Abstract

The elasticity of red cell membrane is a critical physiological index for the activity of RBC. Study of the inherent mechanism for RBCs membrane elasticity transformation is attention-getting all along. This paper proposes an optimized measurement method of erythrocytes membrane shear modulus incorporating acousto-optic deflector (AOD) scanning optical tweezers system. By use of this method, both membrane shear moduli and sizes of RBCs with different in vitro times were determined. The experimental results reveal that the RBCs membrane elasticity and size decline with in vitro time extension. In addition, semi quantitative measurements of S-nitrosothiol content in blood using fluorescent spectrometry during in vitro storage show that RBCs membrane elasticity change is positively associated with the S-nitrosylation level of blood. The analysis considered that the diminished activity of the nitric oxide synthase makes the S-nitrosylation of in vitro blood weaker gradually. The main reason for worse elasticity of the in vitro RBCs is that S-nitrosylation effect of spectrin fades. These results will provide a guideline for further study of in vitro cells activity and other clinical applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microdeformation of RBCs under oxidative stress measured by digital holographic microscopy and optical tweezers

Jiaqi Liu, Lianqing Zhu, Fan Zhang, Mingli Dong, and Xinghua Qu
Appl. Opt. 58(15) 4042-4046 (2019)

Dynamic deformation of red blood cell in Dual-trap Optical Tweezers

Sebastien Rancourt-Grenier, Ming-Tzo Wei, Jar-Jin Bai, Arthur Chiou, Paul P. Bareil, Pierre-Luc Duval, and Yunlong Sheng
Opt. Express 18(10) 10462-10472 (2010)

Stretching of red blood cells using an electro-optics trap

Md. Mozzammel Haque, Mihaela G. Moisescu, Sándor Valkai, András Dér, and Tudor Savopol
Biomed. Opt. Express 6(1) 118-123 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. Hamasaki and M. Yamamoto, “Red blood cell function and blood storage,” Vox Sang. 79(4), 191–197 (2000).
    [Crossref] [PubMed]
  2. M Whirter, J. Liam, H Noguchi, and G Gompper, “Ordering and arrangement of deformed red blood cells in flow through microcapillaries,” New J. Phys. 14(8), 6709–6717 (2012).
  3. M. Musielak, “Red blood cell-deformability measurement: review of techniques,” Clin. Hemorheol. Microcirc. 42(1), 47–64 (2009).
    [PubMed]
  4. S. Svetina, G. Kokot, T. S. Kebe, B. Žekš, and R. E. Waugh, “A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation,” Biomech. Model. Mechanobiol. 15(3), 745–758 (2016).
    [Crossref] [PubMed]
  5. G. J. Streekstra, J. G. G. Dobbe, and A. G. Hoekstra, “Quantification of the fraction poorly deformable red blood cells using ektacytometry,” Opt. Express 18(13), 14173–14182 (2010).
    [Crossref] [PubMed]
  6. L. Dintenfass, “Internal viscosity of the red cell and a blood viscosity equation,” Nature 219(5157), 956–958 (1968).
    [Crossref] [PubMed]
  7. H. L. Reid, A. J. Barnes, P. J. Lock, J. A. Dormandy, and T. L. Dormandy, “A simple method for measuring erythrocyte deformability,” J. Clin. Pathol. 29(9), 855–858 (1976).
    [Crossref] [PubMed]
  8. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  9. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
    [Crossref] [PubMed]
  10. S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
    [Crossref] [PubMed]
  11. M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
    [Crossref] [PubMed]
  12. R. Agrawal, T. Smart, J. N. Cardoso, C. Richards, R. Bhatnagar, A. Tufail, D. Shima, P. H. Jones, and C. Pavesio, “Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique,” Sci. Rep. 6, 15873 (2016).
  13. J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77(6), 3085–3095 (1999).
    [Crossref] [PubMed]
  14. Y. Tan, D. Sun, J. Wang, and W. Huang, “Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers,” IEEE Trans. Biomed. Eng. 57(7), 1816–1825 (2010).
    [Crossref] [PubMed]
  15. Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Colloids Surf. B Biointerfaces 70(2), 169–173 (2009).
    [Crossref] [PubMed]
  16. C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
    [Crossref]
  17. M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11–12), 2259–2280 (2003).
    [Crossref]
  18. M. Dao, J. Li, and S. Suresh, “Molecularly based analysis of deformation of spectrin network and human erythrocyte,” Mater. Sci. Eng. C 26(8), 1232–1244 (2006).
    [Crossref]
  19. H. Felgner, O. Müller, and M. Schliwa, “Calibration of light forces in optical tweezers,” Appl. Opt. 34(6), 977–982 (1995).
    [Crossref] [PubMed]
  20. Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H2O2 on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
    [Crossref] [PubMed]
  21. M. Grau, S. Pauly, J. Ali, K. Walpurgis, M. Thevis, W. Bloch, and F. Suhr, “RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability,” PLoS One 8(2), e56759 (2013).
    [Crossref] [PubMed]
  22. E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998).
    [Crossref]
  23. M. M. Haque, M. G. Moisescu, S. Valkai, A. Dér, and T. Savopol, “Stretching of red blood cells using an electro-optics trap,” Biomed. Opt. Express 6(1), 118–123 (2015).
    [Crossref] [PubMed]
  24. S. Fusco, P. Memmolo, L. Miccio, F. Merola, M. Mugnano, A. Paciello, P. Ferraro, and P. A. Netti, “Nanomechanics of a fibroblast suspended using point-like anchors reveal cytoskeleton formation,” RSC Advances 6(29), 24245–24249 (2016).
    [Crossref]
  25. H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
    [Crossref] [PubMed]
  26. S. M. Block, “Optical tweezers: A new tool for biophysics,” in Noninvasive Techniques in Cell Biology, S. Grinstein, K. Foskett, ed. (Wiley, 1990).
  27. L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14(6), 1129–1134 (2014).
    [Crossref] [PubMed]
  28. C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol. 12(3), 163–176 (2011).
    [Crossref] [PubMed]
  29. A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express 16(25), 20987–21003 (2008).
    [Crossref] [PubMed]
  30. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
    [Crossref] [PubMed]
  31. K. H. Parker and C. P. Winlove, “The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell,” Biophys. J. 77(6), 3096–3107 (1999).
    [Crossref] [PubMed]
  32. M. Keshive, S. Singh, J. S. Wishnok, S. R. Tannenbaum, and W. M. Deen, “Kinetics of S-nitrosation of thiols in nitric oxide solutions,” Chem. Res. Toxicol. 9(6), 988–993 (1996).
    [Crossref] [PubMed]
  33. D. R. Arnelle and J. S. Stamler, “NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation,” Arch. Biochem. Biophys. 318(2), 279–285 (1995).
    [Crossref] [PubMed]
  34. P. S. Y. Wong, J. Hyun, J. M. Fukuto, F. N. Shirota, E. G. DeMaster, D. W. Shoeman, and H. T. Nagasawa, “Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry,” Biochemistry 37(16), 5362–5371 (1998).
    [Crossref] [PubMed]
  35. D. Giustarini, A. Milzani, I. Dalle-Donne, and R. Rossi, “Detection of S-nitrosothiols in biological fluids: a comparison among the most widely applied methodologies,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 851(1-2), 124–139 (2007).
    [Crossref] [PubMed]
  36. P. Damiani and G. Burini, “Fluorometric determination of nitrite,” Talanta 33(8), 649–652 (1986).
    [Crossref] [PubMed]
  37. Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
    [Crossref] [PubMed]
  38. M. Grau, P. Friederichs, S. Krehan, C. Koliamitra, F. Suhr, and W. Bloch, “Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage,” Clin. Hemorheol. Microcirc. 60(2), 215–229 (2015).
    [Crossref] [PubMed]

