert, “Biomimetic receptors for bioanalyte detection by quartz crystal microbalances - from molecules to cells,” Sensors (Basel) 14(12), 23419–23438 (2014).
[Crossref] [PubMed]

Centrone, A.

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nano Lett. 13(7), 3218–3224 (2013).
[Crossref] [PubMed]

Chang, I. S.

E. D. Son, J. Y. Lee, S. Lee, M. S. Kim, B. G. Lee, I. S. Chang, and J. H. Chung, “Topical application of 17beta-estradiol increases extracellular matrix protein synthesis by stimulating tgf-Beta signaling in aged human skin in vivo,” J. Invest. Dermatol. 124(6), 1149–1161 (2005).
[Crossref] [PubMed]

Chang, M.-H.

C.-K. Chen, M.-H. Chang, H.-T. Wu, Y.-C. Lee, and T.-J. Yen, “Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array,” Biosens. Bioelectron. 60, 343–350 (2014).
[Crossref] [PubMed]

Chen, A.

J. Liu, W. Bai, S. Niu, C. Zhu, S. Yang, and A. Chen, “Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles,” Sci. Rep. 4, 7571 (2014).
[Crossref] [PubMed]

Chen, C.-K.

C.-K. Chen, M.-H. Chang, H.-T. Wu, Y.-C. Lee, and T.-J. Yen, “Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array,” Biosens. Bioelectron. 60, 343–350 (2014).
[Crossref] [PubMed]

Chen, K.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Chen, T.

T. Chen, S. Li, and H. Sun, “Metamaterials Application in Sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
[Crossref] [PubMed]

Chen, Y. C.

W. W. Zhang, Y. C. Chen, Z. F. Luo, J. Y. Wang, and D. Y. Ma, “Analysis of 17 beta-estradiol from sewage in coastal marine environment by surface plasmon resonance technique,” Chem. Res. Chin. Univ. 23(4), 404–407 (2007).
[Crossref]

Cheng, Z. Q.

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Chung, J. H.

E. D. Son, J. Y. Lee, S. Lee, M. S. Kim, B. G. Lee, I. S. Chang, and J. H. Chung, “Topical application of 17beta-estradiol increases extracellular matrix protein synthesis by stimulating tgf-Beta signaling in aged human skin in vivo,” J. Invest. Dermatol. 124(6), 1149–1161 (2005).
[Crossref] [PubMed]

Clegg, D. J.

L. M. Brown, L. Gent, K. Davis, and D. J. Clegg, “Metabolic impact of sex hormones on obesity,” Brain Res. 1350, 77–85 (2010).
[Crossref] [PubMed]

Cronin, S. B.

Cubukcu, E.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split Ring Resonator Sensors for Infrared Detection of Single Molecular Monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Davis, K.

L. M. Brown, L. Gent, K. Davis, and D. J. Clegg, “Metabolic impact of sex hormones on obesity,” Brain Res. 1350, 77–85 (2010).
[Crossref] [PubMed]

de la Chapelle, M. L.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi, B Basic Res. 247(8), 2071–2074 (2010).
[Crossref]

De La Rue, R. M.

I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Matching plasmon resonances to the C=C and C-H bonds in estradiol,” Proc. SPIE 9340, 93400G (2015).
[Crossref]

I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Gold asymmetric split ring resonators (A-SRRs) for nano sensing of estradiol,” Proc. SPIE 9125, 91251O (2014).
[Crossref]

B. Lahiri, S. G. McMeekin, R. M. De la Rue, and N. P. Johnson, “Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs),” Opt. Express 21(8), 9343–9352 (2013).
[Crossref] [PubMed]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
[Crossref] [PubMed]

Desbrow, C.

C. Desbrow, E. J. Routledge, G. C. Brighty, J. P. Sumpter, and M. Waldock, “Identification of Estrogenic Chemicals in STW Effluent. 1. Chemical Fractionation and in Vitro Biological Screening,” Environ. Sci. Technol. Lett. 32(11), 1549–1558 (1998).
[Crossref]

Dew, S. K.

R. F. Peters, L. Gutierrez-Rivera, S. K. Dew, and M. Stepanova, “Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates,” J. Vis. Exp. 97(97), 52712 (2015).
[PubMed]

Dickert, F. L.

U. Latif, J. Qian, S. Can, and F. L. Dickert, “Biomimetic receptors for bioanalyte detection by quartz crystal microbalances - from molecules to cells,” Sensors (Basel) 14(12), 23419–23438 (2014).
[Crossref] [PubMed]

Dostalek, J.

Q. Zhang, Y. Wang, A. Mateescu, K. Sergelen, A. Kibrom, U. Jonas, T. Wei, and J. Dostalek, “Biosensor based on hydrogel optical waveguide spectroscopy for the detection of 17β-estradiol,” Talanta 104, 149–154 (2013).
[Crossref] [PubMed]

Enders, D.

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 184104 (2006).
[Crossref]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
[Crossref] [PubMed]

Feng, H.

X. Liu, X. Wang, J. Zhang, H. Feng, X. Liu, and D. K. Wong, “Detection of estradiol at an electrochemical immunosensor with a Cu UPD|DTBP-Protein G scaffold,” Biosens. Bioelectron. 35(1), 56–62 (2012).
[Crossref] [PubMed]

Fujikawa, S.

W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett. 11(1), 8–15 (2011).
[Crossref] [PubMed]

Gao, C.

N. Yildirim, F. Long, C. Gao, M. He, H.-C. Shi, and A.-Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

Gent, L.

L. M. Brown, L. Gent, K. Davis, and D. J. Clegg, “Metabolic impact of sex hormones on obesity,” Brain Res. 1350, 77–85 (2010).
[Crossref] [PubMed]

Go, T.-J.

E. Kim, S. J. Lee, H.-C. Kim, S. G. Lee, T.-J. Go, C. S. Baek, and S. W. Jeong, “Selective detection of estradiol using a molecularly imprinted self-assembled monolayer on gold surface,” Toxicology and Environmental Health Sciences 1(2), 117–121 (2009).
[Crossref]

Grady, N. K.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Gryczynski, I.

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic Technology: Novel Approach to Ultrasensitive Immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Immunoassays based on directional surface plasmon-coupled emission,” J. Immunol. Methods 286(1-2), 133–140 (2004).
[Crossref] [PubMed]

Gryczynski, Z.

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic Technology: Novel Approach to Ultrasensitive Immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Immunoassays based on directional surface plasmon-coupled emission,” J. Immunol. Methods 286(1-2), 133–140 (2004).
[Crossref] [PubMed]

Gu, A.-Z.

