Abstract

We report on the development of a low-cost hand-held low-coherence interferometric imaging system based on the principle of linear optical coherence tomography (Linear OCT), a technique which was first proposed in the early 2000s as a simpler alternative to the conventional time-domain and Fourier-domain OCT. A bench-top implementation of the proposed technique is first presented and validated. The axial resolution, SNR, and sensitivity roll-of of the system was estimated to be 5.2 μm and 80 dB, and 3.7 dB over a depth of 0.15 mm, respectively. After validating the bench-top system, two hand-held probe implementations for contact-based imaging and in vivo human tympanic membrane imaging are presented. The performance of the proposed system was compared with a research-grade state-of-the-art Fourier-domain low coherence interferometry (LCI) system by imaging several biological and non-biological samples. The results of this study suggest that the proposed system might be a suitable choice for applications where imaging depth and SNR can be traded for lower cost and simpler optical design.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention

Yong Huang, Xuan Liu, Cheol Song, and Jin U. Kang
Biomed. Opt. Express 3(12) 3105-3118 (2012)

Development of a clinical prototype of a miniature hand-held optical coherence tomography probe for prematurity and pediatric ophthalmic imaging

Shaozhen Song, Kanheng Zhou, Jing Jiang Xu, Qinqin Zhang, Shuyuan Lyu, and Ruikang Wang
Biomed. Opt. Express 10(5) 2383-2398 (2019)

Deep imaging of absorption and scattering features by multispectral multiple scattering low coherence interferometry

Yang Zhao, Jason R. Maher, Mohamed M. Ibrahim, Jennifer S. Chien, Howard Levinson, and Adam Wax
Biomed. Opt. Express 7(10) 3916-3926 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008).
    [Crossref]
  2. E. A. Swanson, D. Huang, C. P. Lin, C. A. Puliafito, M. R. Hee, and J. G. Fujimoto, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992).
    [Crossref] [PubMed]
  3. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1), 43–48 (1995).
    [Crossref]
  4. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  5. W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
    [Crossref]
  6. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, Vijaysekhar, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
    [Crossref] [PubMed]
  7. Y. Huang, G. J. Furtmüller, D. Tong, S. Zhu, W. P. AndrewLee, G. Brandacher, and J. U Kang, “MEMS-Based Handheld Fourier Domain Doppler Optical Coherence Tomography for Intraoperative Microvascular Anastomosis Imaging,” PloS one 9(12), e114215 (2014).
    [Crossref] [PubMed]
  8. A. Cogliati, C. Canavesi, A. Hayes, P. Tankam, V-F. Duma, A. Santhanam, K. P Thompson, and J. P Rolland, “MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy,” Opt. Express 24(12), 3365–13374 (2016).
    [Crossref]
  9. R. Dsouza, H. Subhash, K. Neuhaus, J. Hogan, C. Wilson, and M. Leahy, “Dermascope guided multiple reference optical coherence tomography,” Biomed. Opt. Express 5(9), 2870–2882 (2014).
    [Crossref] [PubMed]
  10. C. Hauger, M. Wörz, and T. Hellmuth, “Interferometer for optical coherence tomography,” Appl. Opt. 42(19), 3896–3902 (2003).
    [Crossref] [PubMed]
  11. P. Koch, G. Hüttmann, H. Schleiermacher, J. Eichholz, and E. Koch, “Linear optical coherence tomography system with a downconverted fringe pattern,” Opt. Lett. 29(14), 1644–1646 (2004).
    [Crossref] [PubMed]
  12. P. Koch, V. Hellemanns, and G. Hüttmann, “Linear optical coherence tomography system with extended measurement range,” Opt. Lett. 31(19), 2882–2884 (2006).
    [Crossref] [PubMed]
  13. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]
  14. P. Pande, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “A mosaicking approach for in vivo thickness mapping of the human tympanic membrane using low coherence interferometry,” J. Assoc. Res. Otolaryngol. 17(5), 403–416 (2016).
    [Crossref] [PubMed]
  15. C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
    [Crossref] [PubMed]
  16. G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” The Laryngoscope 125(8), E276–E282 (2015).
    [Crossref] [PubMed]
  17. S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
    [Crossref] [PubMed]
  18. K. Uebo, A. Kodama, Y. Oka, and T. Ishii, “Thickness of normal human tympanic membrane,” Ear Research Japan 19(1), 70–73 (1988).
  19. C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane: a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
    [Crossref] [PubMed]
  20. L. C. Kuypers, W. F. Decraemer, and J. J. Dirckx, “Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy,” Otology & Neurotology 27(2), 256–264 (2006).
    [Crossref]
  21. G. Hüttmann, P. Koch, and R. Birngruber, “Linear OCT,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008).
    [Crossref]
  22. R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
    [Crossref]
  23. J. Ren, J. Wu, E. J. McDowell, and C. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett. 34(21), 3400–3402 (2009).
    [Crossref] [PubMed]
  24. B. Y. Yeo, R. A. McLaughlin, R. W. Kirk, and D. D. Sampson, “Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system,” Biomed. Opt. Express 3(7), 1565–1578 (2012).
    [Crossref] [PubMed]
  25. N. Iftimia, G. Maguluri, E. W. Chang, S. Chang, J. Magill, and W. Brugge, “Hand scanning optical coherence tomography imaging using encoder feedback,” Opt. Lett. 39(24), 6807–6810 (2014).
    [Crossref] [PubMed]
  26. P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-based technique for manually scanned hand-held optical coherence tomography imaging,” J. Sensors 501, 8154809 (2016).
  27. A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express 17(10), 8125–8136 (2009).
    [Crossref] [PubMed]
  28. X. Liu, Y. Huang, and J. U. Kang, “Distortion-free freehand-scanning OCT implemented with real-time scanning speed variance correction,” Opt. Express 20(15), 16567–16583 (2012).
    [Crossref]
  29. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
    [Crossref]
  30. C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. of Pharm. Sci. 103(1), 161–166 (2014).
    [Crossref]