2016 (3)

S. Svetina, G. Kokot, T. S. Kebe, B. Žekš, and R. E. Waugh, “A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation,” Biomech. Model. Mechanobiol. 15(3), 745–758 (2016).
[Crossref] [PubMed]

R. Agrawal, T. Smart, J. N. Cardoso, C. Richards, R. Bhatnagar, A. Tufail, D. Shima, P. H. Jones, and C. Pavesio, “Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique,” Sci. Rep. 6, 15873 (2016).

S. Fusco, P. Memmolo, L. Miccio, F. Merola, M. Mugnano, A. Paciello, P. Ferraro, and P. A. Netti, “Nanomechanics of a fibroblast suspended using point-like anchors reveal cytoskeleton formation,” RSC Advances 6(29), 24245–24249 (2016).
[Crossref]

2015 (2)

M. M. Haque, M. G. Moisescu, S. Valkai, A. Dér, and T. Savopol, “Stretching of red blood cells using an electro-optics trap,” Biomed. Opt. Express 6(1), 118–123 (2015).
[Crossref] [PubMed]

M. Grau, P. Friederichs, S. Krehan, C. Koliamitra, F. Suhr, and W. Bloch, “Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage,” Clin. Hemorheol. Microcirc. 60(2), 215–229 (2015).
[Crossref] [PubMed]

2014 (2)

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H2O2 on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14(6), 1129–1134 (2014).
[Crossref] [PubMed]

2013 (2)

M. Grau, S. Pauly, J. Ali, K. Walpurgis, M. Thevis, W. Bloch, and F. Suhr, “RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability,” PLoS One 8(2), e56759 (2013).
[Crossref] [PubMed]

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

2012 (1)

M Whirter, J. Liam, H Noguchi, and G Gompper, “Ordering and arrangement of deformed red blood cells in flow through microcapillaries,” New J. Phys. 14(8), 6709–6717 (2012).

2011 (1)

C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol. 12(3), 163–176 (2011).
[Crossref] [PubMed]

2010 (2)

G. J. Streekstra, J. G. G. Dobbe, and A. G. Hoekstra, “Quantification of the fraction poorly deformable red blood cells using ektacytometry,” Opt. Express 18(13), 14173–14182 (2010).
[Crossref] [PubMed]

Y. Tan, D. Sun, J. Wang, and W. Huang, “Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers,” IEEE Trans. Biomed. Eng. 57(7), 1816–1825 (2010).
[Crossref] [PubMed]

2009 (2)

Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Colloids Surf. B Biointerfaces 70(2), 169–173 (2009).
[Crossref] [PubMed]

M. Musielak, “Red blood cell-deformability measurement: review of techniques,” Clin. Hemorheol. Microcirc. 42(1), 47–64 (2009).
[PubMed]

2008 (2)

2007 (1)

D. Giustarini, A. Milzani, I. Dalle-Donne, and R. Rossi, “Detection of S-nitrosothiols in biological fluids: a comparison among the most widely applied methodologies,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 851(1-2), 124–139 (2007).
[Crossref] [PubMed]

2006 (1)

M. Dao, J. Li, and S. Suresh, “Molecularly based analysis of deformation of spectrin network and human erythrocyte,” Mater. Sci. Eng. C 26(8), 1232–1244 (2006).
[Crossref]

2005 (1)

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

2004 (1)

C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
[Crossref]

2003 (2)

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11–12), 2259–2280 (2003).
[Crossref]