N. Yildirim, F. Long, C. Gao, M. He, H.-C. Shi, and A.-Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

Gu, M. B.

Y. S. Kim, H. S. Jung, T. Matsuura, H. Y. Lee, T. Kawai, and M. B. Gu, “Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip,” Biosens. Bioelectron. 22(11), 2525–2531 (2007).
[Crossref] [PubMed]

Gugoasa, L. A.

R. I. Stefan-van Staden, L. A. Gugoaşă, B. Calenic, and J. Legler, “Pattern recognition of estradiol, testosterone and dihydrotestosterone in children’s saliva samples using stochastic microsensors,” Sci. Rep. 4, 5579 (2014).
[PubMed]

Guo, L. H.

S. Zhu, Q. Zhang, and L. H. Guo, “Part-Per-Trillion Level Detection of Estradiol by Competitive Fluorescence Immunoassay Using DNA/Dye Conjugate as Antibody Multiple Labels,” Anal. Chim. Acta 624(1), 141–146 (2008).
[Crossref] [PubMed]

Gutierrez-Rivera, L.

R. F. Peters, L. Gutierrez-Rivera, S. K. Dew, and M. Stepanova, “Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates,” J. Vis. Exp. 97(97), 52712 (2015).
[PubMed]

Halas, N. J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

J. Kundu, F. Le, P. Nordlander, and N. J. Halas, “Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates,” Chem. Phys. Lett. 452(1-3), 115–119 (2008).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hao, Z. H.

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Hart, J. P.

R. M. Pemberton, T. T. Mottram, and J. P. Hart, “Development of a screen-printed carbon electrochemical immunosensor for picomolar concentrations of estradiol in human serum extracts,” J. Biochem. Biophys. Methods 63(3), 201–212 (2005).
[Crossref] [PubMed]

He, M.

N. Yildirim, F. Long, C. Gao, M. He, H.-C. Shi, and A.-Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

Hegnerova, K.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas,” Nano Lett. 7, 669–675 (2012).

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Holland, G.

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nano Lett. 13(7), 3218–3224 (2013).
[Crossref] [PubMed]

Homola, J.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas,” Nano Lett. 7, 669–675 (2012).

Hong, M.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas,” Nano Lett. 7, 669–675 (2012).

Hong, S.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi, B Basic Res. 247(8), 2071–2074 (2010).
[Crossref]

Ikpo, C. O.

R. A. Olowu, P. M. Ndangili, A. A. Baleg, C. O. Ikpo, N. Njomo, P. Baker, and E. Iwuoha, “Spectroelectrochemical Dynamics of Dendritic Poly (propylene imine)-Polythiophene Star Copolymer Aptameric 17 β-Estradiol Biosensor,” J. Electrochem. Soc. 6, 1686–1708 (2011).

Iwuoha, E.

R. A. Olowu, P. M. Ndangili, A. A. Baleg, C. O. Ikpo, N. Njomo, P. Baker, and E. Iwuoha, “Spectroelectrochemical Dynamics of Dendritic Poly (propylene imine)-Polythiophene Star Copolymer Aptameric 17 β-Estradiol Biosensor,” J. Electrochem. Soc. 6, 1686–1708 (2011).

Jeong, S. W.

E. Kim, S. J. Lee, H.-C. Kim, S. G. Lee, T.-J. Go, C. S. Baek, and S. W. Jeong, “Selective detection of estradiol using a molecularly imprinted self-assembled monolayer on gold surface,” Toxicology and Environmental Health Sciences 1(2), 117–121 (2009).
[Crossref]

Jian, W.

W. Liang, C. Jin-Xiang, L. You, L. Lei, D. Yin-Chang, and W. Jian, “Anomalous microwave reflection from a metal surface induced by spoof surface plasmon,” Chin. Phys. B 21(1), 017301 (2012).
[Crossref]

Jiang, H.

H. Ou, Z. Luo, H. Jiang, H. Zhou, X. Wang, and C. Song, “Indirect Inhibitive Immunoassay for Estradiol Using Surface Plasmon Resonance Coupled to Online In-Tube SPME,” Anal. Lett. 42(17), 2758–2773 (2009).
[Crossref]

Jin-Xiang, C.

W. Liang, C. Jin-Xiang, L. You, L. Lei, D. Yin-Chang, and W. Jian, “Anomalous microwave reflection from a metal surface induced by spoof surface plasmon,” Chin. Phys. B 21(1), 017301 (2012).
[Crossref]

Johnson, N. P.

I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Matching plasmon resonances to the C=C and C-H bonds in estradiol,” Proc. SPIE 9340, 93400G (2015).
[Crossref]

I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Gold asymmetric split ring resonators (A-SRRs) for nano sensing of estradiol,” Proc. SPIE 9125, 91251O (2014).
[Crossref]

B. Lahiri, S. G. McMeekin, R. M. De la Rue, and N. P. Johnson, “Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs),” Opt. Express 21(8), 9343–9352 (2013).
[Crossref] [PubMed]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
[Crossref] [PubMed]

Jonas, U.

Q. Zhang, Y. Wang, A. Mateescu, K. Sergelen, A. Kibrom, U. Jonas, T. Wei, and J. Dostalek, “Biosensor based on hydrogel optical waveguide spectroscopy for the detection of 17β-estradiol,” Talanta 104, 149–154 (2013).
[Crossref] [PubMed]

Jung, H. S.

Y. S. Kim, H. S. Jung, T. Matsuura, H. Y. Lee, T. Kawai, and M. B. Gu, “Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip,” Biosens. Bioelectron. 22(11), 2525–2531 (2007).
[Crossref] [PubMed]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Kawai, T.

Y. S. Kim, H. S. Jung, T. Matsuura, H. Y. Lee, T. Kawai, and M. B. Gu, “Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip,” Biosens. Bioelectron. 22(11), 2525–2531 (2007).
[Crossref] [PubMed]

Kelaita, Y. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Khokhar, A. Z.

Kibrom, A.

Q. Zhang, Y. Wang, A. Mateescu, K. Sergelen, A. Kibrom, U. Jonas, T. Wei, and J. Dostalek, “Biosensor based on hydrogel optical waveguide spectroscopy for the detection of 17β-estradiol,” Talanta 104, 149–154 (2013).
[Crossref] [PubMed]

Kim, E.

E. Kim, S. J. Lee, H.-C. Kim, S. G. Lee, T.-J. Go, C. S. Baek, and S. W. Jeong, “Selective detection of estradiol using a molecularly imprinted self-assembled monolayer on gold surface,” Toxicology and Environmental Health Sciences 1(2), 117–121 (2009).
[Crossref]

Kim, H.-C.