2016 (3)

A. Cogliati, C. Canavesi, A. Hayes, P. Tankam, V-F. Duma, A. Santhanam, K. P Thompson, and J. P Rolland, “MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy,” Opt. Express 24(12), 3365–13374 (2016).
[Crossref]

P. Pande, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “A mosaicking approach for in vivo thickness mapping of the human tympanic membrane using low coherence interferometry,” J. Assoc. Res. Otolaryngol. 17(5), 403–416 (2016).
[Crossref] [PubMed]

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-based technique for manually scanned hand-held optical coherence tomography imaging,” J. Sensors 501, 8154809 (2016).

2015 (1)

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” The Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

2014 (6)

R. Dsouza, H. Subhash, K. Neuhaus, J. Hogan, C. Wilson, and M. Leahy, “Dermascope guided multiple reference optical coherence tomography,” Biomed. Opt. Express 5(9), 2870–2882 (2014).
[Crossref] [PubMed]

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, Vijaysekhar, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
[Crossref] [PubMed]

Y. Huang, G. J. Furtmüller, D. Tong, S. Zhu, W. P. AndrewLee, G. Brandacher, and J. U Kang, “MEMS-Based Handheld Fourier Domain Doppler Optical Coherence Tomography for Intraoperative Microvascular Anastomosis Imaging,” PloS one 9(12), e114215 (2014).
[Crossref] [PubMed]

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
[Crossref]

N. Iftimia, G. Maguluri, E. W. Chang, S. Chang, J. Magill, and W. Brugge, “Hand scanning optical coherence tomography imaging using encoder feedback,” Opt. Lett. 39(24), 6807–6810 (2014).
[Crossref] [PubMed]

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. of Pharm. Sci. 103(1), 161–166 (2014).
[Crossref]

2013 (1)

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (1)

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref]

2009 (2)

2007 (1)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

2006 (2)

L. C. Kuypers, W. F. Decraemer, and J. J. Dirckx, “Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy,” Otology & Neurotology 27(2), 256–264 (2006).
[Crossref]

P. Koch, V. Hellemanns, and G. Hüttmann, “Linear optical coherence tomography system with extended measurement range,” Opt. Lett. 31(19), 2882–2884 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (2)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1), 43–48 (1995).
[Crossref]

1992 (1)

1991 (1)

C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane: a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
[Crossref] [PubMed]

1988 (1)

K. Uebo, A. Kodama, Y. Oka, and T. Ishii, “Thickness of normal human tympanic membrane,” Ear Research Japan 19(1), 70–73 (1988).

1982 (1)

Adie, S. G.

Aerts, J. R.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

Ahmad, A.

AndrewLee, W. P.