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

2000 (1)

N. Hamasaki and M. Yamamoto, “Red blood cell function and blood storage,” Vox Sang. 79(4), 191–197 (2000).
[Crossref] [PubMed]

1999 (3)

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77(6), 3085–3095 (1999).
[Crossref] [PubMed]

K. H. Parker and C. P. Winlove, “The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell,” Biophys. J. 77(6), 3096–3107 (1999).
[Crossref] [PubMed]

1998 (2)

P. S. Y. Wong, J. Hyun, J. M. Fukuto, F. N. Shirota, E. G. DeMaster, D. W. Shoeman, and H. T. Nagasawa, “Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry,” Biochemistry 37(16), 5362–5371 (1998).
[Crossref] [PubMed]

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998).
[Crossref]

1996 (1)

M. Keshive, S. Singh, J. S. Wishnok, S. R. Tannenbaum, and W. M. Deen, “Kinetics of S-nitrosation of thiols in nitric oxide solutions,” Chem. Res. Toxicol. 9(6), 988–993 (1996).
[Crossref] [PubMed]

1995 (2)

D. R. Arnelle and J. S. Stamler, “NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation,” Arch. Biochem. Biophys. 318(2), 279–285 (1995).
[Crossref] [PubMed]

H. Felgner, O. Müller, and M. Schliwa, “Calibration of light forces in optical tweezers,” Appl. Opt. 34(6), 977–982 (1995).
[Crossref] [PubMed]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref] [PubMed]

1986 (2)

1976 (1)

H. L. Reid, A. J. Barnes, P. J. Lock, J. A. Dormandy, and T. L. Dormandy, “A simple method for measuring erythrocyte deformability,” J. Clin. Pathol. 29(9), 855–858 (1976).
[Crossref] [PubMed]

1968 (1)

L. Dintenfass, “Internal viscosity of the red cell and a blood viscosity equation,” Nature 219(5157), 956–958 (1968).
[Crossref] [PubMed]

Agrawal, R.

R. Agrawal, T. Smart, J. N. Cardoso, C. Richards, R. Bhatnagar, A. Tufail, D. Shima, P. H. Jones, and C. Pavesio, “Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique,” Sci. Rep. 6, 15873 (2016).

Ali, J.

M. Grau, S. Pauly, J. Ali, K. Walpurgis, M. Thevis, W. Bloch, and F. Suhr, “RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability,” PLoS One 8(2), e56759 (2013).
[Crossref] [PubMed]

Arnelle, D. R.

D. R. Arnelle and J. S. Stamler, “NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation,” Arch. Biochem. Biophys. 318(2), 279–285 (1995).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

Barbosa, L. C.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Barjas-Castro, M. L.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Barnes, A. J.

H. L. Reid, A. J. Barnes, P. J. Lock, J. A. Dormandy, and T. L. Dormandy, “A simple method for measuring erythrocyte deformability,” J. Clin. Pathol. 29(9), 855–858 (1976).
[Crossref] [PubMed]

Beil, M.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

Bhatnagar, R.

R. Agrawal, T. Smart, J. N. Cardoso, C. Richards, R. Bhatnagar, A. Tufail, D. Shima, P. H. Jones, and C. Pavesio, “Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique,” Sci. Rep. 6, 15873 (2016).

Bjorkholm, J. E.

Bloch, W.

M. Grau, P. Friederichs, S. Krehan, C. Koliamitra, F. Suhr, and W. Bloch, “Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage,” Clin. Hemorheol. Microcirc. 60(2), 215–229 (2015).
[Crossref] [PubMed]

M. Grau, S. Pauly, J. Ali, K. Walpurgis, M. Thevis, W. Bloch, and F. Suhr, “RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability,” PLoS One 8(2), e56759 (2013).
[Crossref] [PubMed]

Brandão, M. M.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Burini, G.

P. Damiani and G. Burini, “Fluorometric determination of nitrite,” Talanta 33(8), 649–652 (1986).
[Crossref] [PubMed]

Cardoso, J. N.

R. Agrawal, T. Smart, J. N. Cardoso, C. Richards, R. Bhatnagar, A. Tufail, D. Shima, P. H. Jones, and C. Pavesio, “Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique,” Sci. Rep. 6, 15873 (2016).

Cesar, C. L.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Chen, C. W.

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H2O2 on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

Chen, Y. Q.

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H2O2 on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

Chew, K. T.

C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
[Crossref]

Chien, S.

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H2O2 on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

Chiou, A.

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H2O2 on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

Chu, S.

Costa, F. F.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Dalle-Donne, I.

D. Giustarini, A. Milzani, I. Dalle-Donne, and R. Rossi, “Detection of S-nitrosothiols in biological fluids: a comparison among the most widely applied methodologies,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 851(1-2), 124–139 (2007).
[Crossref] [PubMed]

Damiani, P.

P. Damiani and G. Burini, “Fluorometric determination of nitrite,” Talanta 33(8), 649–652 (1986).
[Crossref] [PubMed]

Dao, M.

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

M. Dao, J. Li, and S. Suresh, “Molecularly based analysis of deformation of spectrin network and human erythrocyte,” Mater. Sci. Eng. C 26(8), 1232–1244 (2006).
[Crossref]

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
[Crossref]

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11–12), 2259–2280 (2003).
[Crossref]

Deen, W. M.

M. Keshive, S. Singh, J. S. Wishnok, S. R. Tannenbaum, and W. M. Deen, “Kinetics of S-nitrosation of thiols in nitric oxide solutions,” Chem. Res. Toxicol. 9(6), 988–993 (1996).
[Crossref] [PubMed]

DeMaster, E. G.

