Abstract

Polarization sensitive optical coherence tomography (PS-OCT) operating at 840 nm with axial resolution of 3.8 µm in tissue was used for investigating the posterior rat eye during an acute intraocular pressure (IOP) increase experiment. IOP was elevated in the eyes of anesthetized Sprague Dawley rats by cannulation of the anterior chamber. Three dimensional PS-OCT data sets were acquired at IOP levels between 14 mmHg and 105 mmHg. Maps of scleral birefringence, retinal nerve fiber layer (RNFL) retardation and relative RNFL/retina reflectivity were generated in the peripapillary area and quantitatively analyzed. All investigated parameters showed a substantial correlation with IOP. In the low IOP range of 14-45 mmHg only scleral birefringence showed statistically significant correlation. The polarization changes observed in the PS-OCT imaging study presented in this work suggest that birefringence of the sclera may be a promising IOP-related parameter to investigate.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography

Stanislava Fialová, Marco Augustin, Martin Glösmann, Tanja Himmel, Sabine Rauscher, Marion Gröger, Michael Pircher, Christoph K. Hitzenberger, and Bernhard Baumann
Biomed. Opt. Express 7(4) 1479-1495 (2016)

Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo

Masahiro Yamanari, Satoko Nagase, Shinichi Fukuda, Kotaro Ishii, Ryosuke Tanaka, Takeshi Yasui, Tetsuro Oshika, Masahiro Miura, and Yoshiaki Yasuno
Biomed. Opt. Express 5(5) 1391-1402 (2014)

Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography

Zhongwei Zhi, William O. Cepurna, Elaine C. Johnson, John C. Morrison, and Ruikang K. Wang
Biomed. Opt. Express 3(9) 2220-2233 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Quigley, “Glaucoma,” Lancet 377(9774), 1367–1377 (2011).
    [Crossref] [PubMed]
  2. C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res. 24(1), 39–73 (2005).
    [Crossref] [PubMed]
  3. M. Yamanari, S. Nagase, S. Fukuda, K. Ishii, R. Tanaka, T. Yasui, T. Oshika, M. Miura, and Y. Yasuno, “Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo,” Biomed. Opt. Express 5(5), 1391–1402 (2014).
    [Crossref] [PubMed]
  4. J. C. Downs, J.-K. F. Suh, K. A. Thomas, A. J. Bellezza, R. T. Hart, and C. F. Burgoyne, “Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes,” Invest. Ophthalmol. Vis. Sci. 46(2), 540–546 (2005).
    [Crossref] [PubMed]
  5. C. F. Burgoyne and J. C. Downs, “Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head,” J. Glaucoma 17(4), 318–328 (2008).
    [Crossref] [PubMed]
  6. S. Sugiyama, Y.-J. Hong, D. Kasaragod, S. Makita, S. Uematsu, Y. Ikuno, M. Miura, and Y. Yasuno, “Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography,” Biomed. Opt. Express 6(12), 4951–4974 (2015).
    [Crossref] [PubMed]
  7. S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
    [Crossref] [PubMed]
  8. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
    [Crossref] [PubMed]
  9. M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
    [Crossref] [PubMed]
  10. J. K. Pijanka, E. C. Kimball, M. E. Pease, A. Abass, T. Sorensen, T. D. Nguyen, H. A. Quigley, and C. Boote, “Changes in scleral collagen organization in murine chronic experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6554–6564 (2014).
    [Crossref] [PubMed]
  11. M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS One 7(9), e44026 (2012).
    [Crossref] [PubMed]
  12. L. C. Ho, I. A. Sigal, N.-J. Jan, A. Squires, Z. Tse, E. X. Wu, S.-G. Kim, J. S. Schuman, and K. C. Chan, “Magic Angle-Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading,” Invest. Ophthalmol. Vis. Sci. 55(9), 5662–5672 (2014).
    [Crossref] [PubMed]
  13. E. Cone-Kimball, C. Nguyen, E. N. Oglesby, M. E. Pease, M. R. Steinhart, and H. A. Quigley, “Scleral structural alterations associated with chronic experimental intraocular pressure elevation in mice,” Mol. Vis. 19, 2023–2039 (2013).
    [PubMed]
  14. J. C. Morrison, E. C. Johnson, W. Cepurna, and L. Jia, “Understanding mechanisms of pressure-induced optic nerve damage,” Prog. Retin. Eye Res. 24(2), 217–240 (2005).
    [Crossref] [PubMed]
  15. L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
    [Crossref] [PubMed]
  16. C. Whitford, A. Joda, S. Jones, F. Bao, P. Rama, and A. Elsheikh, “Ex vivo testing of intact eye globes under inflation conditions to determine regional variation of mechanical stiffness,” Eye Vis (Lond) 3(1), 21 (2016).
    [Crossref] [PubMed]
  17. Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express 2(3), 579–591 (2011).
    [Crossref] [PubMed]
  18. Z. Zhi, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and R. K. Wang, “Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography,” Biomed. Opt. Express 3(9), 2220–2233 (2012).
    [Crossref] [PubMed]
  19. Z. Zhi, W. Cepurna, E. Johnson, H. Jayaram, J. Morrison, and R. K. Wang, “Evaluation of the effect of elevated intraocular pressure and reduced ocular perfusion pressure on retinal capillary bed filling and total retinal blood flow in rats by OMAG/OCT,” Microvasc. Res. 101, 86–95 (2015).
    [Crossref] [PubMed]
  20. M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes,” Exp. Eye Res. 139, 1–12 (2015).
    [Crossref] [PubMed]
  21. B. Fortune, T. E. Choe, J. Reynaud, C. Hardin, G. A. Cull, C. F. Burgoyne, and L. Wang, “Deformation of the Rodent Optic Nerve Head and Peripapillary Structures during Acute Intraocular Pressure Elevation,” Invest. Ophthalmol. Vis. Sci. 52(9), 6651–6661 (2011).
    [Crossref] [PubMed]
  22. H. Yang, L. He, S. K. Gardiner, J. Reynaud, G. Williams, C. Hardin, N. G. Strouthidis, J. C. Downs, B. Fortune, and C. F. Burgoyne, “Age-related Differences in Longitudinal Structural Change by Spectral-Domain Optical Coherence Tomography in Early Experimental Glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6409–6420 (2014).
    [Crossref] [PubMed]
  23. C. J. Abbott, T. E. Choe, C. F. Burgoyne, G. Cull, L. Wang, and B. Fortune, “Comparison of Retinal Nerve Fiber Layer Thickness in Vivo and Axonal Transport after Chronic Intraocular Pressure Elevation in Young Versus Older Rats,” PLoS One 9(12), e114546 (2014).
    [Crossref] [PubMed]
  24. T. E. Choe, C. J. Abbott, C. Piper, L. Wang, and B. Fortune, “Comparison of Longitudinal In Vivo Measurements of Retinal Nerve Fiber Layer Thickness and Retinal Ganglion Cell Density after Optic Nerve Transection in Rat,” PLoS One 9(11), e113011 (2014).
    [Crossref] [PubMed]
  25. S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1479–1495 (2016).
    [Crossref] [PubMed]
  26. M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT Enables Longitudinal Study of Retinal Changes in a VLDLR Knockout Mouse Model,” PLoS One 11(10), e0164419 (2016).
    [Crossref] [PubMed]
  27. M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model,” Exp. Eye Res. 145, 173–186 (2016).
    [Crossref] [PubMed]
  28. M. C. Moreno, H. J. Marcos, J. Oscar Croxatto, P. H. Sande, J. Campanelli, C. O. Jaliffa, J. Benozzi, and R. E. Rosenstein, “A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid,” Exp. Eye Res. 81(1), 71–80 (2005).
    [Crossref] [PubMed]
  29. A. Smedowski, M. Pietrucha-Dutczak, K. Kaarniranta, and J. Lewin-Kowalik, “A rat experimental model of glaucoma incorporating rapid-onset elevation of intraocular pressure,” Sci. Rep. 4, 5910 (2014).
    [Crossref] [PubMed]
  30. T. W. Mittag, J. Danias, G. Pohorenec, H. M. Yuan, E. Burakgazi, R. Chalmers-Redman, S. M. Podos, and W. G. Tatton, “Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model,” Invest. Ophthalmol. Vis. Sci. 41(11), 3451–3459 (2000).
    [PubMed]
  31. S. K. Gardiner, S. Demirel, J. Reynaud, and B. Fortune, “Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 57(3), 1221–1227 (2016).
    [Crossref] [PubMed]
  32. M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
    [Crossref] [PubMed]
  33. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
    [Crossref] [PubMed]
  34. B. Baumann, S. Rauscher, M. Glösmann, E. Götzinger, M. Pircher, S. Fialová, M. Gröger, and C. K. Hitzenberger, “Peripapillary Rat Sclera Investigated In Vivo With Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 55(11), 7686–7696 (2014).
    [Crossref] [PubMed]
  35. B. D. Metscher, “MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions,” Dev. Dyn. 238(3), 632–640 (2009).
    [Crossref] [PubMed]
  36. M. M. Mukaka, “Statistics corner: A guide to appropriate use of correlation coefficient in medical research,” Malawi Med. J. 24(3), 69–71 (2012).
    [PubMed]
  37. C. J. Abbott, T. E. Choe, T. A. Lusardi, C. F. Burgoyne, L. Wang, and B. Fortune, “Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats,” Invest. Ophthalmol. Vis. Sci. 55(2), 674–687 (2014).
    [Crossref] [PubMed]
  38. K. M. Joos, C. Li, and R. M. Sappington, “Morphometric changes in the rat optic nerve following short-term intermittent elevations in intraocular pressure,” Invest. Ophthalmol. Vis. Sci. 51(12), 6431–6440 (2010).
    [Crossref] [PubMed]
  39. V. Choh, A. Gurdita, B. Tan, R. C. Prasad, K. Bizheva, and K. M. Joos, “Short-Term Moderately Elevated Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses,” Invest. Ophthalmol. Vis. Sci. 57(4), 2140–2151 (2016).
    [Crossref] [PubMed]
  40. B. Fortune, H. Yang, N. G. Strouthidis, G. A. Cull, J. L. Grimm, J. C. Downs, and C. F. Burgoyne, “The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance,” Invest. Ophthalmol. Vis. Sci. 50(10), 4719–4726 (2009).
    [Crossref] [PubMed]
  41. B. Fortune, J. Reynaud, C. Hardin, L. Wang, I. A. Sigal, and C. F. Burgoyne, “Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury,” Invest. Ophthalmol. Vis. Sci. 57(10), 4403–4411 (2016).
    [Crossref] [PubMed]
  42. X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance Decreases before Thickness Changes in the Retinal Nerve Fiber Layer in Glaucomatous Retinas,” Invest. Ophthalmol. Vis. Sci. 52(9), 6737–6742 (2011).
    [Crossref] [PubMed]
  43. R. W. Knighton, C. Baverez, and A. Bhattacharya, “The Directional Reflectance of the Retinal Nerve Fiber Layer of the Toad,” Invest. Ophthalmol. Vis. Sci. 33(9), 2603–2611 (1992).
    [PubMed]
  44. M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
    [Crossref] [PubMed]
  45. B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci. 46(1), 202–213 (2005).
    [Crossref] [PubMed]
  46. J. C. Morrison, C. G. Moore, L. M. Deppmeier, B. G. Gold, C. K. Meshul, and E. C. Johnson, “A rat model of chronic pressure-induced optic nerve damage,” Exp. Eye Res. 64(1), 85–96 (1997).
    [Crossref] [PubMed]
  47. E. WoldeMussie, G. Ruiz, M. Wijono, and L. A. Wheeler, “Neuroprotection of Retinal Ganglion Cells by Brimonidine in Rats with Laser-Induced Chronic Ocular Hypertension,” Invest. Ophthalmol. Vis. Sci. 42(12), 2849–2855 (2001).
    [PubMed]
  48. J. C. Morrison, W. O. Cepurna Ying Guo, and E. C. Johnson, “Pathophysiology of human glaucomatous optic nerve damage: Insights from rodent models of glaucoma,” Exp. Eye Res. 93(2), 156–164 (2011).
    [Crossref] [PubMed]
  49. J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
    [Crossref] [PubMed]
  50. B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
    [Crossref] [PubMed]
  51. Q. Zhou, J. Reed, R. W. Betts, P. K. Trost, P.-W. Lo, C. Wallace, R. H. Bienias, G. Li, R. Winnick, W. A. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with custom corneal compensation,” in Proc. SPIE Ophthalmic Technologies XIII, F. Manns, P. G. Söderberg, and A. Ho, eds. (2003), Vol. 4951, pp. 32–41.
    [Crossref]
  52. R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic Validation of Fourier-Ellipsometry Measurements of Retinal Nerve Fiber Layer Thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
    [Crossref] [PubMed]
  53. A. W. Dreher, K. Reiter, and R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31(19), 3730–3735 (1992).
    [Crossref] [PubMed]
  54. G. Xu, R. N. Weinreb, and C. K. S. Leung, “Retinal nerve fiber layer progression in glaucoma: A comparison between retinal nerve fiber layer thickness and retardance,” Ophthalmology 120(12), 2493–2500 (2013).
    [Crossref] [PubMed]
  55. F. A. Medeiros, L. M. Alencar, L. M. Zangwill, C. Bowd, G. Vizzeri, P. A. Sample, and R. N. Weinreb, “Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation,” Invest. Ophthalmol. Vis. Sci. 50(4), 1675–1681 (2009).
    [Crossref] [PubMed]
  56. B. J. Curtin, “Physiopathologic aspects of scleral stress-strain,” Trans. Am. Ophthalmol. Soc. 67, 417–461 (1969).
    [PubMed]