E. Kim, S. J. Lee, H.-C. Kim, S. G. Lee, T.-J. Go, C. S. Baek, and S. W. Jeong, “Selective detection of estradiol using a molecularly imprinted self-assembled monolayer on gold surface,” Toxicology and Environmental Health Sciences 1(2), 117–121 (2009).
[Crossref]

Kim, J. E.

Kim, M. S.

E. D. Son, J. Y. Lee, S. Lee, M. S. Kim, B. G. Lee, I. S. Chang, and J. H. Chung, “Topical application of 17beta-estradiol increases extracellular matrix protein synthesis by stimulating tgf-Beta signaling in aged human skin in vivo,” J. Invest. Dermatol. 124(6), 1149–1161 (2005).
[Crossref] [PubMed]

Kim, M. W.

Kim, T. T.

Kim, Y. S.

Y. S. Kim, H. S. Jung, T. Matsuura, H. Y. Lee, T. Kawai, and M. B. Gu, “Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip,” Biosens. Bioelectron. 22(11), 2525–2531 (2007).
[Crossref] [PubMed]

Kubo, W.

W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett. 11(1), 8–15 (2011).
[Crossref] [PubMed]

Kundu, J.

J. Kundu, F. Le, P. Nordlander, and N. J. Halas, “Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates,” Chem. Phys. Lett. 452(1-3), 115–119 (2008).
[Crossref]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Kutter, J. P.

La Spada, L.

L. La Spada, F. Bilotti, and L. Vegni, “Metamaterial-Based Sensor Design Working in Infrared Frequency Range,” Prog. Electromag. Res. B 34, 205–223 (2011).
[Crossref]

Lahiri, B.

I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Matching plasmon resonances to the C=C and C-H bonds in estradiol,” Proc. SPIE 9340, 93400G (2015).
[Crossref]

I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Gold asymmetric split ring resonators (A-SRRs) for nano sensing of estradiol,” Proc. SPIE 9125, 91251O (2014).
[Crossref]

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nano Lett. 13(7), 3218–3224 (2013).
[Crossref] [PubMed]

B. Lahiri, S. G. McMeekin, R. M. De la Rue, and N. P. Johnson, “Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs),” Opt. Express 21(8), 9343–9352 (2013).
[Crossref] [PubMed]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
[Crossref] [PubMed]

Lai, E. P.

Y. Yang and E. P. Lai, “Optimization of molecularly imprinted polymer method for rapid screening of 17β-estradiol in water by fluorescence quenching,” Int. J. Anal. Chem. 2011, 214747 (2011).
[Crossref] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic Technology: Novel Approach to Ultrasensitive Immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Immunoassays based on directional surface plasmon-coupled emission,” J. Immunol. Methods 286(1-2), 133–140 (2004).
[Crossref] [PubMed]

Latif, U.

U. Latif, J. Qian, S. Can, and F. L. Dickert, “Biomimetic receptors for bioanalyte detection by quartz crystal microbalances - from molecules to cells,” Sensors (Basel) 14(12), 23419–23438 (2014).
[Crossref] [PubMed]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

J. Kundu, F. Le, P. Nordlander, and N. J. Halas, “Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates,” Chem. Phys. Lett. 452(1-3), 115–119 (2008).
[Crossref]

Lee, B. G.

E. D. Son, J. Y. Lee, S. Lee, M. S. Kim, B. G. Lee, I. S. Chang, and J. H. Chung, “Topical application of 17beta-estradiol increases extracellular matrix protein synthesis by stimulating tgf-Beta signaling in aged human skin in vivo,” J. Invest. Dermatol. 124(6), 1149–1161 (2005).
[Crossref] [PubMed]

Lee, H. Y.

Y. S. Kim, H. S. Jung, T. Matsuura, H. Y. Lee, T. Kawai, and M. B. Gu, “Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip,” Biosens. Bioelectron. 22(11), 2525–2531 (2007).
[Crossref] [PubMed]

Lee, J. Y.

E. D. Son, J. Y. Lee, S. Lee, M. S. Kim, B. G. Lee, I. S. Chang, and J. H. Chung, “Topical application of 17beta-estradiol increases extracellular matrix protein synthesis by stimulating tgf-Beta signaling in aged human skin in vivo,” J. Invest. Dermatol. 124(6), 1149–1161 (2005).
[Crossref] [PubMed]

Lee, S.

E. D. Son, J. Y. Lee, S. Lee, M. S. Kim, B. G. Lee, I. S. Chang, and J. H. Chung, “Topical application of 17beta-estradiol increases extracellular matrix protein synthesis by stimulating tgf-Beta signaling in aged human skin in vivo,” J. Invest. Dermatol. 124(6), 1149–1161 (2005).
[Crossref] [PubMed]

Lee, S. G.

E. Kim, S. J. Lee, H.-C. Kim, S. G. Lee, T.-J. Go, C. S. Baek, and S. W. Jeong, “Selective detection of estradiol using a molecularly imprinted self-assembled monolayer on gold surface,” Toxicology and Environmental Health Sciences 1(2), 117–121 (2009).
[Crossref]

Lee, S. J.

E. Kim, S. J. Lee, H.-C. Kim, S. G. Lee, T.-J. Go, C. S. Baek, and S. W. Jeong, “Selective detection of estradiol using a molecularly imprinted self-assembled monolayer on gold surface,” Toxicology and Environmental Health Sciences 1(2), 117–121 (2009).
[Crossref]

Lee, Y.-C.

C.-K. Chen, M.-H. Chang, H.-T. Wu, Y.-C. Lee, and T.-J. Yen, “Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array,” Biosens. Bioelectron. 60, 343–350 (2014).
[Crossref] [PubMed]

Legler, J.

R. I. Stefan-van Staden, L. A. Gugoaşă, B. Calenic, and J. Legler, “Pattern recognition of estradiol, testosterone and dihydrotestosterone in children’s saliva samples using stochastic microsensors,” Sci. Rep. 4, 5579 (2014).
[PubMed]

Lei, L.

W. Liang, C. Jin-Xiang, L. You, L. Lei, D. Yin-Chang, and W. Jian, “Anomalous microwave reflection from a metal surface induced by spoof surface plasmon,” Chin. Phys. B 21(1), 017301 (2012).
[Crossref]

Levin, C. S.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

Li, S.

T. Chen, S. Li, and H. Sun, “Metamaterials Application in Sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
[Crossref] [PubMed]

Li, Z.

L. Zhao, J. M. Lin, Z. Li, and X. Ying, “Development of a highly sensitive, second antibody format chemiluminescence enzyme immunoassay for the determination of 17β-estradiol in wastewater,” Anal. Chim. Acta 558(1-2), 290–295 (2006).
[Crossref]

Liang, W.