P. S. Y. Wong, J. Hyun, J. M. Fukuto, F. N. Shirota, E. G. DeMaster, D. W. Shoeman, and H. T. Nagasawa, “Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry,” Biochemistry 37(16), 5362–5371 (1998).
[Crossref] [PubMed]

Dér, A.

Dintenfass, L.

L. Dintenfass, “Internal viscosity of the red cell and a blood viscosity equation,” Nature 219(5157), 956–958 (1968).
[Crossref] [PubMed]

Dobbe, J. G. G.

Dormandy, J. A.

H. L. Reid, A. J. Barnes, P. J. Lock, J. A. Dormandy, and T. L. Dormandy, “A simple method for measuring erythrocyte deformability,” J. Clin. Pathol. 29(9), 855–858 (1976).
[Crossref] [PubMed]

Dormandy, T. L.

H. L. Reid, A. J. Barnes, P. J. Lock, J. A. Dormandy, and T. L. Dormandy, “A simple method for measuring erythrocyte deformability,” J. Clin. Pathol. 29(9), 855–858 (1976).
[Crossref] [PubMed]

Dziedzic, J. M.

Embrione, V.

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14(6), 1129–1134 (2014).
[Crossref] [PubMed]

Felgner, H.

Ferraro, P.

S. Fusco, P. Memmolo, L. Miccio, F. Merola, M. Mugnano, A. Paciello, P. Ferraro, and P. A. Netti, “Nanomechanics of a fibroblast suspended using point-like anchors reveal cytoskeleton formation,” RSC Advances 6(29), 24245–24249 (2016).
[Crossref]

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14(6), 1129–1134 (2014).
[Crossref] [PubMed]

Florin, E. L.

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998).
[Crossref]

Fontes, A.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Forde, N. R.

Friederichs, P.

M. Grau, P. Friederichs, S. Krehan, C. Koliamitra, F. Suhr, and W. Bloch, “Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage,” Clin. Hemorheol. Microcirc. 60(2), 215–229 (2015).
[Crossref] [PubMed]

Fukuto, J. M.

P. S. Y. Wong, J. Hyun, J. M. Fukuto, F. N. Shirota, E. G. DeMaster, D. W. Shoeman, and H. T. Nagasawa, “Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry,” Biochemistry 37(16), 5362–5371 (1998).
[Crossref] [PubMed]

Fusco, S.

S. Fusco, P. Memmolo, L. Miccio, F. Merola, M. Mugnano, A. Paciello, P. Ferraro, and P. A. Netti, “Nanomechanics of a fibroblast suspended using point-like anchors reveal cytoskeleton formation,” RSC Advances 6(29), 24245–24249 (2016).
[Crossref]

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14(6), 1129–1134 (2014).
[Crossref] [PubMed]

Gallet, F.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Giustarini, D.

D. Giustarini, A. Milzani, I. Dalle-Donne, and R. Rossi, “Detection of S-nitrosothiols in biological fluids: a comparison among the most widely applied methodologies,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 851(1-2), 124–139 (2007).
[Crossref] [PubMed]

Gompper, G

M Whirter, J. Liam, H Noguchi, and G Gompper, “Ordering and arrangement of deformed red blood cells in flow through microcapillaries,” New J. Phys. 14(8), 6709–6717 (2012).

Gratzer, W.

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77(6), 3085–3095 (1999).
[Crossref] [PubMed]

Grau, M.

M. Grau, P. Friederichs, S. Krehan, C. Koliamitra, F. Suhr, and W. Bloch, “Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage,” Clin. Hemorheol. Microcirc. 60(2), 215–229 (2015).
[Crossref] [PubMed]

M. Grau, S. Pauly, J. Ali, K. Walpurgis, M. Thevis, W. Bloch, and F. Suhr, “RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability,” PLoS One 8(2), e56759 (2013).
[Crossref] [PubMed]

Hamasaki, N.

N. Hamasaki and M. Yamamoto, “Red blood cell function and blood storage,” Vox Sang. 79(4), 191–197 (2000).
[Crossref] [PubMed]

Haque, M. M.

Hénon, S.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Hoekstra, A. G.

Hörber, J. K. H.

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998).
[Crossref]

Huang, W.

Y. Tan, D. Sun, J. Wang, and W. Huang, “Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers,” IEEE Trans. Biomed. Eng. 57(7), 1816–1825 (2010).
[Crossref] [PubMed]

Huang, Y. S.

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H2O2 on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

Hyun, J.

P. S. Y. Wong, J. Hyun, J. M. Fukuto, F. N. Shirota, E. G. DeMaster, D. W. Shoeman, and H. T. Nagasawa, “Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry,” Biochemistry 37(16), 5362–5371 (1998).
[Crossref] [PubMed]

Jones, P. H.

R. Agrawal, T. Smart, J. N. Cardoso, C. Richards, R. Bhatnagar, A. Tufail, D. Shima, P. H. Jones, and C. Pavesio, “Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique,” Sci. Rep. 6, 15873 (2016).

Karniadakis, G. E.

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

Kebe, T. S.

S. Svetina, G. Kokot, T. S. Kebe, B. Žekš, and R. E. Waugh, “A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation,” Biomech. Model. Mechanobiol. 15(3), 745–758 (2016).
[Crossref] [PubMed]

Keshive, M.

M. Keshive, S. Singh, J. S. Wishnok, S. R. Tannenbaum, and W. M. Deen, “Kinetics of S-nitrosation of thiols in nitric oxide solutions,” Chem. Res. Toxicol. 9(6), 988–993 (1996).
[Crossref] [PubMed]

Kokot, G.