2016 (8)

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

C. Whitford, A. Joda, S. Jones, F. Bao, P. Rama, and A. Elsheikh, “Ex vivo testing of intact eye globes under inflation conditions to determine regional variation of mechanical stiffness,” Eye Vis (Lond) 3(1), 21 (2016).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1479–1495 (2016).
[Crossref] [PubMed]

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT Enables Longitudinal Study of Retinal Changes in a VLDLR Knockout Mouse Model,” PLoS One 11(10), e0164419 (2016).
[Crossref] [PubMed]

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model,” Exp. Eye Res. 145, 173–186 (2016).
[Crossref] [PubMed]

S. K. Gardiner, S. Demirel, J. Reynaud, and B. Fortune, “Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 57(3), 1221–1227 (2016).
[Crossref] [PubMed]

V. Choh, A. Gurdita, B. Tan, R. C. Prasad, K. Bizheva, and K. M. Joos, “Short-Term Moderately Elevated Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses,” Invest. Ophthalmol. Vis. Sci. 57(4), 2140–2151 (2016).
[Crossref] [PubMed]

B. Fortune, J. Reynaud, C. Hardin, L. Wang, I. A. Sigal, and C. F. Burgoyne, “Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury,” Invest. Ophthalmol. Vis. Sci. 57(10), 4403–4411 (2016).
[Crossref] [PubMed]

2015 (4)

Z. Zhi, W. Cepurna, E. Johnson, H. Jayaram, J. Morrison, and R. K. Wang, “Evaluation of the effect of elevated intraocular pressure and reduced ocular perfusion pressure on retinal capillary bed filling and total retinal blood flow in rats by OMAG/OCT,” Microvasc. Res. 101, 86–95 (2015).
[Crossref] [PubMed]

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes,” Exp. Eye Res. 139, 1–12 (2015).
[Crossref] [PubMed]

S. Sugiyama, Y.-J. Hong, D. Kasaragod, S. Makita, S. Uematsu, Y. Ikuno, M. Miura, and Y. Yasuno, “Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography,” Biomed. Opt. Express 6(12), 4951–4974 (2015).
[Crossref] [PubMed]

M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
[Crossref] [PubMed]

2014 (9)

J. K. Pijanka, E. C. Kimball, M. E. Pease, A. Abass, T. Sorensen, T. D. Nguyen, H. A. Quigley, and C. Boote, “Changes in scleral collagen organization in murine chronic experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6554–6564 (2014).
[Crossref] [PubMed]

M. Yamanari, S. Nagase, S. Fukuda, K. Ishii, R. Tanaka, T. Yasui, T. Oshika, M. Miura, and Y. Yasuno, “Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo,” Biomed. Opt. Express 5(5), 1391–1402 (2014).
[Crossref] [PubMed]

L. C. Ho, I. A. Sigal, N.-J. Jan, A. Squires, Z. Tse, E. X. Wu, S.-G. Kim, J. S. Schuman, and K. C. Chan, “Magic Angle-Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading,” Invest. Ophthalmol. Vis. Sci. 55(9), 5662–5672 (2014).
[Crossref] [PubMed]

C. J. Abbott, T. E. Choe, T. A. Lusardi, C. F. Burgoyne, L. Wang, and B. Fortune, “Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats,” Invest. Ophthalmol. Vis. Sci. 55(2), 674–687 (2014).
[Crossref] [PubMed]

B. Baumann, S. Rauscher, M. Glösmann, E. Götzinger, M. Pircher, S. Fialová, M. Gröger, and C. K. Hitzenberger, “Peripapillary Rat Sclera Investigated In Vivo With Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 55(11), 7686–7696 (2014).
[Crossref] [PubMed]

H. Yang, L. He, S. K. Gardiner, J. Reynaud, G. Williams, C. Hardin, N. G. Strouthidis, J. C. Downs, B. Fortune, and C. F. Burgoyne, “Age-related Differences in Longitudinal Structural Change by Spectral-Domain Optical Coherence Tomography in Early Experimental Glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6409–6420 (2014).
[Crossref] [PubMed]

C. J. Abbott, T. E. Choe, C. F. Burgoyne, G. Cull, L. Wang, and B. Fortune, “Comparison of Retinal Nerve Fiber Layer Thickness in Vivo and Axonal Transport after Chronic Intraocular Pressure Elevation in Young Versus Older Rats,” PLoS One 9(12), e114546 (2014).
[Crossref] [PubMed]

T. E. Choe, C. J. Abbott, C. Piper, L. Wang, and B. Fortune, “Comparison of Longitudinal In Vivo Measurements of Retinal Nerve Fiber Layer Thickness and Retinal Ganglion Cell Density after Optic Nerve Transection in Rat,” PLoS One 9(11), e113011 (2014).
[Crossref] [PubMed]

A. Smedowski, M. Pietrucha-Dutczak, K. Kaarniranta, and J. Lewin-Kowalik, “A rat experimental model of glaucoma incorporating rapid-onset elevation of intraocular pressure,” Sci. Rep. 4, 5910 (2014).
[Crossref] [PubMed]

2013 (4)

E. Cone-Kimball, C. Nguyen, E. N. Oglesby, M. E. Pease, M. R. Steinhart, and H. A. Quigley, “Scleral structural alterations associated with chronic experimental intraocular pressure elevation in mice,” Mol. Vis. 19, 2023–2039 (2013).
[PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
[Crossref] [PubMed]

G. Xu, R. N. Weinreb, and C. K. S. Leung, “Retinal nerve fiber layer progression in glaucoma: A comparison between retinal nerve fiber layer thickness and retardance,” Ophthalmology 120(12), 2493–2500 (2013).
[Crossref] [PubMed]

2012 (4)

M. M. Mukaka, “Statistics corner: A guide to appropriate use of correlation coefficient in medical research,” Malawi Med. J. 24(3), 69–71 (2012).
[PubMed]

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS One 7(9), e44026 (2012).
[Crossref] [PubMed]

Z. Zhi, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and R. K. Wang, “Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography,” Biomed. Opt. Express 3(9), 2220–2233 (2012).
[Crossref] [PubMed]

2011 (6)

B. Fortune, T. E. Choe, J. Reynaud, C. Hardin, G. A. Cull, C. F. Burgoyne, and L. Wang, “Deformation of the Rodent Optic Nerve Head and Peripapillary Structures during Acute Intraocular Pressure Elevation,” Invest. Ophthalmol. Vis. Sci. 52(9), 6651–6661 (2011).
[Crossref] [PubMed]

Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express 2(3), 579–591 (2011).
[Crossref] [PubMed]

H. A. Quigley, “Glaucoma,” Lancet 377(9774), 1367–1377 (2011).
[Crossref] [PubMed]

J. C. Morrison, W. O. Cepurna Ying Guo, and E. C. Johnson, “Pathophysiology of human glaucomatous optic nerve damage: Insights from rodent models of glaucoma,” Exp. Eye Res. 93(2), 156–164 (2011).
[Crossref] [PubMed]

X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance Decreases before Thickness Changes in the Retinal Nerve Fiber Layer in Glaucomatous Retinas,” Invest. Ophthalmol. Vis. Sci. 52(9), 6737–6742 (2011).
[Crossref] [PubMed]

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

2010 (1)

K. M. Joos, C. Li, and R. M. Sappington, “Morphometric changes in the rat optic nerve following short-term intermittent elevations in intraocular pressure,” Invest. Ophthalmol. Vis. Sci. 51(12), 6431–6440 (2010).
[Crossref] [PubMed]

2009 (3)

B. Fortune, H. Yang, N. G. Strouthidis, G. A. Cull, J. L. Grimm, J. C. Downs, and C. F. Burgoyne, “The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance,” Invest. Ophthalmol. Vis. Sci. 50(10), 4719–4726 (2009).
[Crossref] [PubMed]

B. D. Metscher, “MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions,” Dev. Dyn. 238(3), 632–640 (2009).
[Crossref] [PubMed]

F. A. Medeiros, L. M. Alencar, L. M. Zangwill, C. Bowd, G. Vizzeri, P. A. Sample, and R. N. Weinreb, “Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation,” Invest. Ophthalmol. Vis. Sci. 50(4), 1675–1681 (2009).
[Crossref] [PubMed]

2008 (1)

C. F. Burgoyne and J. C. Downs, “Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head,” J. Glaucoma 17(4), 318–328 (2008).
[Crossref] [PubMed]

2007 (1)

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

2005 (5)

M. C. Moreno, H. J. Marcos, J. Oscar Croxatto, P. H. Sande, J. Campanelli, C. O. Jaliffa, J. Benozzi, and R. E. Rosenstein, “A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid,” Exp. Eye Res. 81(1), 71–80 (2005).
[Crossref] [PubMed]

J. C. Morrison, E. C. Johnson, W. Cepurna, and L. Jia, “Understanding mechanisms of pressure-induced optic nerve damage,” Prog. Retin. Eye Res. 24(2), 217–240 (2005).
[Crossref] [PubMed]

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res. 24(1), 39–73 (2005).
[Crossref] [PubMed]

J. C. Downs, J.-K. F. Suh, K. A. Thomas, A. J. Bellezza, R. T. Hart, and C. F. Burgoyne, “Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes,” Invest. Ophthalmol. Vis. Sci. 46(2), 540–546 (2005).
[Crossref] [PubMed]

B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci. 46(1), 202–213 (2005).
[Crossref] [PubMed]

2004 (1)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

2001 (2)

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[Crossref] [PubMed]

E. WoldeMussie, G. Ruiz, M. Wijono, and L. A. Wheeler, “Neuroprotection of Retinal Ganglion Cells by Brimonidine in Rats with Laser-Induced Chronic Ocular Hypertension,” Invest. Ophthalmol. Vis. Sci. 42(12), 2849–2855 (2001).
[PubMed]

2000 (1)

T. W. Mittag, J. Danias, G. Pohorenec, H. M. Yuan, E. Burakgazi, R. Chalmers-Redman, S. M. Podos, and W. G. Tatton, “Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model,” Invest. Ophthalmol. Vis. Sci. 41(11), 3451–3459 (2000).
[PubMed]

1997 (1)

J. C. Morrison, C. G. Moore, L. M. Deppmeier, B. G. Gold, C. K. Meshul, and E. C. Johnson, “A rat model of chronic pressure-induced optic nerve damage,” Exp. Eye Res. 64(1), 85–96 (1997).
[Crossref] [PubMed]

1992 (2)

R. W. Knighton, C. Baverez, and A. Bhattacharya, “The Directional Reflectance of the Retinal Nerve Fiber Layer of the Toad,” Invest. Ophthalmol. Vis. Sci. 33(9), 2603–2611 (1992).
[PubMed]

A. W. Dreher, K. Reiter, and R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31(19), 3730–3735 (1992).
[Crossref] [PubMed]

1990 (1)

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic Validation of Fourier-Ellipsometry Measurements of Retinal Nerve Fiber Layer Thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

1969 (1)

B. J. Curtin, “Physiopathologic aspects of scleral stress-strain,” Trans. Am. Ophthalmol. Soc. 67, 417–461 (1969).
[PubMed]

Abass, A.

J. K. Pijanka, E. C. Kimball, M. E. Pease, A. Abass, T. Sorensen, T. D. Nguyen, H. A. Quigley, and C. Boote, “Changes in scleral collagen organization in murine chronic experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6554–6564 (2014).
[Crossref] [PubMed]

Abbott, C. J.