W. Liang, C. Jin-Xiang, L. You, L. Lei, D. Yin-Chang, and W. Jian, “Anomalous microwave reflection from a metal surface induced by spoof surface plasmon,” Chin. Phys. B 21(1), 017301 (2012).
[Crossref]

Lin, J. M.

L. Zhao, J. M. Lin, Z. Li, and X. Ying, “Development of a highly sensitive, second antibody format chemiluminescence enzyme immunoassay for the determination of 17β-estradiol in wastewater,” Anal. Chim. Acta 558(1-2), 290–295 (2006).
[Crossref]

Liu, J.

J. Liu, W. Bai, S. Niu, C. Zhu, S. Yang, and A. Chen, “Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles,” Sci. Rep. 4, 7571 (2014).
[Crossref] [PubMed]

Liu, X.

X. Liu, X. Wang, J. Zhang, H. Feng, X. Liu, and D. K. Wong, “Detection of estradiol at an electrochemical immunosensor with a Cu UPD|DTBP-Protein G scaffold,” Biosens. Bioelectron. 35(1), 56–62 (2012).
[Crossref] [PubMed]

X. Liu, X. Wang, J. Zhang, H. Feng, X. Liu, and D. K. Wong, “Detection of estradiol at an electrochemical immunosensor with a Cu UPD|DTBP-Protein G scaffold,” Biosens. Bioelectron. 35(1), 56–62 (2012).
[Crossref] [PubMed]

Long, F.

N. Yildirim, F. Long, C. Gao, M. He, H.-C. Shi, and A.-Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

Luo, Z.

H. Ou, Z. Luo, H. Jiang, H. Zhou, X. Wang, and C. Song, “Indirect Inhibitive Immunoassay for Estradiol Using Surface Plasmon Resonance Coupled to Online In-Tube SPME,” Anal. Lett. 42(17), 2758–2773 (2009).
[Crossref]

Luo, Z. F.

W. W. Zhang, Y. C. Chen, Z. F. Luo, J. Y. Wang, and D. Y. Ma, “Analysis of 17 beta-estradiol from sewage in coastal marine environment by surface plasmon resonance technique,” Chem. Res. Chin. Univ. 23(4), 404–407 (2007).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Ma, D. Y.

W. W. Zhang, Y. C. Chen, Z. F. Luo, J. Y. Wang, and D. Y. Ma, “Analysis of 17 beta-estradiol from sewage in coastal marine environment by surface plasmon resonance technique,” Chem. Res. Chin. Univ. 23(4), 404–407 (2007).
[Crossref]

Ma, L.

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Maier, S. A.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas,” Nano Lett. 7, 669–675 (2012).

Malicka, J.

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic Technology: Novel Approach to Ultrasensitive Immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Mateescu, A.

Q. Zhang, Y. Wang, A. Mateescu, K. Sergelen, A. Kibrom, U. Jonas, T. Wei, and J. Dostalek, “Biosensor based on hydrogel optical waveguide spectroscopy for the detection of 17β-estradiol,” Talanta 104, 149–154 (2013).
[Crossref] [PubMed]

Matsuura, T.

Y. S. Kim, H. S. Jung, T. Matsuura, H. Y. Lee, T. Kawai, and M. B. Gu, “Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip,” Biosens. Bioelectron. 22(11), 2525–2531 (2007).
[Crossref] [PubMed]

Matveeva, E.

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic Technology: Novel Approach to Ultrasensitive Immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Immunoassays based on directional surface plasmon-coupled emission,” J. Immunol. Methods 286(1-2), 133–140 (2004).
[Crossref] [PubMed]

Mbomson, I. G.

I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Matching plasmon resonances to the C=C and C-H bonds in estradiol,” Proc. SPIE 9340, 93400G (2015).
[Crossref]

I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Gold asymmetric split ring resonators (A-SRRs) for nano sensing of estradiol,” Proc. SPIE 9125, 91251O (2014).
[Crossref]

McMeekin, S.

I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Matching plasmon resonances to the C=C and C-H bonds in estradiol,” Proc. SPIE 9340, 93400G (2015).
[Crossref]

I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Gold asymmetric split ring resonators (A-SRRs) for nano sensing of estradiol,” Proc. SPIE 9125, 91251O (2014).
[Crossref]

McMeekin, S. G.

Miyagawa, H.

M. Miyashita, T. Shimada, H. Miyagawa, and M. Akamatsu, “Surface plasmon resonance-based immunoassay for 17beta-estradiol and its application to the measurement of estrogen receptor-binding activity,” Anal. Bioanal. Chem. 381(3), 667–673 (2005).
[Crossref] [PubMed]

Miyashita, M.

M. Miyashita, T. Shimada, H. Miyagawa, and M. Akamatsu, “Surface plasmon resonance-based immunoassay for 17beta-estradiol and its application to the measurement of estrogen receptor-binding activity,” Anal. Bioanal. Chem. 381(3), 667–673 (2005).
[Crossref] [PubMed]

Mogensen, K. B.

Mortensen, N. A.

Mottram, T. T.

R. M. Pemberton, T. T. Mottram, and J. P. Hart, “Development of a screen-printed carbon electrochemical immunosensor for picomolar concentrations of estradiol in human serum extracts,” J. Biochem. Biophys. Methods 63(3), 201–212 (2005).
[Crossref] [PubMed]

Nan, F.

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Natelson, D.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

Navarro-Cia, M.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas,” Nano Lett. 7, 669–675 (2012).

Ndangili, P. M.

R. A. Olowu, P. M. Ndangili, A. A. Baleg, C. O. Ikpo, N. Njomo, P. Baker, and E. Iwuoha, “Spectroelectrochemical Dynamics of Dendritic Poly (propylene imine)-Polythiophene Star Copolymer Aptameric 17 β-Estradiol Biosensor,” J. Electrochem. Soc. 6, 1686–1708 (2011).

Neubrech, F.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi, B Basic Res. 247(8), 2071–2074 (2010).
[Crossref]

Ning, B.

Y. Zhang, J. L. Zhou, and B. Ning, “Photodegradation of estrone and 17β-estradiol in water,” Science Direct 41(1), 19–26 (2007).

Niu, S.

J. Liu, W. Bai, S. Niu, C. Zhu, S. Yang, and A. Chen, “Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles,” Sci. Rep. 4, 7571 (2014).
[Crossref] [PubMed]

Njomo, N.