S. Svetina, G. Kokot, T. S. Kebe, B. Žekš, and R. E. Waugh, “A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation,” Biomech. Model. Mechanobiol. 15(3), 745–758 (2016).
[Crossref] [PubMed]

Koliamitra, C.

M. Grau, P. Friederichs, S. Krehan, C. Koliamitra, F. Suhr, and W. Bloch, “Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage,” Clin. Hemorheol. Microcirc. 60(2), 215–229 (2015).
[Crossref] [PubMed]

Krehan, S.

M. Grau, P. Friederichs, S. Krehan, C. Koliamitra, F. Suhr, and W. Bloch, “Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage,” Clin. Hemorheol. Microcirc. 60(2), 215–229 (2015).
[Crossref] [PubMed]

Lenormand, G.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Li, J.

M. Dao, J. Li, and S. Suresh, “Molecularly based analysis of deformation of spectrin network and human erythrocyte,” Mater. Sci. Eng. C 26(8), 1232–1244 (2006).
[Crossref]

Li, X.

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

Li, Y.

Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Colloids Surf. B Biointerfaces 70(2), 169–173 (2009).
[Crossref] [PubMed]

Liam, J.

M Whirter, J. Liam, H Noguchi, and G Gompper, “Ordering and arrangement of deformed red blood cells in flow through microcapillaries,” New J. Phys. 14(8), 6709–6717 (2012).

Lim, C. T.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
[Crossref]

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11–12), 2259–2280 (2003).
[Crossref]

Lin, O.

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H2O2 on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

Liu, K. K.

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

Lock, P. J.

H. L. Reid, A. J. Barnes, P. J. Lock, J. A. Dormandy, and T. L. Dormandy, “A simple method for measuring erythrocyte deformability,” J. Clin. Pathol. 29(9), 855–858 (1976).
[Crossref] [PubMed]

Memmolo, P.

S. Fusco, P. Memmolo, L. Miccio, F. Merola, M. Mugnano, A. Paciello, P. Ferraro, and P. A. Netti, “Nanomechanics of a fibroblast suspended using point-like anchors reveal cytoskeleton formation,” RSC Advances 6(29), 24245–24249 (2016).
[Crossref]

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14(6), 1129–1134 (2014).
[Crossref] [PubMed]

Merola, F.

S. Fusco, P. Memmolo, L. Miccio, F. Merola, M. Mugnano, A. Paciello, P. Ferraro, and P. A. Netti, “Nanomechanics of a fibroblast suspended using point-like anchors reveal cytoskeleton formation,” RSC Advances 6(29), 24245–24249 (2016).
[Crossref]

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14(6), 1129–1134 (2014).
[Crossref] [PubMed]

Miccio, L.

S. Fusco, P. Memmolo, L. Miccio, F. Merola, M. Mugnano, A. Paciello, P. Ferraro, and P. A. Netti, “Nanomechanics of a fibroblast suspended using point-like anchors reveal cytoskeleton formation,” RSC Advances 6(29), 24245–24249 (2016).
[Crossref]

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14(6), 1129–1134 (2014).
[Crossref] [PubMed]

Micoulet, A.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

Mills, J. P.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

Milzani, A.

D. Giustarini, A. Milzani, I. Dalle-Donne, and R. Rossi, “Detection of S-nitrosothiols in biological fluids: a comparison among the most widely applied methodologies,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 851(1-2), 124–139 (2007).
[Crossref] [PubMed]

Moisescu, M. G.

Mugnano, M.

S. Fusco, P. Memmolo, L. Miccio, F. Merola, M. Mugnano, A. Paciello, P. Ferraro, and P. A. Netti, “Nanomechanics of a fibroblast suspended using point-like anchors reveal cytoskeleton formation,” RSC Advances 6(29), 24245–24249 (2016).
[Crossref]

Müller, O.

Musielak, M.

M. Musielak, “Red blood cell-deformability measurement: review of techniques,” Clin. Hemorheol. Microcirc. 42(1), 47–64 (2009).
[PubMed]

Nagasawa, H. T.

P. S. Y. Wong, J. Hyun, J. M. Fukuto, F. N. Shirota, E. G. DeMaster, D. W. Shoeman, and H. T. Nagasawa, “Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry,” Biochemistry 37(16), 5362–5371 (1998).
[Crossref] [PubMed]

Netti, P. A.

S. Fusco, P. Memmolo, L. Miccio, F. Merola, M. Mugnano, A. Paciello, P. Ferraro, and P. A. Netti, “Nanomechanics of a fibroblast suspended using point-like anchors reveal cytoskeleton formation,” RSC Advances 6(29), 24245–24249 (2016).
[Crossref]

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14(6), 1129–1134 (2014).
[Crossref] [PubMed]

Ni, Y. L.

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H2O2 on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

Noguchi, H

M Whirter, J. Liam, H Noguchi, and G Gompper, “Ordering and arrangement of deformed red blood cells in flow through microcapillaries,” New J. Phys. 14(8), 6709–6717 (2012).

Paciello, A.

S. Fusco, P. Memmolo, L. Miccio, F. Merola, M. Mugnano, A. Paciello, P. Ferraro, and P. A. Netti, “Nanomechanics of a fibroblast suspended using point-like anchors reveal cytoskeleton formation,” RSC Advances 6(29), 24245–24249 (2016).
[Crossref]

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14(6), 1129–1134 (2014).
[Crossref] [PubMed]

Parker, K. H.

K. H. Parker and C. P. Winlove, “The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell,” Biophys. J. 77(6), 3096–3107 (1999).
[Crossref] [PubMed]

Pauly, S.