C. J. Abbott, T. E. Choe, C. F. Burgoyne, G. Cull, L. Wang, and B. Fortune, “Comparison of Retinal Nerve Fiber Layer Thickness in Vivo and Axonal Transport after Chronic Intraocular Pressure Elevation in Young Versus Older Rats,” PLoS One 9(12), e114546 (2014).
[Crossref] [PubMed]

T. E. Choe, C. J. Abbott, C. Piper, L. Wang, and B. Fortune, “Comparison of Longitudinal In Vivo Measurements of Retinal Nerve Fiber Layer Thickness and Retinal Ganglion Cell Density after Optic Nerve Transection in Rat,” PLoS One 9(11), e113011 (2014).
[Crossref] [PubMed]

C. J. Abbott, T. E. Choe, T. A. Lusardi, C. F. Burgoyne, L. Wang, and B. Fortune, “Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats,” Invest. Ophthalmol. Vis. Sci. 55(2), 674–687 (2014).
[Crossref] [PubMed]

Albon, J.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Alencar, L. M.

F. A. Medeiros, L. M. Alencar, L. M. Zangwill, C. Bowd, G. Vizzeri, P. A. Sample, and R. N. Weinreb, “Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation,” Invest. Ophthalmol. Vis. Sci. 50(4), 1675–1681 (2009).
[Crossref] [PubMed]

Augustin, M.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT Enables Longitudinal Study of Retinal Changes in a VLDLR Knockout Mouse Model,” PLoS One 11(10), e0164419 (2016).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1479–1495 (2016).
[Crossref] [PubMed]

Bao, F.

C. Whitford, A. Joda, S. Jones, F. Bao, P. Rama, and A. Elsheikh, “Ex vivo testing of intact eye globes under inflation conditions to determine regional variation of mechanical stiffness,” Eye Vis (Lond) 3(1), 21 (2016).
[Crossref] [PubMed]

Baumann, B.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT Enables Longitudinal Study of Retinal Changes in a VLDLR Knockout Mouse Model,” PLoS One 11(10), e0164419 (2016).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1479–1495 (2016).
[Crossref] [PubMed]

M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
[Crossref] [PubMed]

B. Baumann, S. Rauscher, M. Glösmann, E. Götzinger, M. Pircher, S. Fialová, M. Gröger, and C. K. Hitzenberger, “Peripapillary Rat Sclera Investigated In Vivo With Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 55(11), 7686–7696 (2014).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

Baverez, C.

R. W. Knighton, C. Baverez, and A. Bhattacharya, “The Directional Reflectance of the Retinal Nerve Fiber Layer of the Toad,” Invest. Ophthalmol. Vis. Sci. 33(9), 2603–2611 (1992).
[PubMed]

Bechara, J. A.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Bellezza, A. J.

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res. 24(1), 39–73 (2005).
[Crossref] [PubMed]

J. C. Downs, J.-K. F. Suh, K. A. Thomas, A. J. Bellezza, R. T. Hart, and C. F. Burgoyne, “Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes,” Invest. Ophthalmol. Vis. Sci. 46(2), 540–546 (2005).
[Crossref] [PubMed]

Benozzi, J.

M. C. Moreno, H. J. Marcos, J. Oscar Croxatto, P. H. Sande, J. Campanelli, C. O. Jaliffa, J. Benozzi, and R. E. Rosenstein, “A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid,” Exp. Eye Res. 81(1), 71–80 (2005).
[Crossref] [PubMed]

Bertin, B. M. E.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Bhattacharya, A.

R. W. Knighton, C. Baverez, and A. Bhattacharya, “The Directional Reflectance of the Retinal Nerve Fiber Layer of the Toad,” Invest. Ophthalmol. Vis. Sci. 33(9), 2603–2611 (1992).
[PubMed]

Bizheva, K.

V. Choh, A. Gurdita, B. Tan, R. C. Prasad, K. Bizheva, and K. M. Joos, “Short-Term Moderately Elevated Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses,” Invest. Ophthalmol. Vis. Sci. 57(4), 2140–2151 (2016).
[Crossref] [PubMed]

Boote, C.

J. K. Pijanka, E. C. Kimball, M. E. Pease, A. Abass, T. Sorensen, T. D. Nguyen, H. A. Quigley, and C. Boote, “Changes in scleral collagen organization in murine chronic experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6554–6564 (2014).
[Crossref] [PubMed]

Bowd, C.

F. A. Medeiros, L. M. Alencar, L. M. Zangwill, C. Bowd, G. Vizzeri, P. A. Sample, and R. N. Weinreb, “Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation,” Invest. Ophthalmol. Vis. Sci. 50(4), 1675–1681 (2009).
[Crossref] [PubMed]

Bui, B. V.

B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci. 46(1), 202–213 (2005).
[Crossref] [PubMed]

Burakgazi, E.

T. W. Mittag, J. Danias, G. Pohorenec, H. M. Yuan, E. Burakgazi, R. Chalmers-Redman, S. M. Podos, and W. G. Tatton, “Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model,” Invest. Ophthalmol. Vis. Sci. 41(11), 3451–3459 (2000).
[PubMed]

Burgoyne, C. F.

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model,” Exp. Eye Res. 145, 173–186 (2016).
[Crossref] [PubMed]

B. Fortune, J. Reynaud, C. Hardin, L. Wang, I. A. Sigal, and C. F. Burgoyne, “Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury,” Invest. Ophthalmol. Vis. Sci. 57(10), 4403–4411 (2016).
[Crossref] [PubMed]

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes,” Exp. Eye Res. 139, 1–12 (2015).
[Crossref] [PubMed]

C. J. Abbott, T. E. Choe, C. F. Burgoyne, G. Cull, L. Wang, and B. Fortune, “Comparison of Retinal Nerve Fiber Layer Thickness in Vivo and Axonal Transport after Chronic Intraocular Pressure Elevation in Young Versus Older Rats,” PLoS One 9(12), e114546 (2014).
[Crossref] [PubMed]

H. Yang, L. He, S. K. Gardiner, J. Reynaud, G. Williams, C. Hardin, N. G. Strouthidis, J. C. Downs, B. Fortune, and C. F. Burgoyne, “Age-related Differences in Longitudinal Structural Change by Spectral-Domain Optical Coherence Tomography in Early Experimental Glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6409–6420 (2014).
[Crossref] [PubMed]

C. J. Abbott, T. E. Choe, T. A. Lusardi, C. F. Burgoyne, L. Wang, and B. Fortune, “Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats,” Invest. Ophthalmol. Vis. Sci. 55(2), 674–687 (2014).
[Crossref] [PubMed]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
[Crossref] [PubMed]

B. Fortune, T. E. Choe, J. Reynaud, C. Hardin, G. A. Cull, C. F. Burgoyne, and L. Wang, “Deformation of the Rodent Optic Nerve Head and Peripapillary Structures during Acute Intraocular Pressure Elevation,” Invest. Ophthalmol. Vis. Sci. 52(9), 6651–6661 (2011).
[Crossref] [PubMed]

B. Fortune, H. Yang, N. G. Strouthidis, G. A. Cull, J. L. Grimm, J. C. Downs, and C. F. Burgoyne, “The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance,” Invest. Ophthalmol. Vis. Sci. 50(10), 4719–4726 (2009).
[Crossref] [PubMed]

C. F. Burgoyne and J. C. Downs, “Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head,” J. Glaucoma 17(4), 318–328 (2008).
[Crossref] [PubMed]

J. C. Downs, J.-K. F. Suh, K. A. Thomas, A. J. Bellezza, R. T. Hart, and C. F. Burgoyne, “Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes,” Invest. Ophthalmol. Vis. Sci. 46(2), 540–546 (2005).
[Crossref] [PubMed]

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res. 24(1), 39–73 (2005).
[Crossref] [PubMed]

Campanelli, J.

M. C. Moreno, H. J. Marcos, J. Oscar Croxatto, P. H. Sande, J. Campanelli, C. O. Jaliffa, J. Benozzi, and R. E. Rosenstein, “A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid,” Exp. Eye Res. 81(1), 71–80 (2005).
[Crossref] [PubMed]

Cense, B.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

Cepurna, W.

Z. Zhi, W. Cepurna, E. Johnson, H. Jayaram, J. Morrison, and R. K. Wang, “Evaluation of the effect of elevated intraocular pressure and reduced ocular perfusion pressure on retinal capillary bed filling and total retinal blood flow in rats by OMAG/OCT,” Microvasc. Res. 101, 86–95 (2015).
[Crossref] [PubMed]

Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express 2(3), 579–591 (2011).
[Crossref] [PubMed]

J. C. Morrison, E. C. Johnson, W. Cepurna, and L. Jia, “Understanding mechanisms of pressure-induced optic nerve damage,” Prog. Retin. Eye Res. 24(2), 217–240 (2005).
[Crossref] [PubMed]

Cepurna, W. O.

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model,” Exp. Eye Res. 145, 173–186 (2016).
[Crossref] [PubMed]

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes,” Exp. Eye Res. 139, 1–12 (2015).
[Crossref] [PubMed]

Z. Zhi, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and R. K. Wang, “Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography,” Biomed. Opt. Express 3(9), 2220–2233 (2012).
[Crossref] [PubMed]

Cepurna Ying Guo, W. O.

J. C. Morrison, W. O. Cepurna Ying Guo, and E. C. Johnson, “Pathophysiology of human glaucomatous optic nerve damage: Insights from rodent models of glaucoma,” Exp. Eye Res. 93(2), 156–164 (2011).
[Crossref] [PubMed]

Chalmers-Redman, R.

T. W. Mittag, J. Danias, G. Pohorenec, H. M. Yuan, E. Burakgazi, R. Chalmers-Redman, S. M. Podos, and W. G. Tatton, “Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model,” Invest. Ophthalmol. Vis. Sci. 41(11), 3451–3459 (2000).
[PubMed]

Chan, K. C.

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

L. C. Ho, I. A. Sigal, N.-J. Jan, A. Squires, Z. Tse, E. X. Wu, S.-G. Kim, J. S. Schuman, and K. C. Chan, “Magic Angle-Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading,” Invest. Ophthalmol. Vis. Sci. 55(9), 5662–5672 (2014).
[Crossref] [PubMed]

Chau, Y.

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

Chen, T. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

Choe, T. E.

C. J. Abbott, T. E. Choe, T. A. Lusardi, C. F. Burgoyne, L. Wang, and B. Fortune, “Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats,” Invest. Ophthalmol. Vis. Sci. 55(2), 674–687 (2014).
[Crossref] [PubMed]

C. J. Abbott, T. E. Choe, C. F. Burgoyne, G. Cull, L. Wang, and B. Fortune, “Comparison of Retinal Nerve Fiber Layer Thickness in Vivo and Axonal Transport after Chronic Intraocular Pressure Elevation in Young Versus Older Rats,” PLoS One 9(12), e114546 (2014).
[Crossref] [PubMed]

T. E. Choe, C. J. Abbott, C. Piper, L. Wang, and B. Fortune, “Comparison of Longitudinal In Vivo Measurements of Retinal Nerve Fiber Layer Thickness and Retinal Ganglion Cell Density after Optic Nerve Transection in Rat,” PLoS One 9(11), e113011 (2014).
[Crossref] [PubMed]

B. Fortune, T. E. Choe, J. Reynaud, C. Hardin, G. A. Cull, C. F. Burgoyne, and L. Wang, “Deformation of the Rodent Optic Nerve Head and Peripapillary Structures during Acute Intraocular Pressure Elevation,” Invest. Ophthalmol. Vis. Sci. 52(9), 6651–6661 (2011).
[Crossref] [PubMed]

Choh, V.

V. Choh, A. Gurdita, B. Tan, R. C. Prasad, K. Bizheva, and K. M. Joos, “Short-Term Moderately Elevated Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses,” Invest. Ophthalmol. Vis. Sci. 57(4), 2140–2151 (2016).
[Crossref] [PubMed]

Cioffi, G. A.

B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci. 46(1), 202–213 (2005).
[Crossref] [PubMed]

Coleman, A.

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic Validation of Fourier-Ellipsometry Measurements of Retinal Nerve Fiber Layer Thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

Cone-Kimball, E.

E. Cone-Kimball, C. Nguyen, E. N. Oglesby, M. E. Pease, M. R. Steinhart, and H. A. Quigley, “Scleral structural alterations associated with chronic experimental intraocular pressure elevation in mice,” Mol. Vis. 19, 2023–2039 (2013).
[PubMed]

Conner, I. P.

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

Cull, G.

C. J. Abbott, T. E. Choe, C. F. Burgoyne, G. Cull, L. Wang, and B. Fortune, “Comparison of Retinal Nerve Fiber Layer Thickness in Vivo and Axonal Transport after Chronic Intraocular Pressure Elevation in Young Versus Older Rats,” PLoS One 9(12), e114546 (2014).
[Crossref] [PubMed]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
[Crossref] [PubMed]

Cull, G. A.

B. Fortune, T. E. Choe, J. Reynaud, C. Hardin, G. A. Cull, C. F. Burgoyne, and L. Wang, “Deformation of the Rodent Optic Nerve Head and Peripapillary Structures during Acute Intraocular Pressure Elevation,” Invest. Ophthalmol. Vis. Sci. 52(9), 6651–6661 (2011).
[Crossref] [PubMed]

B. Fortune, H. Yang, N. G. Strouthidis, G. A. Cull, J. L. Grimm, J. C. Downs, and C. F. Burgoyne, “The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance,” Invest. Ophthalmol. Vis. Sci. 50(10), 4719–4726 (2009).
[Crossref] [PubMed]

Curtin, B. J.