Y. Huang, G. J. Furtmüller, D. Tong, S. Zhu, W. P. AndrewLee, G. Brandacher, and J. U Kang, “MEMS-Based Handheld Fourier Domain Doppler Optical Coherence Tomography for Intraoperative Microvascular Anastomosis Imaging,” PloS one 9(12), e114215 (2014).
[Crossref] [PubMed]

Birngruber, R.

G. Hüttmann, P. Koch, and R. Birngruber, “Linear OCT,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008).
[Crossref]

Boppart, S. A.

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-based technique for manually scanned hand-held optical coherence tomography imaging,” J. Sensors 501, 8154809 (2016).

P. Pande, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “A mosaicking approach for in vivo thickness mapping of the human tympanic membrane using low coherence interferometry,” J. Assoc. Res. Otolaryngol. 17(5), 403–416 (2016).
[Crossref] [PubMed]

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” The Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
[Crossref]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref]

A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express 17(10), 8125–8136 (2009).
[Crossref] [PubMed]

Bradu, A.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

Brandacher, G.

Y. Huang, G. J. Furtmüller, D. Tong, S. Zhu, W. P. AndrewLee, G. Brandacher, and J. U Kang, “MEMS-Based Handheld Fourier Domain Doppler Optical Coherence Tomography for Intraoperative Microvascular Anastomosis Imaging,” PloS one 9(12), e114215 (2014).
[Crossref] [PubMed]

Brugge, W.

Buytaert, J. A.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

Cable, A. E.

Canavesi, C.

Chaney, E. J.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref]

A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express 17(10), 8125–8136 (2009).
[Crossref] [PubMed]

Chang, E. W.

Chang, S.

Choi, W.

Choma, M. A.

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008).
[Crossref]

Cogliati, A.

Decraemer, W. F.

L. C. Kuypers, W. F. Decraemer, and J. J. Dirckx, “Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy,” Otology & Neurotology 27(2), 256–264 (2006).
[Crossref]

Dirckx, J. J.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

L. C. Kuypers, W. F. Decraemer, and J. J. Dirckx, “Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy,” Otology & Neurotology 27(2), 256–264 (2006).
[Crossref]

Dong, Y.

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. of Pharm. Sci. 103(1), 161–166 (2014).
[Crossref]

Dsouza, R.

Duker, J. S.

Duma, V-F.

Eichholz, J.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1), 43–48 (1995).
[Crossref]

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1), 43–48 (1995).
[Crossref]

Fujimoto, J. G.

Furtmüller, G. J.

Y. Huang, G. J. Furtmüller, D. Tong, S. Zhu, W. P. AndrewLee, G. Brandacher, and J. U Kang, “MEMS-Based Handheld Fourier Domain Doppler Optical Coherence Tomography for Intraoperative Microvascular Anastomosis Imaging,” PloS one 9(12), e114215 (2014).
[Crossref] [PubMed]

Hauger, C.

Hayes, A.

Hee, M. R.

Hellemanns, V.

Hellmuth, T.

Hill, M. C.

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” The Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1), 43–48 (1995).
[Crossref]

Hogan, J.

Hornegger, J.

Huang, D.

Huang, Y.

Y. Huang, G. J. Furtmüller, D. Tong, S. Zhu, W. P. AndrewLee, G. Brandacher, and J. U Kang, “MEMS-Based Handheld Fourier Domain Doppler Optical Coherence Tomography for Intraoperative Microvascular Anastomosis Imaging,” PloS one 9(12), e114215 (2014).
[Crossref] [PubMed]

X. Liu, Y. Huang, and J. U. Kang, “Distortion-free freehand-scanning OCT implemented with real-time scanning speed variance correction,” Opt. Express 20(15), 16567–16583 (2012).
[Crossref]

Hüttmann, G.

Iftimia, N.

Ina, H.

Ishii, T.

K. Uebo, A. Kodama, Y. Oka, and T. Ishii, “Thickness of normal human tympanic membrane,” Ear Research Japan 19(1), 70–73 (1988).

Izatt, J. A.

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008).
[Crossref]

Jayaraman, V.

Jeon, M.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref]

Jung, W.

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
[Crossref]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1), 43–48 (1995).
[Crossref]

Kang, J. U

Y. Huang, G. J. Furtmüller, D. Tong, S. Zhu, W. P. AndrewLee, G. Brandacher, and J. U Kang, “MEMS-Based Handheld Fourier Domain Doppler Optical Coherence Tomography for Intraoperative Microvascular Anastomosis Imaging,” PloS one 9(12), e114215 (2014).
[Crossref] [PubMed]

Kang, J. U.