R. A. Olowu, P. M. Ndangili, A. A. Baleg, C. O. Ikpo, N. Njomo, P. Baker, and E. Iwuoha, “Spectroelectrochemical Dynamics of Dendritic Poly (propylene imine)-Polythiophene Star Copolymer Aptameric 17 β-Estradiol Biosensor,” J. Electrochem. Soc. 6, 1686–1708 (2011).

Nordlander, P.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

J. Kundu, F. Le, P. Nordlander, and N. J. Halas, “Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates,” Chem. Phys. Lett. 452(1-3), 115–119 (2008).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

Nunes, P. S.

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Olowu, R. A.

R. A. Olowu, P. M. Ndangili, A. A. Baleg, C. O. Ikpo, N. Njomo, P. Baker, and E. Iwuoha, “Spectroelectrochemical Dynamics of Dendritic Poly (propylene imine)-Polythiophene Star Copolymer Aptameric 17 β-Estradiol Biosensor,” J. Electrochem. Soc. 6, 1686–1708 (2011).

Ou, H.

H. Ou, Z. Luo, H. Jiang, H. Zhou, X. Wang, and C. Song, “Indirect Inhibitive Immunoassay for Estradiol Using Surface Plasmon Resonance Coupled to Online In-Tube SPME,” Anal. Lett. 42(17), 2758–2773 (2009).
[Crossref]

Park, H. Y.

Park, Y.-S.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split Ring Resonator Sensors for Infrared Detection of Single Molecular Monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pavaskar, P.

Pemberton, R. M.

R. M. Pemberton, T. T. Mottram, and J. P. Hart, “Development of a screen-printed carbon electrochemical immunosensor for picomolar concentrations of estradiol in human serum extracts,” J. Biochem. Biophys. Methods 63(3), 201–212 (2005).
[Crossref] [PubMed]

Peters, R. F.

R. F. Peters, L. Gutierrez-Rivera, S. K. Dew, and M. Stepanova, “Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates,” J. Vis. Exp. 97(97), 52712 (2015).
[PubMed]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Prokai, L.

K. Prokai-Tatrai, D. Bonds, and L. Prokai, “Simultaneous Measurement of 17β-Estradiol, 17α-Estradiol and Estrone by GC-Isotope Dilution MS/MS,” Chromatographia 71(3-4), 311–315 (2010).
[Crossref] [PubMed]

Prokai-Tatrai, K.

K. Prokai-Tatrai, D. Bonds, and L. Prokai, “Simultaneous Measurement of 17β-Estradiol, 17α-Estradiol and Estrone by GC-Isotope Dilution MS/MS,” Chromatographia 71(3-4), 311–315 (2010).
[Crossref] [PubMed]

Pryce, I. M.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Pucci, A.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi, B Basic Res. 247(8), 2071–2074 (2010).
[Crossref]

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 184104 (2006).
[Crossref]

Qian, J.

U. Latif, J. Qian, S. Can, and F. L. Dickert, “Biomimetic receptors for bioanalyte detection by quartz crystal microbalances - from molecules to cells,” Sensors (Basel) 14(12), 23419–23438 (2014).
[Crossref] [PubMed]

Rahmani, M.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas,” Nano Lett. 7, 669–675 (2012).

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Routledge, E. J.

C. Desbrow, E. J. Routledge, G. C. Brighty, J. P. Sumpter, and M. Waldock, “Identification of Estrogenic Chemicals in STW Effluent. 1. Chemical Fractionation and in Vitro Biological Screening,” Environ. Sci. Technol. Lett. 32(11), 1549–1558 (1998).
[Crossref]

Sergelen, K.

Q. Zhang, Y. Wang, A. Mateescu, K. Sergelen, A. Kibrom, U. Jonas, T. Wei, and J. Dostalek, “Biosensor based on hydrogel optical waveguide spectroscopy for the detection of 17β-estradiol,” Talanta 104, 149–154 (2013).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shi, H.-C.

N. Yildirim, F. Long, C. Gao, M. He, H.-C. Shi, and A.-Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

Shimada, T.

M. Miyashita, T. Shimada, H. Miyagawa, and M. Akamatsu, “Surface plasmon resonance-based immunoassay for 17beta-estradiol and its application to the measurement of estrogen receptor-binding activity,” Anal. Bioanal. Chem. 381(3), 667–673 (2005).
[Crossref] [PubMed]

Shumaker-Parry, J. S.

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Sipova, H.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas,” Nano Lett. 7, 669–675 (2012).

Son, E. D.

E. D. Son, J. Y. Lee, S. Lee, M. S. Kim, B. G. Lee, I. S. Chang, and J. H. Chung, “Topical application of 17beta-estradiol increases extracellular matrix protein synthesis by stimulating tgf-Beta signaling in aged human skin in vivo,” J. Invest. Dermatol. 124(6), 1149–1161 (2005).
[Crossref] [PubMed]

Song, C.

H. Ou, Z. Luo, H. Jiang, H. Zhou, X. Wang, and C. Song, “Indirect Inhibitive Immunoassay for Estradiol Using Surface Plasmon Resonance Coupled to Online In-Tube SPME,” Anal. Lett. 42(17), 2758–2773 (2009).
[Crossref]

Spada, L. L.

L. L. Spada, F. Bilotti, and L. Vegni, “Metamaterial biosensor for cancer detection,” IEEE Sens. J. 3(11), 627–630 (2011).

Stefan-van Staden, R. I.

R. I. Stefan-van Staden, L. A. Gugoaşă, B. Calenic, and J. Legler, “Pattern recognition of estradiol, testosterone and dihydrotestosterone in children’s saliva samples using stochastic microsensors,” Sci. Rep. 4, 5579 (2014).
[PubMed]

Stepanova, M.

R. F. Peters, L. Gutierrez-Rivera, S. K. Dew, and M. Stepanova, “Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates,” J. Vis. Exp. 97(97), 52712 (2015).
[PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Stockman, M. I.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
[Crossref] [PubMed]

Sumpter, J. P.

C. Desbrow, E. J. Routledge, G. C. Brighty, J. P. Sumpter, and M. Waldock, “Identification of Estrogenic Chemicals in STW Effluent. 1. Chemical Fractionation and in Vitro Biological Screening,” Environ. Sci. Technol. Lett. 32(11), 1549–1558 (1998).
[Crossref]

Sun, H.

T. Chen, S. Li, and H. Sun, “Metamaterials Application in Sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
[Crossref] [PubMed]

Theiss, J.

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Toury, T.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi, B Basic Res. 247(8), 2071–2074 (2010).
[Crossref]

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Vegni, L.

L. L. Spada, F. Bilotti, and L. Vegni, “Metamaterial biosensor for cancer detection,” IEEE Sens. J. 3(11), 627–630 (2011).