B. J. Curtin, “Physiopathologic aspects of scleral stress-strain,” Trans. Am. Ophthalmol. Soc. 67, 417–461 (1969).
[PubMed]

Dahlmann-Noor, A.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Danias, J.

T. W. Mittag, J. Danias, G. Pohorenec, H. M. Yuan, E. Burakgazi, R. Chalmers-Redman, S. M. Podos, and W. G. Tatton, “Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model,” Invest. Ophthalmol. Vis. Sci. 41(11), 3451–3459 (2000).
[PubMed]

de Boer, J. F.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

Demirel, S.

S. K. Gardiner, S. Demirel, J. Reynaud, and B. Fortune, “Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 57(3), 1221–1227 (2016).
[Crossref] [PubMed]

Deppmeier, L. M.

J. C. Morrison, C. G. Moore, L. M. Deppmeier, B. G. Gold, C. K. Meshul, and E. C. Johnson, “A rat model of chronic pressure-induced optic nerve damage,” Exp. Eye Res. 64(1), 85–96 (1997).
[Crossref] [PubMed]

Downs, J. C.

H. Yang, L. He, S. K. Gardiner, J. Reynaud, G. Williams, C. Hardin, N. G. Strouthidis, J. C. Downs, B. Fortune, and C. F. Burgoyne, “Age-related Differences in Longitudinal Structural Change by Spectral-Domain Optical Coherence Tomography in Early Experimental Glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6409–6420 (2014).
[Crossref] [PubMed]

B. Fortune, H. Yang, N. G. Strouthidis, G. A. Cull, J. L. Grimm, J. C. Downs, and C. F. Burgoyne, “The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance,” Invest. Ophthalmol. Vis. Sci. 50(10), 4719–4726 (2009).
[Crossref] [PubMed]

C. F. Burgoyne and J. C. Downs, “Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head,” J. Glaucoma 17(4), 318–328 (2008).
[Crossref] [PubMed]

J. C. Downs, J.-K. F. Suh, K. A. Thomas, A. J. Bellezza, R. T. Hart, and C. F. Burgoyne, “Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes,” Invest. Ophthalmol. Vis. Sci. 46(2), 540–546 (2005).
[Crossref] [PubMed]

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res. 24(1), 39–73 (2005).
[Crossref] [PubMed]

Dreher, A. W.

A. W. Dreher, K. Reiter, and R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31(19), 3730–3735 (1992).
[Crossref] [PubMed]

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic Validation of Fourier-Ellipsometry Measurements of Retinal Nerve Fiber Layer Thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

Duan, L.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS One 7(9), e44026 (2012).
[Crossref] [PubMed]

Dwelle, J.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

Edmunds, B.

B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci. 46(1), 202–213 (2005).
[Crossref] [PubMed]

Elsheikh, A.

C. Whitford, A. Joda, S. Jones, F. Bao, P. Rama, and A. Elsheikh, “Ex vivo testing of intact eye globes under inflation conditions to determine regional variation of mechanical stiffness,” Eye Vis (Lond) 3(1), 21 (2016).
[Crossref] [PubMed]

Ethier, C. R.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Fercher, A.

Fialová, S.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT Enables Longitudinal Study of Retinal Changes in a VLDLR Knockout Mouse Model,” PLoS One 11(10), e0164419 (2016).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1479–1495 (2016).
[Crossref] [PubMed]

B. Baumann, S. Rauscher, M. Glösmann, E. Götzinger, M. Pircher, S. Fialová, M. Gröger, and C. K. Hitzenberger, “Peripapillary Rat Sclera Investigated In Vivo With Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 55(11), 7686–7696 (2014).
[Crossref] [PubMed]

Fortune, B.

B. Fortune, J. Reynaud, C. Hardin, L. Wang, I. A. Sigal, and C. F. Burgoyne, “Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury,” Invest. Ophthalmol. Vis. Sci. 57(10), 4403–4411 (2016).
[Crossref] [PubMed]

S. K. Gardiner, S. Demirel, J. Reynaud, and B. Fortune, “Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 57(3), 1221–1227 (2016).
[Crossref] [PubMed]

T. E. Choe, C. J. Abbott, C. Piper, L. Wang, and B. Fortune, “Comparison of Longitudinal In Vivo Measurements of Retinal Nerve Fiber Layer Thickness and Retinal Ganglion Cell Density after Optic Nerve Transection in Rat,” PLoS One 9(11), e113011 (2014).
[Crossref] [PubMed]

C. J. Abbott, T. E. Choe, T. A. Lusardi, C. F. Burgoyne, L. Wang, and B. Fortune, “Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats,” Invest. Ophthalmol. Vis. Sci. 55(2), 674–687 (2014).
[Crossref] [PubMed]

H. Yang, L. He, S. K. Gardiner, J. Reynaud, G. Williams, C. Hardin, N. G. Strouthidis, J. C. Downs, B. Fortune, and C. F. Burgoyne, “Age-related Differences in Longitudinal Structural Change by Spectral-Domain Optical Coherence Tomography in Early Experimental Glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6409–6420 (2014).
[Crossref] [PubMed]

C. J. Abbott, T. E. Choe, C. F. Burgoyne, G. Cull, L. Wang, and B. Fortune, “Comparison of Retinal Nerve Fiber Layer Thickness in Vivo and Axonal Transport after Chronic Intraocular Pressure Elevation in Young Versus Older Rats,” PLoS One 9(12), e114546 (2014).
[Crossref] [PubMed]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
[Crossref] [PubMed]

B. Fortune, T. E. Choe, J. Reynaud, C. Hardin, G. A. Cull, C. F. Burgoyne, and L. Wang, “Deformation of the Rodent Optic Nerve Head and Peripapillary Structures during Acute Intraocular Pressure Elevation,” Invest. Ophthalmol. Vis. Sci. 52(9), 6651–6661 (2011).
[Crossref] [PubMed]

B. Fortune, H. Yang, N. G. Strouthidis, G. A. Cull, J. L. Grimm, J. C. Downs, and C. F. Burgoyne, “The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance,” Invest. Ophthalmol. Vis. Sci. 50(10), 4719–4726 (2009).
[Crossref] [PubMed]

B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci. 46(1), 202–213 (2005).
[Crossref] [PubMed]

Fukuda, S.

Gardiner, S. K.

S. K. Gardiner, S. Demirel, J. Reynaud, and B. Fortune, “Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 57(3), 1221–1227 (2016).
[Crossref] [PubMed]

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model,” Exp. Eye Res. 145, 173–186 (2016).
[Crossref] [PubMed]

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes,” Exp. Eye Res. 139, 1–12 (2015).
[Crossref] [PubMed]

H. Yang, L. He, S. K. Gardiner, J. Reynaud, G. Williams, C. Hardin, N. G. Strouthidis, J. C. Downs, B. Fortune, and C. F. Burgoyne, “Age-related Differences in Longitudinal Structural Change by Spectral-Domain Optical Coherence Tomography in Early Experimental Glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6409–6420 (2014).
[Crossref] [PubMed]

Girard, M. J. A.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Glösmann, M.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT Enables Longitudinal Study of Retinal Changes in a VLDLR Knockout Mouse Model,” PLoS One 11(10), e0164419 (2016).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1479–1495 (2016).
[Crossref] [PubMed]

B. Baumann, S. Rauscher, M. Glösmann, E. Götzinger, M. Pircher, S. Fialová, M. Gröger, and C. K. Hitzenberger, “Peripapillary Rat Sclera Investigated In Vivo With Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 55(11), 7686–7696 (2014).
[Crossref] [PubMed]

Goetzinger, E.

Gold, B. G.

J. C. Morrison, C. G. Moore, L. M. Deppmeier, B. G. Gold, C. K. Meshul, and E. C. Johnson, “A rat model of chronic pressure-induced optic nerve damage,” Exp. Eye Res. 64(1), 85–96 (1997).
[Crossref] [PubMed]

Götzinger, E.

B. Baumann, S. Rauscher, M. Glösmann, E. Götzinger, M. Pircher, S. Fialová, M. Gröger, and C. K. Hitzenberger, “Peripapillary Rat Sclera Investigated In Vivo With Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 55(11), 7686–7696 (2014).
[Crossref] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

Grimm, J. L.

B. Fortune, H. Yang, N. G. Strouthidis, G. A. Cull, J. L. Grimm, J. C. Downs, and C. F. Burgoyne, “The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance,” Invest. Ophthalmol. Vis. Sci. 50(10), 4719–4726 (2009).
[Crossref] [PubMed]

Gröger, M.

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1479–1495 (2016).
[Crossref] [PubMed]

B. Baumann, S. Rauscher, M. Glösmann, E. Götzinger, M. Pircher, S. Fialová, M. Gröger, and C. K. Hitzenberger, “Peripapillary Rat Sclera Investigated In Vivo With Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 55(11), 7686–7696 (2014).
[Crossref] [PubMed]

Gurdita, A.

V. Choh, A. Gurdita, B. Tan, R. C. Prasad, K. Bizheva, and K. M. Joos, “Short-Term Moderately Elevated Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses,” Invest. Ophthalmol. Vis. Sci. 57(4), 2140–2151 (2016).
[Crossref] [PubMed]

Hardin, C.

B. Fortune, J. Reynaud, C. Hardin, L. Wang, I. A. Sigal, and C. F. Burgoyne, “Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury,” Invest. Ophthalmol. Vis. Sci. 57(10), 4403–4411 (2016).
[Crossref] [PubMed]

H. Yang, L. He, S. K. Gardiner, J. Reynaud, G. Williams, C. Hardin, N. G. Strouthidis, J. C. Downs, B. Fortune, and C. F. Burgoyne, “Age-related Differences in Longitudinal Structural Change by Spectral-Domain Optical Coherence Tomography in Early Experimental Glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6409–6420 (2014).
[Crossref] [PubMed]

B. Fortune, T. E. Choe, J. Reynaud, C. Hardin, G. A. Cull, C. F. Burgoyne, and L. Wang, “Deformation of the Rodent Optic Nerve Head and Peripapillary Structures during Acute Intraocular Pressure Elevation,” Invest. Ophthalmol. Vis. Sci. 52(9), 6651–6661 (2011).
[Crossref] [PubMed]

Harper, D. J.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT Enables Longitudinal Study of Retinal Changes in a VLDLR Knockout Mouse Model,” PLoS One 11(10), e0164419 (2016).
[Crossref] [PubMed]

Hart, R. T.

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res. 24(1), 39–73 (2005).
[Crossref] [PubMed]

J. C. Downs, J.-K. F. Suh, K. A. Thomas, A. J. Bellezza, R. T. Hart, and C. F. Burgoyne, “Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes,” Invest. Ophthalmol. Vis. Sci. 46(2), 540–546 (2005).
[Crossref] [PubMed]

He, L.

H. Yang, L. He, S. K. Gardiner, J. Reynaud, G. Williams, C. Hardin, N. G. Strouthidis, J. C. Downs, B. Fortune, and C. F. Burgoyne, “Age-related Differences in Longitudinal Structural Change by Spectral-Domain Optical Coherence Tomography in Early Experimental Glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6409–6420 (2014).
[Crossref] [PubMed]

Himmel, T.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT Enables Longitudinal Study of Retinal Changes in a VLDLR Knockout Mouse Model,” PLoS One 11(10), e0164419 (2016).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1479–1495 (2016).
[Crossref] [PubMed]

Hirose, F.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT Enables Longitudinal Study of Retinal Changes in a VLDLR Knockout Mouse Model,” PLoS One 11(10), e0164419 (2016).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1479–1495 (2016).
[Crossref] [PubMed]

M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
[Crossref] [PubMed]

B. Baumann, S. Rauscher, M. Glösmann, E. Götzinger, M. Pircher, S. Fialová, M. Gröger, and C. K. Hitzenberger, “Peripapillary Rat Sclera Investigated In Vivo With Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 55(11), 7686–7696 (2014).
[Crossref] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

Ho, D.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

Ho, L. C.

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

L. C. Ho, I. A. Sigal, N.-J. Jan, A. Squires, Z. Tse, E. X. Wu, S.-G. Kim, J. S. Schuman, and K. C. Chan, “Magic Angle-Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading,” Invest. Ophthalmol. Vis. Sci. 55(9), 5662–5672 (2014).
[Crossref] [PubMed]

Holzer, S.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Hong, Y.-J.

Huang, X.-R.