Kim, J.

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
[Crossref]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref]

Kirk, R. W.

Kobayashi, S.

Koch, E.

Koch, P.

Kodama, A.

K. Uebo, A. Kodama, Y. Oka, and T. Ishii, “Thickness of normal human tympanic membrane,” Ear Research Japan 19(1), 70–73 (1988).

Kraus, M. F.

Kuypers, L. C.

L. C. Kuypers, W. F. Decraemer, and J. J. Dirckx, “Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy,” Otology & Neurotology 27(2), 256–264 (2006).
[Crossref]

Leahy, M.

Li, C.

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. of Pharm. Sci. 103(1), 161–166 (2014).
[Crossref]

Lin, C. P.

Liu, J. J.

Liu, X.

Lu, C. D.

Magill, J.

Maguluri, G.

McCormick, D. T.

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” The Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
[Crossref]

McDowell, E. J.

McLaughlin, R. A.

Monroy, G. L.

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-based technique for manually scanned hand-held optical coherence tomography imaging,” J. Sensors 501, 8154809 (2016).

P. Pande, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “A mosaicking approach for in vivo thickness mapping of the human tympanic membrane using low coherence interferometry,” J. Assoc. Res. Otolaryngol. 17(5), 403–416 (2016).
[Crossref] [PubMed]

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” The Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Neuhaus, K.

Nguyen, C. T.

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” The Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Nolan, R. M.

P. Pande, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “A mosaicking approach for in vivo thickness mapping of the human tympanic membrane using low coherence interferometry,” J. Assoc. Res. Otolaryngol. 17(5), 403–416 (2016).
[Crossref] [PubMed]

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-based technique for manually scanned hand-held optical coherence tomography imaging,” J. Sensors 501, 8154809 (2016).

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” The Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Novak, M.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Novak, M. A.

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” The Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Oka, Y.

K. Uebo, A. Kodama, Y. Oka, and T. Ishii, “Thickness of normal human tympanic membrane,” Ear Research Japan 19(1), 70–73 (1988).

Pande, P.

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-based technique for manually scanned hand-held optical coherence tomography imaging,” J. Sensors 501, 8154809 (2016).

P. Pande, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “A mosaicking approach for in vivo thickness mapping of the human tympanic membrane using low coherence interferometry,” J. Assoc. Res. Otolaryngol. 17(5), 403–416 (2016).
[Crossref] [PubMed]

Paparella, M. M.

C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane: a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
[Crossref] [PubMed]

Podoleanu, A. G.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

Potsaid, B.

Puliafito, C. A.

Ren, J.

Rolland, J. P

Ruah, C. B.

C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane: a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
[Crossref] [PubMed]

Sampson, D. D.

Santhanam, A.

Sarunic, M. V.

Sayegh, S. I.

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
[Crossref]

Schachern, P. A.

C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane: a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
[Crossref] [PubMed]

Schleiermacher, H.

Sharma, U.

Shelton, R. L.

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-based technique for manually scanned hand-held optical coherence tomography imaging,” J. Sensors 501, 8154809 (2016).

P. Pande, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “A mosaicking approach for in vivo thickness mapping of the human tympanic membrane using low coherence interferometry,” J. Assoc. Res. Otolaryngol. 17(5), 403–416 (2016).
[Crossref] [PubMed]

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” The Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
[Crossref]

Shen, Y.-C.

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. of Pharm. Sci. 103(1), 161–166 (2014).
[Crossref]

Stewart, C.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref]

Stewart, C. N.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

Subhash, H.

Swanson, E. A.

Takeda, M.

Tankam, P.

Thompson, K. P

Tong, D.

Y. Huang, G. J. Furtmüller, D. Tong, S. Zhu, W. P. AndrewLee, G. Brandacher, and J. U Kang, “MEMS-Based Handheld Fourier Domain Doppler Optical Coherence Tomography for Intraoperative Microvascular Anastomosis Imaging,” PloS one 9(12), e114215 (2014).
[Crossref] [PubMed]

Uebo, K.

K. Uebo, A. Kodama, Y. Oka, and T. Ishii, “Thickness of normal human tympanic membrane,” Ear Research Japan 19(1), 70–73 (1988).