L. La Spada, F. Bilotti, and L. Vegni, “Metamaterial-Based Sensor Design Working in Infrared Frequency Range,” Prog. Electromag. Res. B 34, 205–223 (2011).
[Crossref]

Waldock, M.

C. Desbrow, E. J. Routledge, G. C. Brighty, J. P. Sumpter, and M. Waldock, “Identification of Estrogenic Chemicals in STW Effluent. 1. Chemical Fractionation and in Vitro Biological Screening,” Environ. Sci. Technol. Lett. 32(11), 1549–1558 (1998).
[Crossref]

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Wang, J. Y.

W. W. Zhang, Y. C. Chen, Z. F. Luo, J. Y. Wang, and D. Y. Ma, “Analysis of 17 beta-estradiol from sewage in coastal marine environment by surface plasmon resonance technique,” Chem. Res. Chin. Univ. 23(4), 404–407 (2007).
[Crossref]

Wang, Q. Q.

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Wang, X.

X. Liu, X. Wang, J. Zhang, H. Feng, X. Liu, and D. K. Wong, “Detection of estradiol at an electrochemical immunosensor with a Cu UPD|DTBP-Protein G scaffold,” Biosens. Bioelectron. 35(1), 56–62 (2012).
[Crossref] [PubMed]

H. Ou, Z. Luo, H. Jiang, H. Zhou, X. Wang, and C. Song, “Indirect Inhibitive Immunoassay for Estradiol Using Surface Plasmon Resonance Coupled to Online In-Tube SPME,” Anal. Lett. 42(17), 2758–2773 (2009).
[Crossref]

Wang, Y.

Q. Zhang, Y. Wang, A. Mateescu, K. Sergelen, A. Kibrom, U. Jonas, T. Wei, and J. Dostalek, “Biosensor based on hydrogel optical waveguide spectroscopy for the detection of 17β-estradiol,” Talanta 104, 149–154 (2013).
[Crossref] [PubMed]

Ward, D. R.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

Weber, D.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi, B Basic Res. 247(8), 2071–2074 (2010).
[Crossref]

Wei, H.

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy,” Nanoscale 5(22), 10794–10805 (2013).
[Crossref] [PubMed]

Wei, T.

Q. Zhang, Y. Wang, A. Mateescu, K. Sergelen, A. Kibrom, U. Jonas, T. Wei, and J. Dostalek, “Biosensor based on hydrogel optical waveguide spectroscopy for the detection of 17β-estradiol,” Talanta 104, 149–154 (2013).
[Crossref] [PubMed]

Wong, D. K.

X. Liu, X. Wang, J. Zhang, H. Feng, X. Liu, and D. K. Wong, “Detection of estradiol at an electrochemical immunosensor with a Cu UPD|DTBP-Protein G scaffold,” Biosens. Bioelectron. 35(1), 56–62 (2012).
[Crossref] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Wu, H.-T.

C.-K. Chen, M.-H. Chang, H.-T. Wu, Y.-C. Lee, and T.-J. Yen, “Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array,” Biosens. Bioelectron. 60, 343–350 (2014).
[Crossref] [PubMed]

Wu, Y.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Xu, H.

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy,” Nanoscale 5(22), 10794–10805 (2013).
[Crossref] [PubMed]

Yang, D. J.

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Yang, S.

J. Liu, W. Bai, S. Niu, C. Zhu, S. Yang, and A. Chen, “Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles,” Sci. Rep. 4, 7571 (2014).
[Crossref] [PubMed]

Yang, Y.

Y. Yang and E. P. Lai, “Optimization of molecularly imprinted polymer method for rapid screening of 17β-estradiol in water by fluorescence quenching,” Int. J. Anal. Chem. 2011, 214747 (2011).
[Crossref] [PubMed]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Yen, T.-J.

C.-K. Chen, M.-H. Chang, H.-T. Wu, Y.-C. Lee, and T.-J. Yen, “Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array,” Biosens. Bioelectron. 60, 343–350 (2014).
[Crossref] [PubMed]

Yildirim, N.

N. Yildirim, F. Long, C. Gao, M. He, H.-C. Shi, and A.-Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

Yin-Chang, D.

W. Liang, C. Jin-Xiang, L. You, L. Lei, D. Yin-Chang, and W. Jian, “Anomalous microwave reflection from a metal surface induced by spoof surface plasmon,” Chin. Phys. B 21(1), 017301 (2012).
[Crossref]

Ying, X.

L. Zhao, J. M. Lin, Z. Li, and X. Ying, “Development of a highly sensitive, second antibody format chemiluminescence enzyme immunoassay for the determination of 17β-estradiol in wastewater,” Anal. Chim. Acta 558(1-2), 290–295 (2006).
[Crossref]

You, L.

W. Liang, C. Jin-Xiang, L. You, L. Lei, D. Yin-Chang, and W. Jian, “Anomalous microwave reflection from a metal surface induced by spoof surface plasmon,” Chin. Phys. B 21(1), 017301 (2012).
[Crossref]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Zhang, J.

X. Liu, X. Wang, J. Zhang, H. Feng, X. Liu, and D. K. Wong, “Detection of estradiol at an electrochemical immunosensor with a Cu UPD|DTBP-Protein G scaffold,” Biosens. Bioelectron. 35(1), 56–62 (2012).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, Y. Wang, A. Mateescu, K. Sergelen, A. Kibrom, U. Jonas, T. Wei, and J. Dostalek, “Biosensor based on hydrogel optical waveguide spectroscopy for the detection of 17β-estradiol,” Talanta 104, 149–154 (2013).
[Crossref] [PubMed]

S. Zhu, Q. Zhang, and L. H. Guo, “Part-Per-Trillion Level Detection of Estradiol by Competitive Fluorescence Immunoassay Using DNA/Dye Conjugate as Antibody Multiple Labels,” Anal. Chim. Acta 624(1), 141–146 (2008).
[Crossref] [PubMed]

Zhang, S.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split Ring Resonator Sensors for Infrared Detection of Single Molecular Monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Zhang, W. W.

W. W. Zhang, Y. C. Chen, Z. F. Luo, J. Y. Wang, and D. Y. Ma, “Analysis of 17 beta-estradiol from sewage in coastal marine environment by surface plasmon resonance technique,” Chem. Res. Chin. Univ. 23(4), 404–407 (2007).
[Crossref]

Zhang, X.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split Ring Resonator Sensors for Infrared Detection of Single Molecular Monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Zhang, Y.