X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance Decreases before Thickness Changes in the Retinal Nerve Fiber Layer in Glaucomatous Retinas,” Invest. Ophthalmol. Vis. Sci. 52(9), 6737–6742 (2011).
[Crossref] [PubMed]

Ikuno, Y.

Ishii, K.

Jaliffa, C. O.

M. C. Moreno, H. J. Marcos, J. Oscar Croxatto, P. H. Sande, J. Campanelli, C. O. Jaliffa, J. Benozzi, and R. E. Rosenstein, “A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid,” Exp. Eye Res. 81(1), 71–80 (2005).
[Crossref] [PubMed]

Jan, N.-J.

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

L. C. Ho, I. A. Sigal, N.-J. Jan, A. Squires, Z. Tse, E. X. Wu, S.-G. Kim, J. S. Schuman, and K. C. Chan, “Magic Angle-Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading,” Invest. Ophthalmol. Vis. Sci. 55(9), 5662–5672 (2014).
[Crossref] [PubMed]

Jayaram, H.

Z. Zhi, W. Cepurna, E. Johnson, H. Jayaram, J. Morrison, and R. K. Wang, “Evaluation of the effect of elevated intraocular pressure and reduced ocular perfusion pressure on retinal capillary bed filling and total retinal blood flow in rats by OMAG/OCT,” Microvasc. Res. 101, 86–95 (2015).
[Crossref] [PubMed]

Jia, L.

J. C. Morrison, E. C. Johnson, W. Cepurna, and L. Jia, “Understanding mechanisms of pressure-induced optic nerve damage,” Prog. Retin. Eye Res. 24(2), 217–240 (2005).
[Crossref] [PubMed]

Jin, T.

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

Joda, A.

C. Whitford, A. Joda, S. Jones, F. Bao, P. Rama, and A. Elsheikh, “Ex vivo testing of intact eye globes under inflation conditions to determine regional variation of mechanical stiffness,” Eye Vis (Lond) 3(1), 21 (2016).
[Crossref] [PubMed]

Johnson, E.

Z. Zhi, W. Cepurna, E. Johnson, H. Jayaram, J. Morrison, and R. K. Wang, “Evaluation of the effect of elevated intraocular pressure and reduced ocular perfusion pressure on retinal capillary bed filling and total retinal blood flow in rats by OMAG/OCT,” Microvasc. Res. 101, 86–95 (2015).
[Crossref] [PubMed]

Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express 2(3), 579–591 (2011).
[Crossref] [PubMed]

Johnson, E. C.

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model,” Exp. Eye Res. 145, 173–186 (2016).
[Crossref] [PubMed]

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes,” Exp. Eye Res. 139, 1–12 (2015).
[Crossref] [PubMed]

Z. Zhi, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and R. K. Wang, “Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography,” Biomed. Opt. Express 3(9), 2220–2233 (2012).
[Crossref] [PubMed]

J. C. Morrison, W. O. Cepurna Ying Guo, and E. C. Johnson, “Pathophysiology of human glaucomatous optic nerve damage: Insights from rodent models of glaucoma,” Exp. Eye Res. 93(2), 156–164 (2011).
[Crossref] [PubMed]

J. C. Morrison, E. C. Johnson, W. Cepurna, and L. Jia, “Understanding mechanisms of pressure-induced optic nerve damage,” Prog. Retin. Eye Res. 24(2), 217–240 (2005).
[Crossref] [PubMed]

J. C. Morrison, C. G. Moore, L. M. Deppmeier, B. G. Gold, C. K. Meshul, and E. C. Johnson, “A rat model of chronic pressure-induced optic nerve damage,” Exp. Eye Res. 64(1), 85–96 (1997).
[Crossref] [PubMed]

Jones, H.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Jones, S.

C. Whitford, A. Joda, S. Jones, F. Bao, P. Rama, and A. Elsheikh, “Ex vivo testing of intact eye globes under inflation conditions to determine regional variation of mechanical stiffness,” Eye Vis (Lond) 3(1), 21 (2016).
[Crossref] [PubMed]

Joos, K. M.

V. Choh, A. Gurdita, B. Tan, R. C. Prasad, K. Bizheva, and K. M. Joos, “Short-Term Moderately Elevated Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses,” Invest. Ophthalmol. Vis. Sci. 57(4), 2140–2151 (2016).
[Crossref] [PubMed]

K. M. Joos, C. Li, and R. M. Sappington, “Morphometric changes in the rat optic nerve following short-term intermittent elevations in intraocular pressure,” Invest. Ophthalmol. Vis. Sci. 51(12), 6431–6440 (2010).
[Crossref] [PubMed]

Kaarniranta, K.

A. Smedowski, M. Pietrucha-Dutczak, K. Kaarniranta, and J. Lewin-Kowalik, “A rat experimental model of glaucoma incorporating rapid-onset elevation of intraocular pressure,” Sci. Rep. 4, 5910 (2014).
[Crossref] [PubMed]

Kasaragod, D.

Khaw, P. T.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Kim, S.-G.

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

L. C. Ho, I. A. Sigal, N.-J. Jan, A. Squires, Z. Tse, E. X. Wu, S.-G. Kim, J. S. Schuman, and K. C. Chan, “Magic Angle-Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading,” Invest. Ophthalmol. Vis. Sci. 55(9), 5662–5672 (2014).
[Crossref] [PubMed]

Kimball, E. C.

J. K. Pijanka, E. C. Kimball, M. E. Pease, A. Abass, T. Sorensen, T. D. Nguyen, H. A. Quigley, and C. Boote, “Changes in scleral collagen organization in murine chronic experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6554–6564 (2014).
[Crossref] [PubMed]

Knighton, R. W.

X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance Decreases before Thickness Changes in the Retinal Nerve Fiber Layer in Glaucomatous Retinas,” Invest. Ophthalmol. Vis. Sci. 52(9), 6737–6742 (2011).
[Crossref] [PubMed]

R. W. Knighton, C. Baverez, and A. Bhattacharya, “The Directional Reflectance of the Retinal Nerve Fiber Layer of the Toad,” Invest. Ophthalmol. Vis. Sci. 33(9), 2603–2611 (1992).
[PubMed]

Kong, W.

X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance Decreases before Thickness Changes in the Retinal Nerve Fiber Layer in Glaucomatous Retinas,” Invest. Ophthalmol. Vis. Sci. 52(9), 6737–6742 (2011).
[Crossref] [PubMed]

Kroisamer, J.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Lengheimer, T.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT Enables Longitudinal Study of Retinal Changes in a VLDLR Knockout Mouse Model,” PLoS One 11(10), e0164419 (2016).
[Crossref] [PubMed]

Leung, C. K.

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

Leung, C. K. S.

G. Xu, R. N. Weinreb, and C. K. S. Leung, “Retinal nerve fiber layer progression in glaucoma: A comparison between retinal nerve fiber layer thickness and retardance,” Ophthalmology 120(12), 2493–2500 (2013).
[Crossref] [PubMed]

Lewin-Kowalik, J.

A. Smedowski, M. Pietrucha-Dutczak, K. Kaarniranta, and J. Lewin-Kowalik, “A rat experimental model of glaucoma incorporating rapid-onset elevation of intraocular pressure,” Sci. Rep. 4, 5910 (2014).
[Crossref] [PubMed]

Li, C.

K. M. Joos, C. Li, and R. M. Sappington, “Morphometric changes in the rat optic nerve following short-term intermittent elevations in intraocular pressure,” Invest. Ophthalmol. Vis. Sci. 51(12), 6431–6440 (2010).
[Crossref] [PubMed]

Lim, Y.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS One 7(9), e44026 (2012).
[Crossref] [PubMed]

Liu, S.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

Lusardi, T. A.

C. J. Abbott, T. E. Choe, T. A. Lusardi, C. F. Burgoyne, L. Wang, and B. Fortune, “Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats,” Invest. Ophthalmol. Vis. Sci. 55(2), 674–687 (2014).
[Crossref] [PubMed]

Makihira, T.

Makita, S.

S. Sugiyama, Y.-J. Hong, D. Kasaragod, S. Makita, S. Uematsu, Y. Ikuno, M. Miura, and Y. Yasuno, “Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography,” Biomed. Opt. Express 6(12), 4951–4974 (2015).
[Crossref] [PubMed]

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS One 7(9), e44026 (2012).
[Crossref] [PubMed]

Marcos, H. J.

M. C. Moreno, H. J. Marcos, J. Oscar Croxatto, P. H. Sande, J. Campanelli, C. O. Jaliffa, J. Benozzi, and R. E. Rosenstein, “A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid,” Exp. Eye Res. 81(1), 71–80 (2005).
[Crossref] [PubMed]

Markey, M. K.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

McElroy, A.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

Medeiros, F. A.

F. A. Medeiros, L. M. Alencar, L. M. Zangwill, C. Bowd, G. Vizzeri, P. A. Sample, and R. N. Weinreb, “Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation,” Invest. Ophthalmol. Vis. Sci. 50(4), 1675–1681 (2009).
[Crossref] [PubMed]

Meshul, C. K.

J. C. Morrison, C. G. Moore, L. M. Deppmeier, B. G. Gold, C. K. Meshul, and E. C. Johnson, “A rat model of chronic pressure-induced optic nerve damage,” Exp. Eye Res. 64(1), 85–96 (1997).
[Crossref] [PubMed]

Metscher, B. D.

B. D. Metscher, “MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions,” Dev. Dyn. 238(3), 632–640 (2009).
[Crossref] [PubMed]

Milner, T.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

Mittag, T. W.

T. W. Mittag, J. Danias, G. Pohorenec, H. M. Yuan, E. Burakgazi, R. Chalmers-Redman, S. M. Podos, and W. G. Tatton, “Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model,” Invest. Ophthalmol. Vis. Sci. 41(11), 3451–3459 (2000).
[PubMed]

Miura, M.

Moore, C. G.

J. C. Morrison, C. G. Moore, L. M. Deppmeier, B. G. Gold, C. K. Meshul, and E. C. Johnson, “A rat model of chronic pressure-induced optic nerve damage,” Exp. Eye Res. 64(1), 85–96 (1997).
[Crossref] [PubMed]

Moreno, M. C.

M. C. Moreno, H. J. Marcos, J. Oscar Croxatto, P. H. Sande, J. Campanelli, C. O. Jaliffa, J. Benozzi, and R. E. Rosenstein, “A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid,” Exp. Eye Res. 81(1), 71–80 (2005).
[Crossref] [PubMed]

Morrison, J.

Z. Zhi, W. Cepurna, E. Johnson, H. Jayaram, J. Morrison, and R. K. Wang, “Evaluation of the effect of elevated intraocular pressure and reduced ocular perfusion pressure on retinal capillary bed filling and total retinal blood flow in rats by OMAG/OCT,” Microvasc. Res. 101, 86–95 (2015).
[Crossref] [PubMed]

Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express 2(3), 579–591 (2011).
[Crossref] [PubMed]

Morrison, J. C.

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model,” Exp. Eye Res. 145, 173–186 (2016).
[Crossref] [PubMed]

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes,” Exp. Eye Res. 139, 1–12 (2015).
[Crossref] [PubMed]

Z. Zhi, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and R. K. Wang, “Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography,” Biomed. Opt. Express 3(9), 2220–2233 (2012).
[Crossref] [PubMed]

J. C. Morrison, W. O. Cepurna Ying Guo, and E. C. Johnson, “Pathophysiology of human glaucomatous optic nerve damage: Insights from rodent models of glaucoma,” Exp. Eye Res. 93(2), 156–164 (2011).
[Crossref] [PubMed]

J. C. Morrison, E. C. Johnson, W. Cepurna, and L. Jia, “Understanding mechanisms of pressure-induced optic nerve damage,” Prog. Retin. Eye Res. 24(2), 217–240 (2005).
[Crossref] [PubMed]

J. C. Morrison, C. G. Moore, L. M. Deppmeier, B. G. Gold, C. K. Meshul, and E. C. Johnson, “A rat model of chronic pressure-induced optic nerve damage,” Exp. Eye Res. 64(1), 85–96 (1997).
[Crossref] [PubMed]

Mukaka, M. M.

M. M. Mukaka, “Statistics corner: A guide to appropriate use of correlation coefficient in medical research,” Malawi Med. J. 24(3), 69–71 (2012).
[PubMed]

Nagase, S.

Nguyen, C.

E. Cone-Kimball, C. Nguyen, E. N. Oglesby, M. E. Pease, M. R. Steinhart, and H. A. Quigley, “Scleral structural alterations associated with chronic experimental intraocular pressure elevation in mice,” Mol. Vis. 19, 2023–2039 (2013).
[PubMed]

Nguyen, T. D.

J. K. Pijanka, E. C. Kimball, M. E. Pease, A. Abass, T. Sorensen, T. D. Nguyen, H. A. Quigley, and C. Boote, “Changes in scleral collagen organization in murine chronic experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6554–6564 (2014).
[Crossref] [PubMed]

Oglesby, E. N.