Van der Jeught, S.

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

Vijaysekhar,

Wilson, C.

Wörz, M.

Wu, J.

Yang, C.

Yeo, B. Y.

Yoon, T. H.

C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane: a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
[Crossref] [PubMed]

Zeitler, J. A.

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. of Pharm. Sci. 103(1), 161–166 (2014).
[Crossref]

Zelterman, D.

C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane: a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
[Crossref] [PubMed]

Zhu, S.

Y. Huang, G. J. Furtmüller, D. Tong, S. Zhu, W. P. AndrewLee, G. Brandacher, and J. U Kang, “MEMS-Based Handheld Fourier Domain Doppler Optical Coherence Tomography for Intraoperative Microvascular Anastomosis Imaging,” PloS one 9(12), e114215 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

Arch. Otolaryngol. Head Neck Surg. (1)

C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane: a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Ear Research Japan (1)

K. Uebo, A. Kodama, Y. Oka, and T. Ishii, “Thickness of normal human tympanic membrane,” Ear Research Japan 19(1), 70–73 (1988).

IEEE Trans. Biomed. Eng. (1)

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref]

J. Assoc. Res. Otolaryngol. (2)

S. Van der Jeught, J. J. Dirckx, J. R. Aerts, A. Bradu, A. G. Podoleanu, and J. A. Buytaert, “Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography,” J. Assoc. Res. Otolaryngol. 14(4), 483–494 (2013).
[Crossref] [PubMed]

P. Pande, R. L. Shelton, G. L. Monroy, R. M. Nolan, and S. A. Boppart, “A mosaicking approach for in vivo thickness mapping of the human tympanic membrane using low coherence interferometry,” J. Assoc. Res. Otolaryngol. 17(5), 403–416 (2016).
[Crossref] [PubMed]

J. Biophotonics (1)

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J. Biophotonics 7(7), 525–533 (2014).
[Crossref]

J. of Pharm. Sci. (1)

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. of Pharm. Sci. 103(1), 161–166 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

J. Sensors (1)

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-based technique for manually scanned hand-held optical coherence tomography imaging,” J. Sensors 501, 8154809 (2016).

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1), 43–48 (1995).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Otology & Neurotology (1)

L. C. Kuypers, W. F. Decraemer, and J. J. Dirckx, “Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy,” Otology & Neurotology 27(2), 256–264 (2006).
[Crossref]

PloS one (1)

Y. Huang, G. J. Furtmüller, D. Tong, S. Zhu, W. P. AndrewLee, G. Brandacher, and J. U Kang, “MEMS-Based Handheld Fourier Domain Doppler Optical Coherence Tomography for Intraoperative Microvascular Anastomosis Imaging,” PloS one 9(12), e114215 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

The Laryngoscope (1)

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” The Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Other (2)

J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008).
[Crossref]

G. Hüttmann, P. Koch, and R. Birngruber, “Linear OCT,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the bench-top implementation of the proposed L-OCT system. (b) Data processing flow illustrating the sequence of steps to extract an A-line from the fringe pattern captured by the detector. Scale bars represent 0.5 mm.
Fig. 2
Fig. 2 Representative B-scans obtained by laterally translating the samples. (a) Scotch tape roll. (b) Grape. (c) Apple. (Wa: Wax, Cu: Cuticle, Ep: Epidermis, CW: Cell Wall).
Fig. 3
Fig. 3 (a) Solidworks rendering of a prototype of the contact-based imaging probe. (b) Actual probe.
Fig. 4
Fig. 4 Imaging performance of the proposed system. The left column shows the A-lines obtained from imaging different samples (along rows) obtained from the proposed system, compared with A-lines obtained from imaging the same samples with a state-of-the-art Fourier-domain LCI system (right column).
Fig. 5
Fig. 5 Schematic of the hand-held imaging probe for in vivo ear imaging and a photograph of the actual probe. The insets show the surface image of the sheet of paper used as the sample (top left) and the corresponding A-line acquired from a point on the sample (bottom left).
Fig. 6
Fig. 6 A-lines obtained by using the probe for TM imaging from various samples. (a) Stack of coverslips (b) Double-sided tape roll (c) Plastic sheet used as TM phantom (d) In vivo human TM.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = I S ( x ) + I R ( x ) + 2 I S I R sin ( 2 π α x λ ) γ ( x )
SNR FWC z m a x

Metrics