M. Grau, S. Pauly, J. Ali, K. Walpurgis, M. Thevis, W. Bloch, and F. Suhr, “RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability,” PLoS One 8(2), e56759 (2013).
[Crossref] [PubMed]

Pavesio, C.

R. Agrawal, T. Smart, J. N. Cardoso, C. Richards, R. Bhatnagar, A. Tufail, D. Shima, P. H. Jones, and C. Pavesio, “Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique,” Sci. Rep. 6, 15873 (2016).

Peng, Z.

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

Pivkin, I. V.

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

Pralle, A.

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998).
[Crossref]

Reid, H. L.

H. L. Reid, A. J. Barnes, P. J. Lock, J. A. Dormandy, and T. L. Dormandy, “A simple method for measuring erythrocyte deformability,” J. Clin. Pathol. 29(9), 855–858 (1976).
[Crossref] [PubMed]

Richards, C.

R. Agrawal, T. Smart, J. N. Cardoso, C. Richards, R. Bhatnagar, A. Tufail, D. Shima, P. H. Jones, and C. Pavesio, “Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique,” Sci. Rep. 6, 15873 (2016).

Richert, A.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Rossi, R.

D. Giustarini, A. Milzani, I. Dalle-Donne, and R. Rossi, “Detection of S-nitrosothiols in biological fluids: a comparison among the most widely applied methodologies,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 851(1-2), 124–139 (2007).
[Crossref] [PubMed]

Saad, S. T.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Savopol, T.

Schliwa, M.

Schmidt, C. F.

C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol. 12(3), 163–176 (2011).
[Crossref] [PubMed]

Seufferlein, T.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

Shima, D.

R. Agrawal, T. Smart, J. N. Cardoso, C. Richards, R. Bhatnagar, A. Tufail, D. Shima, P. H. Jones, and C. Pavesio, “Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique,” Sci. Rep. 6, 15873 (2016).

Shirota, F. N.

P. S. Y. Wong, J. Hyun, J. M. Fukuto, F. N. Shirota, E. G. DeMaster, D. W. Shoeman, and H. T. Nagasawa, “Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry,” Biochemistry 37(16), 5362–5371 (1998).
[Crossref] [PubMed]

Shoeman, D. W.

P. S. Y. Wong, J. Hyun, J. M. Fukuto, F. N. Shirota, E. G. DeMaster, D. W. Shoeman, and H. T. Nagasawa, “Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry,” Biochemistry 37(16), 5362–5371 (1998).
[Crossref] [PubMed]

Simmons, R.

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77(6), 3085–3095 (1999).
[Crossref] [PubMed]

Singh, S.

M. Keshive, S. Singh, J. S. Wishnok, S. R. Tannenbaum, and W. M. Deen, “Kinetics of S-nitrosation of thiols in nitric oxide solutions,” Chem. Res. Toxicol. 9(6), 988–993 (1996).
[Crossref] [PubMed]

Sleep, J.

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77(6), 3085–3095 (1999).
[Crossref] [PubMed]

Smart, T.

R. Agrawal, T. Smart, J. N. Cardoso, C. Richards, R. Bhatnagar, A. Tufail, D. Shima, P. H. Jones, and C. Pavesio, “Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique,” Sci. Rep. 6, 15873 (2016).

Sow, C. H.

C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
[Crossref]

Spatz, J.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

Stamler, J. S.

D. R. Arnelle and J. S. Stamler, “NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation,” Arch. Biochem. Biophys. 318(2), 279–285 (1995).
[Crossref] [PubMed]

Stelzer, E. H. K.

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998).
[Crossref]

Streekstra, G. J.

Suhr, F.

M. Grau, P. Friederichs, S. Krehan, C. Koliamitra, F. Suhr, and W. Bloch, “Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage,” Clin. Hemorheol. Microcirc. 60(2), 215–229 (2015).
[Crossref] [PubMed]

M. Grau, S. Pauly, J. Ali, K. Walpurgis, M. Thevis, W. Bloch, and F. Suhr, “RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability,” PLoS One 8(2), e56759 (2013).
[Crossref] [PubMed]

Sun, D.

Y. Tan, D. Sun, J. Wang, and W. Huang, “Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers,” IEEE Trans. Biomed. Eng. 57(7), 1816–1825 (2010).
[Crossref] [PubMed]

Sung, L. A.

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H2O2 on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

Suresh, S.

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

M. Dao, J. Li, and S. Suresh, “Molecularly based analysis of deformation of spectrin network and human erythrocyte,” Mater. Sci. Eng. C 26(8), 1232–1244 (2006).
[Crossref]

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
[Crossref]

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11–12), 2259–2280 (2003).
[Crossref]

Svetina, S.

S. Svetina, G. Kokot, T. S. Kebe, B. Žekš, and R. E. Waugh, “A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation,” Biomech. Model. Mechanobiol. 15(3), 745–758 (2016).
[Crossref] [PubMed]

Tan, Y.

Y. Tan, D. Sun, J. Wang, and W. Huang, “Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers,” IEEE Trans. Biomed. Eng. 57(7), 1816–1825 (2010).
[Crossref] [PubMed]

Tannenbaum, S. R.

M. Keshive, S. Singh, J. S. Wishnok, S. R. Tannenbaum, and W. M. Deen, “Kinetics of S-nitrosation of thiols in nitric oxide solutions,” Chem. Res. Toxicol. 9(6), 988–993 (1996).
[Crossref] [PubMed]

Thevis, M.