E. Cone-Kimball, C. Nguyen, E. N. Oglesby, M. E. Pease, M. R. Steinhart, and H. A. Quigley, “Scleral structural alterations associated with chronic experimental intraocular pressure elevation in mice,” Mol. Vis. 19, 2023–2039 (2013).
[PubMed]

Oscar Croxatto, J.

M. C. Moreno, H. J. Marcos, J. Oscar Croxatto, P. H. Sande, J. Campanelli, C. O. Jaliffa, J. Benozzi, and R. E. Rosenstein, “A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid,” Exp. Eye Res. 81(1), 71–80 (2005).
[Crossref] [PubMed]

Oshika, T.

Park, B. H.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

Pazos, M.

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model,” Exp. Eye Res. 145, 173–186 (2016).
[Crossref] [PubMed]

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes,” Exp. Eye Res. 139, 1–12 (2015).
[Crossref] [PubMed]

Pease, M. E.

J. K. Pijanka, E. C. Kimball, M. E. Pease, A. Abass, T. Sorensen, T. D. Nguyen, H. A. Quigley, and C. Boote, “Changes in scleral collagen organization in murine chronic experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6554–6564 (2014).
[Crossref] [PubMed]

E. Cone-Kimball, C. Nguyen, E. N. Oglesby, M. E. Pease, M. R. Steinhart, and H. A. Quigley, “Scleral structural alterations associated with chronic experimental intraocular pressure elevation in mice,” Mol. Vis. 19, 2023–2039 (2013).
[PubMed]

Pierce, M. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

Pietrucha-Dutczak, M.

A. Smedowski, M. Pietrucha-Dutczak, K. Kaarniranta, and J. Lewin-Kowalik, “A rat experimental model of glaucoma incorporating rapid-onset elevation of intraocular pressure,” Sci. Rep. 4, 5910 (2014).
[Crossref] [PubMed]

Pijanka, J. K.

J. K. Pijanka, E. C. Kimball, M. E. Pease, A. Abass, T. Sorensen, T. D. Nguyen, H. A. Quigley, and C. Boote, “Changes in scleral collagen organization in murine chronic experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6554–6564 (2014).
[Crossref] [PubMed]

Piper, C.

T. E. Choe, C. J. Abbott, C. Piper, L. Wang, and B. Fortune, “Comparison of Longitudinal In Vivo Measurements of Retinal Nerve Fiber Layer Thickness and Retinal Ganglion Cell Density after Optic Nerve Transection in Rat,” PLoS One 9(11), e113011 (2014).
[Crossref] [PubMed]

Pircher, M.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT Enables Longitudinal Study of Retinal Changes in a VLDLR Knockout Mouse Model,” PLoS One 11(10), e0164419 (2016).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1479–1495 (2016).
[Crossref] [PubMed]

M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
[Crossref] [PubMed]

B. Baumann, S. Rauscher, M. Glösmann, E. Götzinger, M. Pircher, S. Fialová, M. Gröger, and C. K. Hitzenberger, “Peripapillary Rat Sclera Investigated In Vivo With Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 55(11), 7686–7696 (2014).
[Crossref] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[Crossref] [PubMed]

Plasenzotti, R.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT Enables Longitudinal Study of Retinal Changes in a VLDLR Knockout Mouse Model,” PLoS One 11(10), e0164419 (2016).
[Crossref] [PubMed]

Podos, S. M.

T. W. Mittag, J. Danias, G. Pohorenec, H. M. Yuan, E. Burakgazi, R. Chalmers-Redman, S. M. Podos, and W. G. Tatton, “Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model,” Invest. Ophthalmol. Vis. Sci. 41(11), 3451–3459 (2000).
[PubMed]

Pohorenec, G.

T. W. Mittag, J. Danias, G. Pohorenec, H. M. Yuan, E. Burakgazi, R. Chalmers-Redman, S. M. Podos, and W. G. Tatton, “Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model,” Invest. Ophthalmol. Vis. Sci. 41(11), 3451–3459 (2000).
[PubMed]

Prasad, R. C.

V. Choh, A. Gurdita, B. Tan, R. C. Prasad, K. Bizheva, and K. M. Joos, “Short-Term Moderately Elevated Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses,” Invest. Ophthalmol. Vis. Sci. 57(4), 2140–2151 (2016).
[Crossref] [PubMed]

Quigley, H.

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic Validation of Fourier-Ellipsometry Measurements of Retinal Nerve Fiber Layer Thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

Quigley, H. A.

J. K. Pijanka, E. C. Kimball, M. E. Pease, A. Abass, T. Sorensen, T. D. Nguyen, H. A. Quigley, and C. Boote, “Changes in scleral collagen organization in murine chronic experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6554–6564 (2014).
[Crossref] [PubMed]

E. Cone-Kimball, C. Nguyen, E. N. Oglesby, M. E. Pease, M. R. Steinhart, and H. A. Quigley, “Scleral structural alterations associated with chronic experimental intraocular pressure elevation in mice,” Mol. Vis. 19, 2023–2039 (2013).
[PubMed]

H. A. Quigley, “Glaucoma,” Lancet 377(9774), 1367–1377 (2011).
[Crossref] [PubMed]

Rama, P.

C. Whitford, A. Joda, S. Jones, F. Bao, P. Rama, and A. Elsheikh, “Ex vivo testing of intact eye globes under inflation conditions to determine regional variation of mechanical stiffness,” Eye Vis (Lond) 3(1), 21 (2016).
[Crossref] [PubMed]

Rauscher, S.

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1479–1495 (2016).
[Crossref] [PubMed]

B. Baumann, S. Rauscher, M. Glösmann, E. Götzinger, M. Pircher, S. Fialová, M. Gröger, and C. K. Hitzenberger, “Peripapillary Rat Sclera Investigated In Vivo With Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 55(11), 7686–7696 (2014).
[Crossref] [PubMed]

Rayapureddi, S.

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

Reiter, K.

A. W. Dreher, K. Reiter, and R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31(19), 3730–3735 (1992).
[Crossref] [PubMed]

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic Validation of Fourier-Ellipsometry Measurements of Retinal Nerve Fiber Layer Thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

Reynaud, J.

B. Fortune, J. Reynaud, C. Hardin, L. Wang, I. A. Sigal, and C. F. Burgoyne, “Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury,” Invest. Ophthalmol. Vis. Sci. 57(10), 4403–4411 (2016).
[Crossref] [PubMed]

S. K. Gardiner, S. Demirel, J. Reynaud, and B. Fortune, “Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 57(3), 1221–1227 (2016).
[Crossref] [PubMed]

H. Yang, L. He, S. K. Gardiner, J. Reynaud, G. Williams, C. Hardin, N. G. Strouthidis, J. C. Downs, B. Fortune, and C. F. Burgoyne, “Age-related Differences in Longitudinal Structural Change by Spectral-Domain Optical Coherence Tomography in Early Experimental Glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6409–6420 (2014).
[Crossref] [PubMed]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
[Crossref] [PubMed]

B. Fortune, T. E. Choe, J. Reynaud, C. Hardin, G. A. Cull, C. F. Burgoyne, and L. Wang, “Deformation of the Rodent Optic Nerve Head and Peripapillary Structures during Acute Intraocular Pressure Elevation,” Invest. Ophthalmol. Vis. Sci. 52(9), 6651–6661 (2011).
[Crossref] [PubMed]

Roberts, P.

Rosenstein, R. E.

M. C. Moreno, H. J. Marcos, J. Oscar Croxatto, P. H. Sande, J. Campanelli, C. O. Jaliffa, J. Benozzi, and R. E. Rosenstein, “A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid,” Exp. Eye Res. 81(1), 71–80 (2005).
[Crossref] [PubMed]

Ruiz, G.

E. WoldeMussie, G. Ruiz, M. Wijono, and L. A. Wheeler, “Neuroprotection of Retinal Ganglion Cells by Brimonidine in Rats with Laser-Induced Chronic Ocular Hypertension,” Invest. Ophthalmol. Vis. Sci. 42(12), 2849–2855 (2001).
[PubMed]

Rylander, H. G.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

Sample, P. A.

F. A. Medeiros, L. M. Alencar, L. M. Zangwill, C. Bowd, G. Vizzeri, P. A. Sample, and R. N. Weinreb, “Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation,” Invest. Ophthalmol. Vis. Sci. 50(4), 1675–1681 (2009).
[Crossref] [PubMed]

Sande, P. H.

M. C. Moreno, H. J. Marcos, J. Oscar Croxatto, P. H. Sande, J. Campanelli, C. O. Jaliffa, J. Benozzi, and R. E. Rosenstein, “A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid,” Exp. Eye Res. 81(1), 71–80 (2005).
[Crossref] [PubMed]

Sappington, R. M.

K. M. Joos, C. Li, and R. M. Sappington, “Morphometric changes in the rat optic nerve following short-term intermittent elevations in intraocular pressure,” Invest. Ophthalmol. Vis. Sci. 51(12), 6431–6440 (2010).
[Crossref] [PubMed]

Sato, M.

Schmidt-Erfurth, U.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Schuman, J. S.

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

L. C. Ho, I. A. Sigal, N.-J. Jan, A. Squires, Z. Tse, E. X. Wu, S.-G. Kim, J. S. Schuman, and K. C. Chan, “Magic Angle-Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading,” Invest. Ophthalmol. Vis. Sci. 55(9), 5662–5672 (2014).
[Crossref] [PubMed]

Shaw, B.

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic Validation of Fourier-Ellipsometry Measurements of Retinal Nerve Fiber Layer Thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

Shen, T.

Sigal, I. A.

B. Fortune, J. Reynaud, C. Hardin, L. Wang, I. A. Sigal, and C. F. Burgoyne, “Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury,” Invest. Ophthalmol. Vis. Sci. 57(10), 4403–4411 (2016).
[Crossref] [PubMed]

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

L. C. Ho, I. A. Sigal, N.-J. Jan, A. Squires, Z. Tse, E. X. Wu, S.-G. Kim, J. S. Schuman, and K. C. Chan, “Magic Angle-Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading,” Invest. Ophthalmol. Vis. Sci. 55(9), 5662–5672 (2014).
[Crossref] [PubMed]

Smedowski, A.

A. Smedowski, M. Pietrucha-Dutczak, K. Kaarniranta, and J. Lewin-Kowalik, “A rat experimental model of glaucoma incorporating rapid-onset elevation of intraocular pressure,” Sci. Rep. 4, 5910 (2014).
[Crossref] [PubMed]

Sorensen, T.

J. K. Pijanka, E. C. Kimball, M. E. Pease, A. Abass, T. Sorensen, T. D. Nguyen, H. A. Quigley, and C. Boote, “Changes in scleral collagen organization in murine chronic experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6554–6564 (2014).
[Crossref] [PubMed]

Squires, A.

L. C. Ho, I. A. Sigal, N.-J. Jan, A. Squires, Z. Tse, E. X. Wu, S.-G. Kim, J. S. Schuman, and K. C. Chan, “Magic Angle-Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading,” Invest. Ophthalmol. Vis. Sci. 55(9), 5662–5672 (2014).
[Crossref] [PubMed]

Steinhart, M. R.

E. Cone-Kimball, C. Nguyen, E. N. Oglesby, M. E. Pease, M. R. Steinhart, and H. A. Quigley, “Scleral structural alterations associated with chronic experimental intraocular pressure elevation in mice,” Mol. Vis. 19, 2023–2039 (2013).
[PubMed]

Sticker, M.

Strouthidis, N. G.

H. Yang, L. He, S. K. Gardiner, J. Reynaud, G. Williams, C. Hardin, N. G. Strouthidis, J. C. Downs, B. Fortune, and C. F. Burgoyne, “Age-related Differences in Longitudinal Structural Change by Spectral-Domain Optical Coherence Tomography in Early Experimental Glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6409–6420 (2014).
[Crossref] [PubMed]

B. Fortune, H. Yang, N. G. Strouthidis, G. A. Cull, J. L. Grimm, J. C. Downs, and C. F. Burgoyne, “The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance,” Invest. Ophthalmol. Vis. Sci. 50(10), 4719–4726 (2009).
[Crossref] [PubMed]

Sugita, M.

Sugiyama, S.

Suh, J.-K. F.

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res. 24(1), 39–73 (2005).
[Crossref] [PubMed]

J. C. Downs, J.-K. F. Suh, K. A. Thomas, A. J. Bellezza, R. T. Hart, and C. F. Burgoyne, “Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes,” Invest. Ophthalmol. Vis. Sci. 46(2), 540–546 (2005).
[Crossref] [PubMed]

Tan, B.