Y. Zhang, J. L. Zhou, and B. Ning, “Photodegradation of estrone and 17β-estradiol in water,” Science Direct 41(1), 19–26 (2007).

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhao, L.

L. Zhao, J. M. Lin, Z. Li, and X. Ying, “Development of a highly sensitive, second antibody format chemiluminescence enzyme immunoassay for the determination of 17β-estradiol in wastewater,” Anal. Chim. Acta 558(1-2), 290–295 (2006).
[Crossref]

Zhong, Y. T.

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Zhou, H.

H. Ou, Z. Luo, H. Jiang, H. Zhou, X. Wang, and C. Song, “Indirect Inhibitive Immunoassay for Estradiol Using Surface Plasmon Resonance Coupled to Online In-Tube SPME,” Anal. Lett. 42(17), 2758–2773 (2009).
[Crossref]

Zhou, J. L.

Y. Zhang, J. L. Zhou, and B. Ning, “Photodegradation of estrone and 17β-estradiol in water,” Science Direct 41(1), 19–26 (2007).

Zhou, L.

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Zhu, C.

J. Liu, W. Bai, S. Niu, C. Zhu, S. Yang, and A. Chen, “Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles,” Sci. Rep. 4, 7571 (2014).
[Crossref] [PubMed]

Zhu, S.

S. Zhu, Q. Zhang, and L. H. Guo, “Part-Per-Trillion Level Detection of Estradiol by Competitive Fluorescence Immunoassay Using DNA/Dye Conjugate as Antibody Multiple Labels,” Anal. Chim. Acta 624(1), 141–146 (2008).
[Crossref] [PubMed]

ACS Nano (3)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

M. Miyashita, T. Shimada, H. Miyagawa, and M. Akamatsu, “Surface plasmon resonance-based immunoassay for 17beta-estradiol and its application to the measurement of estrogen receptor-binding activity,” Anal. Bioanal. Chem. 381(3), 667–673 (2005).
[Crossref] [PubMed]

Anal. Chem. (1)

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

Anal. Chim. Acta (2)

L. Zhao, J. M. Lin, Z. Li, and X. Ying, “Development of a highly sensitive, second antibody format chemiluminescence enzyme immunoassay for the determination of 17β-estradiol in wastewater,” Anal. Chim. Acta 558(1-2), 290–295 (2006).
[Crossref]

S. Zhu, Q. Zhang, and L. H. Guo, “Part-Per-Trillion Level Detection of Estradiol by Competitive Fluorescence Immunoassay Using DNA/Dye Conjugate as Antibody Multiple Labels,” Anal. Chim. Acta 624(1), 141–146 (2008).
[Crossref] [PubMed]

Anal. Lett. (1)

H. Ou, Z. Luo, H. Jiang, H. Zhou, X. Wang, and C. Song, “Indirect Inhibitive Immunoassay for Estradiol Using Surface Plasmon Resonance Coupled to Online In-Tube SPME,” Anal. Lett. 42(17), 2758–2773 (2009).
[Crossref]

Appl. Phys. Lett. (2)

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split Ring Resonator Sensors for Infrared Detection of Single Molecular Monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 184104 (2006).
[Crossref]

Biosens. Bioelectron. (3)

C.-K. Chen, M.-H. Chang, H.-T. Wu, Y.-C. Lee, and T.-J. Yen, “Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array,” Biosens. Bioelectron. 60, 343–350 (2014).
[Crossref] [PubMed]

Y. S. Kim, H. S. Jung, T. Matsuura, H. Y. Lee, T. Kawai, and M. B. Gu, “Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip,” Biosens. Bioelectron. 22(11), 2525–2531 (2007).
[Crossref] [PubMed]

X. Liu, X. Wang, J. Zhang, H. Feng, X. Liu, and D. K. Wong, “Detection of estradiol at an electrochemical immunosensor with a Cu UPD|DTBP-Protein G scaffold,” Biosens. Bioelectron. 35(1), 56–62 (2012).
[Crossref] [PubMed]

Brain Res. (1)

L. M. Brown, L. Gent, K. Davis, and D. J. Clegg, “Metabolic impact of sex hormones on obesity,” Brain Res. 1350, 77–85 (2010).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

J. Kundu, F. Le, P. Nordlander, and N. J. Halas, “Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates,” Chem. Phys. Lett. 452(1-3), 115–119 (2008).
[Crossref]

Chem. Res. Chin. Univ. (1)

W. W. Zhang, Y. C. Chen, Z. F. Luo, J. Y. Wang, and D. Y. Ma, “Analysis of 17 beta-estradiol from sewage in coastal marine environment by surface plasmon resonance technique,” Chem. Res. Chin. Univ. 23(4), 404–407 (2007).
[Crossref]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Chin. Phys. B (1)

W. Liang, C. Jin-Xiang, L. You, L. Lei, D. Yin-Chang, and W. Jian, “Anomalous microwave reflection from a metal surface induced by spoof surface plasmon,” Chin. Phys. B 21(1), 017301 (2012).
[Crossref]

Chromatographia (1)

K. Prokai-Tatrai, D. Bonds, and L. Prokai, “Simultaneous Measurement of 17β-Estradiol, 17α-Estradiol and Estrone by GC-Isotope Dilution MS/MS,” Chromatographia 71(3-4), 311–315 (2010).
[Crossref] [PubMed]

Clin. Chem. (1)

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic Technology: Novel Approach to Ultrasensitive Immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

Environ. Sci. Technol. (1)

N. Yildirim, F. Long, C. Gao, M. He, H.-C. Shi, and A.-Z. Gu, “Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples,” Environ. Sci. Technol. 46(6), 3288–3294 (2012).
[Crossref] [PubMed]

Environ. Sci. Technol. Lett. (1)

C. Desbrow, E. J. Routledge, G. C. Brighty, J. P. Sumpter, and M. Waldock, “Identification of Estrogenic Chemicals in STW Effluent. 1. Chemical Fractionation and in Vitro Biological Screening,” Environ. Sci. Technol. Lett. 32(11), 1549–1558 (1998).
[Crossref]

IEEE Sens. J. (1)

L. L. Spada, F. Bilotti, and L. Vegni, “Metamaterial biosensor for cancer detection,” IEEE Sens. J. 3(11), 627–630 (2011).