M. Grau, S. Pauly, J. Ali, K. Walpurgis, M. Thevis, W. Bloch, and F. Suhr, “RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability,” PLoS One 8(2), e56759 (2013).
[Crossref] [PubMed]

Tufail, A.

R. Agrawal, T. Smart, J. N. Cardoso, C. Richards, R. Bhatnagar, A. Tufail, D. Shima, P. H. Jones, and C. Pavesio, “Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique,” Sci. Rep. 6, 15873 (2016).

Valkai, S.

van der Horst, A.

Veigel, C.

C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol. 12(3), 163–176 (2011).
[Crossref] [PubMed]

Ventre, M.

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14(6), 1129–1134 (2014).
[Crossref] [PubMed]

Walpurgis, K.

M. Grau, S. Pauly, J. Ali, K. Walpurgis, M. Thevis, W. Bloch, and F. Suhr, “RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability,” PLoS One 8(2), e56759 (2013).
[Crossref] [PubMed]

Wang, J.

Y. Tan, D. Sun, J. Wang, and W. Huang, “Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers,” IEEE Trans. Biomed. Eng. 57(7), 1816–1825 (2010).
[Crossref] [PubMed]

Waugh, R. E.

S. Svetina, G. Kokot, T. S. Kebe, B. Žekš, and R. E. Waugh, “A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation,” Biomech. Model. Mechanobiol. 15(3), 745–758 (2016).
[Crossref] [PubMed]

Wen, C.

Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Colloids Surf. B Biointerfaces 70(2), 169–173 (2009).
[Crossref] [PubMed]

Whirter, M

M Whirter, J. Liam, H Noguchi, and G Gompper, “Ordering and arrangement of deformed red blood cells in flow through microcapillaries,” New J. Phys. 14(8), 6709–6717 (2012).

Wilson, D.

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77(6), 3085–3095 (1999).
[Crossref] [PubMed]

Winlove, C. P.

K. H. Parker and C. P. Winlove, “The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell,” Biophys. J. 77(6), 3096–3107 (1999).
[Crossref] [PubMed]

Wishnok, J. S.

M. Keshive, S. Singh, J. S. Wishnok, S. R. Tannenbaum, and W. M. Deen, “Kinetics of S-nitrosation of thiols in nitric oxide solutions,” Chem. Res. Toxicol. 9(6), 988–993 (1996).
[Crossref] [PubMed]

Wong, P. S. Y.

P. S. Y. Wong, J. Hyun, J. M. Fukuto, F. N. Shirota, E. G. DeMaster, D. W. Shoeman, and H. T. Nagasawa, “Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry,” Biochemistry 37(16), 5362–5371 (1998).
[Crossref] [PubMed]

Xie, H.

Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Colloids Surf. B Biointerfaces 70(2), 169–173 (2009).
[Crossref] [PubMed]

Yamamoto, M.

N. Hamasaki and M. Yamamoto, “Red blood cell function and blood storage,” Vox Sang. 79(4), 191–197 (2000).
[Crossref] [PubMed]

Ye, A.

Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Colloids Surf. B Biointerfaces 70(2), 169–173 (2009).
[Crossref] [PubMed]

Yin, Y.

Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Colloids Surf. B Biointerfaces 70(2), 169–173 (2009).
[Crossref] [PubMed]

Žekš, B.

S. Svetina, G. Kokot, T. S. Kebe, B. Žekš, and R. E. Waugh, “A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation,” Biomech. Model. Mechanobiol. 15(3), 745–758 (2016).
[Crossref] [PubMed]

Zhang, H.

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

Acta Biomater. (1)

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

Acta Mater. (1)

C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Mater. 52(7), 1837–1845 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998).
[Crossref]

Arch. Biochem. Biophys. (1)

D. R. Arnelle and J. S. Stamler, “NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation,” Arch. Biochem. Biophys. 318(2), 279–285 (1995).
[Crossref] [PubMed]

Biochemistry (1)

P. S. Y. Wong, J. Hyun, J. M. Fukuto, F. N. Shirota, E. G. DeMaster, D. W. Shoeman, and H. T. Nagasawa, “Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry,” Biochemistry 37(16), 5362–5371 (1998).
[Crossref] [PubMed]

Biomech. Model. Mechanobiol. (1)

S. Svetina, G. Kokot, T. S. Kebe, B. Žekš, and R. E. Waugh, “A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation,” Biomech. Model. Mechanobiol. 15(3), 745–758 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (4)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref] [PubMed]

K. H. Parker and C. P. Winlove, “The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell,” Biophys. J. 77(6), 3096–3107 (1999).
[Crossref] [PubMed]

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77(6), 3085–3095 (1999).
[Crossref] [PubMed]

Chem. Res. Toxicol. (1)

M. Keshive, S. Singh, J. S. Wishnok, S. R. Tannenbaum, and W. M. Deen, “Kinetics of S-nitrosation of thiols in nitric oxide solutions,” Chem. Res. Toxicol. 9(6), 988–993 (1996).
[Crossref] [PubMed]

Clin. Hemorheol. Microcirc. (2)

M. Grau, P. Friederichs, S. Krehan, C. Koliamitra, F. Suhr, and W. Bloch, “Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage,” Clin. Hemorheol. Microcirc. 60(2), 215–229 (2015).
[Crossref] [PubMed]

M. Musielak, “Red blood cell-deformability measurement: review of techniques,” Clin. Hemorheol. Microcirc. 42(1), 47–64 (2009).
[PubMed]

Colloids Surf. B Biointerfaces (1)

Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Colloids Surf. B Biointerfaces 70(2), 169–173 (2009).
[Crossref] [PubMed]

Eur. J. Haematol. (1)