V. Choh, A. Gurdita, B. Tan, R. C. Prasad, K. Bizheva, and K. M. Joos, “Short-Term Moderately Elevated Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses,” Invest. Ophthalmol. Vis. Sci. 57(4), 2140–2151 (2016).
[Crossref] [PubMed]

Tanaka, R.

Tatton, W. G.

T. W. Mittag, J. Danias, G. Pohorenec, H. M. Yuan, E. Burakgazi, R. Chalmers-Redman, S. M. Podos, and W. G. Tatton, “Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model,” Invest. Ophthalmol. Vis. Sci. 41(11), 3451–3459 (2000).
[PubMed]

Thomas, K. A.

J. C. Downs, J.-K. F. Suh, K. A. Thomas, A. J. Bellezza, R. T. Hart, and C. F. Burgoyne, “Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes,” Invest. Ophthalmol. Vis. Sci. 46(2), 540–546 (2005).
[Crossref] [PubMed]

Tomatsu, N.

Torzicky, T.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Tse, Z.

L. C. Ho, I. A. Sigal, N.-J. Jan, A. Squires, Z. Tse, E. X. Wu, S.-G. Kim, J. S. Schuman, and K. C. Chan, “Magic Angle-Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading,” Invest. Ophthalmol. Vis. Sci. 55(9), 5662–5672 (2014).
[Crossref] [PubMed]

Uematsu, S.

van der Merwe, Y.

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

Vass, C.

M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
[Crossref] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Vizzeri, G.

F. A. Medeiros, L. M. Alencar, L. M. Zangwill, C. Bowd, G. Vizzeri, P. A. Sample, and R. N. Weinreb, “Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation,” Invest. Ophthalmol. Vis. Sci. 50(4), 1675–1681 (2009).
[Crossref] [PubMed]

Wang, B.

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

Wang, L.

B. Fortune, J. Reynaud, C. Hardin, L. Wang, I. A. Sigal, and C. F. Burgoyne, “Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury,” Invest. Ophthalmol. Vis. Sci. 57(10), 4403–4411 (2016).
[Crossref] [PubMed]

C. J. Abbott, T. E. Choe, T. A. Lusardi, C. F. Burgoyne, L. Wang, and B. Fortune, “Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats,” Invest. Ophthalmol. Vis. Sci. 55(2), 674–687 (2014).
[Crossref] [PubMed]

T. E. Choe, C. J. Abbott, C. Piper, L. Wang, and B. Fortune, “Comparison of Longitudinal In Vivo Measurements of Retinal Nerve Fiber Layer Thickness and Retinal Ganglion Cell Density after Optic Nerve Transection in Rat,” PLoS One 9(11), e113011 (2014).
[Crossref] [PubMed]

C. J. Abbott, T. E. Choe, C. F. Burgoyne, G. Cull, L. Wang, and B. Fortune, “Comparison of Retinal Nerve Fiber Layer Thickness in Vivo and Axonal Transport after Chronic Intraocular Pressure Elevation in Young Versus Older Rats,” PLoS One 9(12), e114546 (2014).
[Crossref] [PubMed]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
[Crossref] [PubMed]

B. Fortune, T. E. Choe, J. Reynaud, C. Hardin, G. A. Cull, C. F. Burgoyne, and L. Wang, “Deformation of the Rodent Optic Nerve Head and Peripapillary Structures during Acute Intraocular Pressure Elevation,” Invest. Ophthalmol. Vis. Sci. 52(9), 6651–6661 (2011).
[Crossref] [PubMed]

Wang, R. K.

Weinreb, R. N.

G. Xu, R. N. Weinreb, and C. K. S. Leung, “Retinal nerve fiber layer progression in glaucoma: A comparison between retinal nerve fiber layer thickness and retardance,” Ophthalmology 120(12), 2493–2500 (2013).
[Crossref] [PubMed]

F. A. Medeiros, L. M. Alencar, L. M. Zangwill, C. Bowd, G. Vizzeri, P. A. Sample, and R. N. Weinreb, “Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation,” Invest. Ophthalmol. Vis. Sci. 50(4), 1675–1681 (2009).
[Crossref] [PubMed]

A. W. Dreher, K. Reiter, and R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31(19), 3730–3735 (1992).
[Crossref] [PubMed]

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic Validation of Fourier-Ellipsometry Measurements of Retinal Nerve Fiber Layer Thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

Wheeler, L. A.

E. WoldeMussie, G. Ruiz, M. Wijono, and L. A. Wheeler, “Neuroprotection of Retinal Ganglion Cells by Brimonidine in Rats with Laser-Induced Chronic Ocular Hypertension,” Invest. Ophthalmol. Vis. Sci. 42(12), 2849–2855 (2001).
[PubMed]

Whitford, C.

C. Whitford, A. Joda, S. Jones, F. Bao, P. Rama, and A. Elsheikh, “Ex vivo testing of intact eye globes under inflation conditions to determine regional variation of mechanical stiffness,” Eye Vis (Lond) 3(1), 21 (2016).
[Crossref] [PubMed]

Wijono, M.

E. WoldeMussie, G. Ruiz, M. Wijono, and L. A. Wheeler, “Neuroprotection of Retinal Ganglion Cells by Brimonidine in Rats with Laser-Induced Chronic Ocular Hypertension,” Invest. Ophthalmol. Vis. Sci. 42(12), 2849–2855 (2001).
[PubMed]

Williams, G.

H. Yang, L. He, S. K. Gardiner, J. Reynaud, G. Williams, C. Hardin, N. G. Strouthidis, J. C. Downs, B. Fortune, and C. F. Burgoyne, “Age-related Differences in Longitudinal Structural Change by Spectral-Domain Optical Coherence Tomography in Early Experimental Glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6409–6420 (2014).
[Crossref] [PubMed]

WoldeMussie, E.

E. WoldeMussie, G. Ruiz, M. Wijono, and L. A. Wheeler, “Neuroprotection of Retinal Ganglion Cells by Brimonidine in Rats with Laser-Induced Chronic Ocular Hypertension,” Invest. Ophthalmol. Vis. Sci. 42(12), 2849–2855 (2001).
[PubMed]

Wollstein, G.

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

Wu, E. X.

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

L. C. Ho, I. A. Sigal, N.-J. Jan, A. Squires, Z. Tse, E. X. Wu, S.-G. Kim, J. S. Schuman, and K. C. Chan, “Magic Angle-Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading,” Invest. Ophthalmol. Vis. Sci. 55(9), 5662–5672 (2014).
[Crossref] [PubMed]

Xu, G.

G. Xu, R. N. Weinreb, and C. K. S. Leung, “Retinal nerve fiber layer progression in glaucoma: A comparison between retinal nerve fiber layer thickness and retardance,” Ophthalmology 120(12), 2493–2500 (2013).
[Crossref] [PubMed]

Yamanari, M.

Yang, H.

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model,” Exp. Eye Res. 145, 173–186 (2016).
[Crossref] [PubMed]

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes,” Exp. Eye Res. 139, 1–12 (2015).
[Crossref] [PubMed]

H. Yang, L. He, S. K. Gardiner, J. Reynaud, G. Williams, C. Hardin, N. G. Strouthidis, J. C. Downs, B. Fortune, and C. F. Burgoyne, “Age-related Differences in Longitudinal Structural Change by Spectral-Domain Optical Coherence Tomography in Early Experimental Glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6409–6420 (2014).
[Crossref] [PubMed]

B. Fortune, H. Yang, N. G. Strouthidis, G. A. Cull, J. L. Grimm, J. C. Downs, and C. F. Burgoyne, “The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance,” Invest. Ophthalmol. Vis. Sci. 50(10), 4719–4726 (2009).
[Crossref] [PubMed]

Yang, X.

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

Yasui, T.

Yasuno, Y.

Yoshida, H.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Yu, Y.

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

Yuan, H. M.

T. W. Mittag, J. Danias, G. Pohorenec, H. M. Yuan, E. Burakgazi, R. Chalmers-Redman, S. M. Podos, and W. G. Tatton, “Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model,” Invest. Ophthalmol. Vis. Sci. 41(11), 3451–3459 (2000).
[PubMed]

Zangwill, L. M.

F. A. Medeiros, L. M. Alencar, L. M. Zangwill, C. Bowd, G. Vizzeri, P. A. Sample, and R. N. Weinreb, “Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation,” Invest. Ophthalmol. Vis. Sci. 50(4), 1675–1681 (2009).
[Crossref] [PubMed]

Zhi, Z.

Zhou, Y.

X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance Decreases before Thickness Changes in the Retinal Nerve Fiber Layer in Glaucomatous Retinas,” Invest. Ophthalmol. Vis. Sci. 52(9), 6737–6742 (2011).
[Crossref] [PubMed]

Zotter, S.

M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
[Crossref] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (1)

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic Validation of Fourier-Ellipsometry Measurements of Retinal Nerve Fiber Layer Thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

Biomed. Opt. Express (6)

M. Yamanari, S. Nagase, S. Fukuda, K. Ishii, R. Tanaka, T. Yasui, T. Oshika, M. Miura, and Y. Yasuno, “Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo,” Biomed. Opt. Express 5(5), 1391–1402 (2014).
[Crossref] [PubMed]

S. Sugiyama, Y.-J. Hong, D. Kasaragod, S. Makita, S. Uematsu, Y. Ikuno, M. Miura, and Y. Yasuno, “Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography,” Biomed. Opt. Express 6(12), 4951–4974 (2015).
[Crossref] [PubMed]

M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
[Crossref] [PubMed]

Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express 2(3), 579–591 (2011).
[Crossref] [PubMed]

Z. Zhi, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and R. K. Wang, “Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography,” Biomed. Opt. Express 3(9), 2220–2233 (2012).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7(4), 1479–1495 (2016).
[Crossref] [PubMed]

Dev. Dyn. (1)

B. D. Metscher, “MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions,” Dev. Dyn. 238(3), 632–640 (2009).
[Crossref] [PubMed]

Exp. Eye Res. (5)

J. C. Morrison, C. G. Moore, L. M. Deppmeier, B. G. Gold, C. K. Meshul, and E. C. Johnson, “A rat model of chronic pressure-induced optic nerve damage,” Exp. Eye Res. 64(1), 85–96 (1997).
[Crossref] [PubMed]

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model,” Exp. Eye Res. 145, 173–186 (2016).
[Crossref] [PubMed]

M. C. Moreno, H. J. Marcos, J. Oscar Croxatto, P. H. Sande, J. Campanelli, C. O. Jaliffa, J. Benozzi, and R. E. Rosenstein, “A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid,” Exp. Eye Res. 81(1), 71–80 (2005).
[Crossref] [PubMed]

J. C. Morrison, W. O. Cepurna Ying Guo, and E. C. Johnson, “Pathophysiology of human glaucomatous optic nerve damage: Insights from rodent models of glaucoma,” Exp. Eye Res. 93(2), 156–164 (2011).
[Crossref] [PubMed]

M. Pazos, H. Yang, S. K. Gardiner, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and C. F. Burgoyne, “Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes,” Exp. Eye Res. 139, 1–12 (2015).
[Crossref] [PubMed]

Eye Vis (Lond) (1)

C. Whitford, A. Joda, S. Jones, F. Bao, P. Rama, and A. Elsheikh, “Ex vivo testing of intact eye globes under inflation conditions to determine regional variation of mechanical stiffness,” Eye Vis (Lond) 3(1), 21 (2016).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (23)

B. Baumann, S. Rauscher, M. Glösmann, E. Götzinger, M. Pircher, S. Fialová, M. Gröger, and C. K. Hitzenberger, “Peripapillary Rat Sclera Investigated In Vivo With Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 55(11), 7686–7696 (2014).
[Crossref] [PubMed]

E. WoldeMussie, G. Ruiz, M. Wijono, and L. A. Wheeler, “Neuroprotection of Retinal Ganglion Cells by Brimonidine in Rats with Laser-Induced Chronic Ocular Hypertension,” Invest. Ophthalmol. Vis. Sci. 42(12), 2849–2855 (2001).
[PubMed]

J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[Crossref] [PubMed]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
[Crossref] [PubMed]

F. A. Medeiros, L. M. Alencar, L. M. Zangwill, C. Bowd, G. Vizzeri, P. A. Sample, and R. N. Weinreb, “Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation,” Invest. Ophthalmol. Vis. Sci. 50(4), 1675–1681 (2009).
[Crossref] [PubMed]

B. Fortune, T. E. Choe, J. Reynaud, C. Hardin, G. A. Cull, C. F. Burgoyne, and L. Wang, “Deformation of the Rodent Optic Nerve Head and Peripapillary Structures during Acute Intraocular Pressure Elevation,” Invest. Ophthalmol. Vis. Sci. 52(9), 6651–6661 (2011).
[Crossref] [PubMed]