Int. J. Anal. Chem. (1)

Y. Yang and E. P. Lai, “Optimization of molecularly imprinted polymer method for rapid screening of 17β-estradiol in water by fluorescence quenching,” Int. J. Anal. Chem. 2011, 214747 (2011).
[Crossref] [PubMed]

J. Biochem. Biophys. Methods (1)

R. M. Pemberton, T. T. Mottram, and J. P. Hart, “Development of a screen-printed carbon electrochemical immunosensor for picomolar concentrations of estradiol in human serum extracts,” J. Biochem. Biophys. Methods 63(3), 201–212 (2005).
[Crossref] [PubMed]

J. Electrochem. Soc. (1)

R. A. Olowu, P. M. Ndangili, A. A. Baleg, C. O. Ikpo, N. Njomo, P. Baker, and E. Iwuoha, “Spectroelectrochemical Dynamics of Dendritic Poly (propylene imine)-Polythiophene Star Copolymer Aptameric 17 β-Estradiol Biosensor,” J. Electrochem. Soc. 6, 1686–1708 (2011).

J. Immunol. Methods (1)

E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Immunoassays based on directional surface plasmon-coupled emission,” J. Immunol. Methods 286(1-2), 133–140 (2004).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

E. D. Son, J. Y. Lee, S. Lee, M. S. Kim, B. G. Lee, I. S. Chang, and J. H. Chung, “Topical application of 17beta-estradiol increases extracellular matrix protein synthesis by stimulating tgf-Beta signaling in aged human skin in vivo,” J. Invest. Dermatol. 124(6), 1149–1161 (2005).
[Crossref] [PubMed]

J. Vis. Exp. (1)

R. F. Peters, L. Gutierrez-Rivera, S. K. Dew, and M. Stepanova, “Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates,” J. Vis. Exp. 97(97), 52712 (2015).
[PubMed]

Nano Lett. (4)

W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett. 11(1), 8–15 (2011).
[Crossref] [PubMed]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas,” Nano Lett. 7, 669–675 (2012).

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nano Lett. 13(7), 3218–3224 (2013).
[Crossref] [PubMed]

Nanoscale (2)

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy,” Nanoscale 5(22), 10794–10805 (2013).
[Crossref] [PubMed]

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Nat. Mater. (3)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
[Crossref] [PubMed]

Phys. Status Solidi, B Basic Res. (1)

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi, B Basic Res. 247(8), 2071–2074 (2010).
[Crossref]

Proc. SPIE (2)

I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Gold asymmetric split ring resonators (A-SRRs) for nano sensing of estradiol,” Proc. SPIE 9125, 91251O (2014).
[Crossref]

I. G. Mbomson, S. McMeekin, B. Lahiri, R. M. De La Rue, and N. P. Johnson, “Matching plasmon resonances to the C=C and C-H bonds in estradiol,” Proc. SPIE 9340, 93400G (2015).
[Crossref]

Prog. Electromag. Res. B (1)

L. La Spada, F. Bilotti, and L. Vegni, “Metamaterial-Based Sensor Design Working in Infrared Frequency Range,” Prog. Electromag. Res. B 34, 205–223 (2011).
[Crossref]

Sci. Rep. (2)

R. I. Stefan-van Staden, L. A. Gugoaşă, B. Calenic, and J. Legler, “Pattern recognition of estradiol, testosterone and dihydrotestosterone in children’s saliva samples using stochastic microsensors,” Sci. Rep. 4, 5579 (2014).
[PubMed]

J. Liu, W. Bai, S. Niu, C. Zhu, S. Yang, and A. Chen, “Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles,” Sci. Rep. 4, 7571 (2014).
[Crossref] [PubMed]

Science Direct (1)

Y. Zhang, J. L. Zhou, and B. Ning, “Photodegradation of estrone and 17β-estradiol in water,” Science Direct 41(1), 19–26 (2007).

Sensors (Basel) (2)

U. Latif, J. Qian, S. Can, and F. L. Dickert, “Biomimetic receptors for bioanalyte detection by quartz crystal microbalances - from molecules to cells,” Sensors (Basel) 14(12), 23419–23438 (2014).
[Crossref] [PubMed]

T. Chen, S. Li, and H. Sun, “Metamaterials Application in Sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
[Crossref] [PubMed]

Talanta (1)

Q. Zhang, Y. Wang, A. Mateescu, K. Sergelen, A. Kibrom, U. Jonas, T. Wei, and J. Dostalek, “Biosensor based on hydrogel optical waveguide spectroscopy for the detection of 17β-estradiol,” Talanta 104, 149–154 (2013).
[Crossref] [PubMed]

Toxicology and Environmental Health Sciences (1)

E. Kim, S. J. Lee, H.-C. Kim, S. G. Lee, T.-J. Go, C. S. Baek, and S. W. Jeong, “Selective detection of estradiol using a molecularly imprinted self-assembled monolayer on gold surface,” Toxicology and Environmental Health Sciences 1(2), 117–121 (2009).
[Crossref]

Other (3)

D.H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry (McGraw-Hill, 1973), Chap 4.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press 1985).

http://www.chemnet.com/cas/en/50-28-2/%CE%B2-estradiol.html , (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Scanning electron microscope (SEM) images of ASH structure fabricated on a fused silica substrate (b) Schematic diagram of an ASH nanoantenna with arrays of two dimensional (2D) systematic molecular structure of 17β-estradiol.
Fig. 2
Fig. 2 Reflectance spectra measurements with different concentrations of analyte. The plots are displaced vertically for clarity.
Fig. 3
Fig. 3 Reflectance spectra simulations with different thicknesses. The plots are displaced vertically for clarity.
Fig. 4
Fig. 4 (a) Lorentz model for C-H bond resonances, (b) comparison of measurement for a solution concentration of 3.7 μmol/ml with simulation for a 200 nm thickness of E2. Note the close coincidence of the wavelengths of the molecular resonances with the shorter wavelength peak of the shifted ASH reflectance.
Fig. 5
Fig. 5 (a) FTIR reflectance spectra showing ripples from H2O vapour at between 2.5 μm and 3.0 μm, C-H molecular resonance bond stretch from 3.4 μm to 3.5 μm and CO2 at 4.2 μm for the 3.7μmole/ ml deposited on arrays of ASH and fused silica substrate, also is measurement of the fused silica substrate with no E2. The plots are displaced vertically for clarity (b) reflectance spectra from modelled 200 nm thickness of E2 on a plain fused silica substrate, plain gold and ASH nanoantenna.
Fig. 6
Fig. 6 Absolute square magnitude of the E-field from simulation for the x-y axis in the presence of E2, with the dark red and dark blue colour showing the maximum and minimum value, respectively.

Tables (1)

Tables Icon

Table 1 Enhancement factor based on the ratios of changes in reflectance of the molecular resonances and number of molecules

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε ( f )= ε+  ε L   ω L 2 ω L  2 2i  δ L  ω  ω 2
EF=  Δ R 2 N 2 Δ R 1 N 1 .

Metrics