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

Y. Tan, D. Sun, J. Wang, and W. Huang, “Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers,” IEEE Trans. Biomed. Eng. 57(7), 1816–1825 (2010).
[Crossref] [PubMed]

J. Biophotonics (1)

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H2O2 on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. (1)

D. Giustarini, A. Milzani, I. Dalle-Donne, and R. Rossi, “Detection of S-nitrosothiols in biological fluids: a comparison among the most widely applied methodologies,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 851(1-2), 124–139 (2007).
[Crossref] [PubMed]

J. Clin. Pathol. (1)

H. L. Reid, A. J. Barnes, P. J. Lock, J. A. Dormandy, and T. L. Dormandy, “A simple method for measuring erythrocyte deformability,” J. Clin. Pathol. 29(9), 855–858 (1976).
[Crossref] [PubMed]

J. Mech. Phys. Solids (1)

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11–12), 2259–2280 (2003).
[Crossref]

J. R. Soc. Interface (1)

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

Lab Chip (1)

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14(6), 1129–1134 (2014).
[Crossref] [PubMed]

Mater. Sci. Eng. C (1)

M. Dao, J. Li, and S. Suresh, “Molecularly based analysis of deformation of spectrin network and human erythrocyte,” Mater. Sci. Eng. C 26(8), 1232–1244 (2006).
[Crossref]

Nat. Rev. Mol. Cell Biol. (1)

C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol. 12(3), 163–176 (2011).
[Crossref] [PubMed]

Nature (1)

L. Dintenfass, “Internal viscosity of the red cell and a blood viscosity equation,” Nature 219(5157), 956–958 (1968).
[Crossref] [PubMed]

New J. Phys. (1)

M Whirter, J. Liam, H Noguchi, and G Gompper, “Ordering and arrangement of deformed red blood cells in flow through microcapillaries,” New J. Phys. 14(8), 6709–6717 (2012).

Opt. Express (2)

Opt. Lett. (1)

PLoS One (1)

M. Grau, S. Pauly, J. Ali, K. Walpurgis, M. Thevis, W. Bloch, and F. Suhr, “RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability,” PLoS One 8(2), e56759 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

RSC Advances (1)

S. Fusco, P. Memmolo, L. Miccio, F. Merola, M. Mugnano, A. Paciello, P. Ferraro, and P. A. Netti, “Nanomechanics of a fibroblast suspended using point-like anchors reveal cytoskeleton formation,” RSC Advances 6(29), 24245–24249 (2016).
[Crossref]

Sci. Rep. (1)

R. Agrawal, T. Smart, J. N. Cardoso, C. Richards, R. Bhatnagar, A. Tufail, D. Shima, P. H. Jones, and C. Pavesio, “Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique,” Sci. Rep. 6, 15873 (2016).

Talanta (1)

P. Damiani and G. Burini, “Fluorometric determination of nitrite,” Talanta 33(8), 649–652 (1986).
[Crossref] [PubMed]

Vox Sang. (1)

N. Hamasaki and M. Yamamoto, “Red blood cell function and blood storage,” Vox Sang. 79(4), 191–197 (2000).
[Crossref] [PubMed]

Other (1)

S. M. Block, “Optical tweezers: A new tool for biophysics,” in Noninvasive Techniques in Cell Biology, S. Grinstein, K. Foskett, ed. (Wiley, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The schematic diagram of AOD scanning optical tweezers system. A continuous wave laser beam emitted by Nd:YAG laser pass through the AOD controlled by computer to achieve beam shifting. Then the beam is expanded by beam expander before it is transmitted into the microscope. The expanded beam is coupled into the optical pathway of the microscope by a Dichroic Mirror after which it is tightly focused into the sample chamber using a water immersion objective lens with Numerical Aperture (NA) of 1.0. The experimental images are captured by CMOS camera.
Fig. 2
Fig. 2 Schematic drawings for RBC stretched by laser tweezers. (a) Before stretching; (b) After stretching. The continuous stretching video of RBC will be recorded. The real-time pull force can be calculated according to the shift between the center of the micro bead and the optical trap.
Fig. 3
Fig. 3 Optical stiffness Measurement with thermal noise analysis. (a) Brownian motion trajectory of trapped micro bead at laser power P = 200 mW; (b) the probability of the position distribution of the micro bead at laser power P = 200 mW; (c) fitting of optical trap potential at laser power P = 200 mW; (d) calibration curve of the trapping stiffness at different laser power.
Fig. 4
Fig. 4 The stretching of RBC (in vitro time: 2 days) under different forces: (a) 0 pN; (b) 2.5 pN; (3) 5 pN.
Fig. 5
Fig. 5 Extension ratio-Force relation curves of RBCs and fitting lines (in vitro time: 2 days).
Fig. 6
Fig. 6 Extension ratio-Force relationship diagrams of RBCs with different in vitro days. (a) 6 days, (b) 10 days, (c) 14 days and (d) 18 days.
Fig. 7
Fig. 7 Variation tendency of the membrane shear moduli and the RBCs size.
Fig. 8
Fig. 8 (a) the fluorescence spectrum of DAT that source from the reaction of DAN and RSNOs in different in vitro stored blood; (b) the change curve of DAT fluorescence peak intensity at 408 nm during storage.
Fig. 9
Fig. 9 The composition of RBC membrane.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

F= k x Δx,
E(x)= 1 2 k x Δ x 2 .
p(x)=c e E(x) k B T ,
H= 1 125 k 3 dB ,
NO+ O 2 N 2 O 3 ,
N 2 O 3 +RSHRSNO+N O 2 + H + ,
NO+ O 2 NOx,
NOx+DANDAT.

Metrics