H. Yang, L. He, S. K. Gardiner, J. Reynaud, G. Williams, C. Hardin, N. G. Strouthidis, J. C. Downs, B. Fortune, and C. F. Burgoyne, “Age-related Differences in Longitudinal Structural Change by Spectral-Domain Optical Coherence Tomography in Early Experimental Glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6409–6420 (2014).
[Crossref] [PubMed]

L. C. Ho, I. A. Sigal, N.-J. Jan, A. Squires, Z. Tse, E. X. Wu, S.-G. Kim, J. S. Schuman, and K. C. Chan, “Magic Angle-Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading,” Invest. Ophthalmol. Vis. Sci. 55(9), 5662–5672 (2014).
[Crossref] [PubMed]

J. K. Pijanka, E. C. Kimball, M. E. Pease, A. Abass, T. Sorensen, T. D. Nguyen, H. A. Quigley, and C. Boote, “Changes in scleral collagen organization in murine chronic experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 55(10), 6554–6564 (2014).
[Crossref] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

J. C. Downs, J.-K. F. Suh, K. A. Thomas, A. J. Bellezza, R. T. Hart, and C. F. Burgoyne, “Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes,” Invest. Ophthalmol. Vis. Sci. 46(2), 540–546 (2005).
[Crossref] [PubMed]

T. W. Mittag, J. Danias, G. Pohorenec, H. M. Yuan, E. Burakgazi, R. Chalmers-Redman, S. M. Podos, and W. G. Tatton, “Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model,” Invest. Ophthalmol. Vis. Sci. 41(11), 3451–3459 (2000).
[PubMed]

S. K. Gardiner, S. Demirel, J. Reynaud, and B. Fortune, “Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma,” Invest. Ophthalmol. Vis. Sci. 57(3), 1221–1227 (2016).
[Crossref] [PubMed]

C. J. Abbott, T. E. Choe, T. A. Lusardi, C. F. Burgoyne, L. Wang, and B. Fortune, “Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats,” Invest. Ophthalmol. Vis. Sci. 55(2), 674–687 (2014).
[Crossref] [PubMed]

K. M. Joos, C. Li, and R. M. Sappington, “Morphometric changes in the rat optic nerve following short-term intermittent elevations in intraocular pressure,” Invest. Ophthalmol. Vis. Sci. 51(12), 6431–6440 (2010).
[Crossref] [PubMed]

V. Choh, A. Gurdita, B. Tan, R. C. Prasad, K. Bizheva, and K. M. Joos, “Short-Term Moderately Elevated Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses,” Invest. Ophthalmol. Vis. Sci. 57(4), 2140–2151 (2016).
[Crossref] [PubMed]

B. Fortune, H. Yang, N. G. Strouthidis, G. A. Cull, J. L. Grimm, J. C. Downs, and C. F. Burgoyne, “The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance,” Invest. Ophthalmol. Vis. Sci. 50(10), 4719–4726 (2009).
[Crossref] [PubMed]

B. Fortune, J. Reynaud, C. Hardin, L. Wang, I. A. Sigal, and C. F. Burgoyne, “Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury,” Invest. Ophthalmol. Vis. Sci. 57(10), 4403–4411 (2016).
[Crossref] [PubMed]

X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance Decreases before Thickness Changes in the Retinal Nerve Fiber Layer in Glaucomatous Retinas,” Invest. Ophthalmol. Vis. Sci. 52(9), 6737–6742 (2011).
[Crossref] [PubMed]

R. W. Knighton, C. Baverez, and A. Bhattacharya, “The Directional Reflectance of the Retinal Nerve Fiber Layer of the Toad,” Invest. Ophthalmol. Vis. Sci. 33(9), 2603–2611 (1992).
[PubMed]

M. J. A. Girard, A. Dahlmann-Noor, S. Rayapureddi, J. A. Bechara, B. M. E. Bertin, H. Jones, J. Albon, P. T. Khaw, and C. R. Ethier, “Quantitative mapping of scleral fiber orientation in normal rat eyes,” Invest. Ophthalmol. Vis. Sci. 52(13), 9684–9693 (2011).
[Crossref] [PubMed]

B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci. 46(1), 202–213 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

J. Glaucoma (1)

C. F. Burgoyne and J. C. Downs, “Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head,” J. Glaucoma 17(4), 318–328 (2008).
[Crossref] [PubMed]

Lancet (1)

H. A. Quigley, “Glaucoma,” Lancet 377(9774), 1367–1377 (2011).
[Crossref] [PubMed]

Malawi Med. J. (1)

M. M. Mukaka, “Statistics corner: A guide to appropriate use of correlation coefficient in medical research,” Malawi Med. J. 24(3), 69–71 (2012).
[PubMed]

Microvasc. Res. (1)

Z. Zhi, W. Cepurna, E. Johnson, H. Jayaram, J. Morrison, and R. K. Wang, “Evaluation of the effect of elevated intraocular pressure and reduced ocular perfusion pressure on retinal capillary bed filling and total retinal blood flow in rats by OMAG/OCT,” Microvasc. Res. 101, 86–95 (2015).
[Crossref] [PubMed]

Mol. Vis. (1)

E. Cone-Kimball, C. Nguyen, E. N. Oglesby, M. E. Pease, M. R. Steinhart, and H. A. Quigley, “Scleral structural alterations associated with chronic experimental intraocular pressure elevation in mice,” Mol. Vis. 19, 2023–2039 (2013).
[PubMed]

Ophthalmology (1)

G. Xu, R. N. Weinreb, and C. K. S. Leung, “Retinal nerve fiber layer progression in glaucoma: A comparison between retinal nerve fiber layer thickness and retardance,” Ophthalmology 120(12), 2493–2500 (2013).
[Crossref] [PubMed]

Opt. Express (1)

PLoS One (4)

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT Enables Longitudinal Study of Retinal Changes in a VLDLR Knockout Mouse Model,” PLoS One 11(10), e0164419 (2016).
[Crossref] [PubMed]

C. J. Abbott, T. E. Choe, C. F. Burgoyne, G. Cull, L. Wang, and B. Fortune, “Comparison of Retinal Nerve Fiber Layer Thickness in Vivo and Axonal Transport after Chronic Intraocular Pressure Elevation in Young Versus Older Rats,” PLoS One 9(12), e114546 (2014).
[Crossref] [PubMed]

T. E. Choe, C. J. Abbott, C. Piper, L. Wang, and B. Fortune, “Comparison of Longitudinal In Vivo Measurements of Retinal Nerve Fiber Layer Thickness and Retinal Ganglion Cell Density after Optic Nerve Transection in Rat,” PLoS One 9(11), e113011 (2014).
[Crossref] [PubMed]

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS One 7(9), e44026 (2012).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (2)

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res. 24(1), 39–73 (2005).
[Crossref] [PubMed]

J. C. Morrison, E. C. Johnson, W. Cepurna, and L. Jia, “Understanding mechanisms of pressure-induced optic nerve damage,” Prog. Retin. Eye Res. 24(2), 217–240 (2005).
[Crossref] [PubMed]

Sci. Rep. (2)

L. C. Ho, I. A. Sigal, N.-J. Jan, X. Yang, Y. van der Merwe, Y. Yu, Y. Chau, C. K. Leung, I. P. Conner, T. Jin, E. X. Wu, S.-G. Kim, G. Wollstein, J. S. Schuman, and K. C. Chan, “Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation,” Sci. Rep. 6, 32080 (2016).
[Crossref] [PubMed]

A. Smedowski, M. Pietrucha-Dutczak, K. Kaarniranta, and J. Lewin-Kowalik, “A rat experimental model of glaucoma incorporating rapid-onset elevation of intraocular pressure,” Sci. Rep. 4, 5910 (2014).
[Crossref] [PubMed]

Trans. Am. Ophthalmol. Soc. (1)

B. J. Curtin, “Physiopathologic aspects of scleral stress-strain,” Trans. Am. Ophthalmol. Soc. 67, 417–461 (1969).
[PubMed]

Other (1)

Q. Zhou, J. Reed, R. W. Betts, P. K. Trost, P.-W. Lo, C. Wallace, R. H. Bienias, G. Li, R. Winnick, W. A. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with custom corneal compensation,” in Proc. SPIE Ophthalmic Technologies XIII, F. Manns, P. G. Söderberg, and A. Ho, eds. (2003), Vol. 4951, pp. 32–41.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Sketch of the experimental setup. (A) Sketch of the OCT system and cannulation of the eye. SLD - superluminescent diode, PC - polarization controller, SMF - single mode fiber, PMF - polarization maintaining fiber, GM - galvanometer mirrors, QWP - quarter wave plate, HWP - half wave plate, NPB - non-polarizing beam splitter, GTP - Glan-Thomson polarizer, PB - polarizing beam splitter, ND filter - neutral density filter. (B) Sketch of the spectrometer used in the OCT system. (C) Core of the Michelson interferometer used in the system. (D) 3D rendering of a data set acquired during the experiment (field of view 30° × 30°).
Fig. 2
Fig. 2 Exemplary high resolution PS-OCT images recorded during the experiment. (A) En face reflectivity projection at physiologic IOP, without the cannulation of the eye. (B) En face reflectivity projection at the pressure of 95 mmHg. A change of the intensity can be observed. (C) En face birefringence of the sclera at physiologic IOP and (D) at increased IOP of 95 mmHg. (E-P) Reflectivity and corresponding phase retardation B-scans recorded at the respective IOP levels. The red lines indicate the part of the sclera that was used in the birefringence evaluation. In (J) and (L), the optic nerve canal and optic nerve are visible. Low contrast of RNFL reflectivity is indicated by pink arrows. Extraorbital tissue is indicated by white arrows. ILM – internal limiting membrane, RNFL – retinal nerve fiber layer, IPL – inner plexiform layer, RPE – retinal pigment epithelium.
Fig. 3
Fig. 3 ONH depression (cupping). (A) 3D visualization of representative data sets together with en face depression maps. The location of the color bars at the right of each volume rendering indicates the color-coded displacement used in the depression maps. (B) En face depression maps for one animal aligned to the initial measurement with axial motion between B-scans corrected. (C) Average ONH depression measured in the annulus depicted in the first map in (B) in 5 animals (difference between data set at 14 mmHg and the successive data sets, mean ± standard deviation) (D) Individual ONH depression difference for each animal. Change in the depression is more apparent after 45 mmHg.
Fig. 4
Fig. 4 Scleral sling visualized at IOP ~95 mmHg. (A) En face reflectivity projection with marked position of cross sectional images. (B) Cross sectional phase retardation image in superior (S) – inferior (I) direction. (C) Cross sectional phase retardation image in nasal (N) - temporal (T) direction. Violet arrows point to the sclera between optic nerve and central retinal vessels (scleral sling).
Fig. 5
Fig. 5 Scleral birefringence. (A) 3D visualization of an exemplary reflectivity data set. Scleral birefringence was evaluated in the depicted bluish slab and is shown as a birefringence en face map beneath the volume rendering. (B) En face maps of scleral birefringence for an exemplary animal as response to elevated IOP. (C) Average scleral birefringence measured in the annulus depicted in the middle map in (B) in 5 animals. Scleral birefringence increased with elevated IOP. After lowering back to 14 mmHg, restored scleral birefringence values were observed in just one animal.
Fig. 6
Fig. 6 Retinal and scleral changes as a response to IOP elevation. (A) Average scleral birefringence shows an increase as a response to an elevated IOP from 14 to 45 mmHg. (B) The RNFL retardation does not show any strong correlation with IOP variation. (C) The RNFL/retina reflectivity ratio vs. IOP shows a moderate, negative correlation. In the middle column, the mean quantities ( ± standard deviation - STDEV) are plotted. All data points are plotted in the right column, where each dot represents the respective quantity for one animal at a given IOP. Measurements after lowering the IOP back to 14 mmHg are excluded from these plots. Linear regressions are shown for the lower IOP range of 14 – 45 mmHg. Value marked by asterisk was retrieved just from one data set.
Fig. 7
Fig. 7 Ex vivo µCT scan of a rat eye and head. (A) Tomogram through the rat eye. Densely packed structures like Harderian gland and muscles are visible. Deformations of the eye are due to preparation artifacts of the sample. (B) Rendered µCT data from the rat head. (C) Rendered µCT data together with sketch of the eye. (D) µCT visualization from the “en face” view similar as used for OCT scans. Color code: Red: oblique and rectus muscles; dark red: retractor bulbi, marked with white asterisk; grey: optic nerve sheath, marked with black asterisk; white: optic nerve, marked with green asterisk. (E) Birefringence and reflectivity en face projections of OCT data corresponding to the location in (D).

Tables (1)

Tables Icon

Table 1 Correlation coefficients ρ for scleral birefringence, RNFL retardation and relative RNFL/retina reflectivity vs. IOP together with slopes of the respective linear regression lines. Correlation coefficients were used to analyze monotonic relations. In addition, linear regression analyses were performed.

Metrics