Abstract

To improve the diagnostic prediction of recurrence of otitis media with effusion after surgery, an anti-confocal system combined with spectroscopic measurements is proposed to reject unwanted signals from the eardrum and assess the blood content. The anti-confocal system was experimentally evaluated on both optical middle ear phantom and human skin. Results showed effective rejection of signals from the eardrum using a central stop replacing the confocal pinhole, while still detecting signals from the middle ear mucosa. The system is sensitive to changes in blood content, but scattering and absorption characteristics of the eardrum can distort the measurement. Confocal detection of eardrum properties was shown to be a promising approach to correct measurements.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Anti-confocal versus confocal assessment of the middle ear simulated by Monte Carlo methods

David S. Jung, John A. Crowe, John P. Birchall, Michael G. Somekh, and Chung W. See
Biomed. Opt. Express 6(10) 3820-3825 (2015)

Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear

Cac T. Nguyen, Haohua Tu, Eric J. Chaney, Charles N. Stewart, and Stephen A. Boppart
Biomed. Opt. Express 1(4) 1104-1116 (2010)

Remote optical sensing in otolaryngology: middle ear effusion detection

Nisan Ozana, Doron Sagiv, Noga Lipschitz-Tayar, Ariel Schwarz, Amir Shemer, Michael Wolf, and Zeev Zalevsky
Opt. Express 26(13) 16187-16199 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Kubba, J. P. Pearson, and J. P. Birchall, “The aetiology of otitis media with effusion: a review,” Clin. Otolaryngol. Allied Sciences 25(3), 181–194 (2000).
    [Crossref]
  2. M. Daniel, S. Imtiaz-Umer, N. Fergie, J. P. Birchall, and R. Bayston, “Bacterial involvement in otitis media with effusion,” Int. J. Pediatr. Otorhi. 76(10), 1416–1422 (2012).
    [Crossref]
  3. C. Vertan, D. C. Gheorghe, and B. Ionescu, “Eardrum color content analysis in video-otoscopy images for the diagnosis support of pediatric otitis,” in 10th International Symposium on Signals, Circuits and Systems (IEEE, 2011), pp. 1–4.
  4. L. Cheng, J. Liu, C. E. Roehm, and T. A. Valdez, “Enhanced video images for tympanic membrane characterization,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2011), pp. 4002–4005.
  5. M. Sundberg, M. Peebo, Å. Öberg, P.-G. Lundquist, and T. Strömberg, “Diffuse reflectance spectroscopy of the human tympanic membrane in otitis media,” Physiol. Meas. 25(6), 1473–1483 (2004).
    [Crossref]
  6. N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In vivo middle ear imaging with a light field otoscope,” in Optics in the Life Sciences, OSA Technical Digest (online) (Optical Society of America, 2015), paper BW3A.3
  7. N. H. Cho, S. H. Lee, W. Jung, J. H. Jang, and J. Kim, “Optical coherence tomography for the diagnosis and evaluation of human otitis media,” J. Korean Med. Sci. 30(3), 328–335 (2015).
    [Crossref] [PubMed]
  8. R. Seth, C. M. Discolo, G. M. Palczewska, J. J. Lewandowski, and P. R. Krakovitz, “Ultrasound characterization of middle ear effusion,” Am. J. Otolaryng. 34(1), 44–50 (2013).
    [Crossref]
  9. G. Fishman, A. DeRowe, E. Ophir, V. Scharf, A. Shabtai, D. Ophir, and A. Katzir, “Improved tympanic thermometer based on a fiber optic infrared radiometer and an otoscope and its use as a new diagnostic tool for acute otitis media,” Proc. SPIE 3590, 278–286 (1999).
    [Crossref]
  10. P. Chandrasoma and C. R. Taylor, Concise pathology (Appleton & Lange, 1998).
  11. K.-Z. Liu, A. Cholakis, M. G. Sowa, and X. Xiang, “Diagnosis and Monitoring of Gingivitis in vivo Using Non-Invasive Technology-Infrared Spectroscopy,” in Gingival Diseases - Their Aetiology, Prevention and Treatment, F. Panagakos, ed. (INTECH Open Access Publisher, 2011).
    [Crossref]
  12. F. Leung, “Endoscopic reflectance spectrophotometry and visible light spectroscopy in clinical gastrointestinal studies,” Digest. Dis. Sci. 53(6), 1669–1677 (2008).
    [Crossref]
  13. D. S. Jung, J. A. Crowe, J. P. Birchall, M. G. Somekh, and C. W. See, “Anti-confocal versus confocal assessment of the middle ear simulated by monte carlo methods,” Biomed. Opt. Express 6(10), 3820–3825 (2015).
    [Crossref] [PubMed]
  14. D. Hidovic-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005).
    [Crossref] [PubMed]
  15. D. Yudovsky and L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reectance,” Appl. Opt. 49(10), 1707–1719 (2010).
    [Crossref] [PubMed]
  16. M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955 (1995).
    [Crossref] [PubMed]
  17. M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy,” Phys. Med. Biol. 38(6), 847 (1993).
    [Crossref]

2015 (2)

N. H. Cho, S. H. Lee, W. Jung, J. H. Jang, and J. Kim, “Optical coherence tomography for the diagnosis and evaluation of human otitis media,” J. Korean Med. Sci. 30(3), 328–335 (2015).
[Crossref] [PubMed]

D. S. Jung, J. A. Crowe, J. P. Birchall, M. G. Somekh, and C. W. See, “Anti-confocal versus confocal assessment of the middle ear simulated by monte carlo methods,” Biomed. Opt. Express 6(10), 3820–3825 (2015).
[Crossref] [PubMed]

2013 (1)

R. Seth, C. M. Discolo, G. M. Palczewska, J. J. Lewandowski, and P. R. Krakovitz, “Ultrasound characterization of middle ear effusion,” Am. J. Otolaryng. 34(1), 44–50 (2013).
[Crossref]

2012 (1)

M. Daniel, S. Imtiaz-Umer, N. Fergie, J. P. Birchall, and R. Bayston, “Bacterial involvement in otitis media with effusion,” Int. J. Pediatr. Otorhi. 76(10), 1416–1422 (2012).
[Crossref]

2010 (1)

2008 (1)

F. Leung, “Endoscopic reflectance spectrophotometry and visible light spectroscopy in clinical gastrointestinal studies,” Digest. Dis. Sci. 53(6), 1669–1677 (2008).
[Crossref]

2005 (1)

D. Hidovic-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005).
[Crossref] [PubMed]

2004 (1)

M. Sundberg, M. Peebo, Å. Öberg, P.-G. Lundquist, and T. Strömberg, “Diffuse reflectance spectroscopy of the human tympanic membrane in otitis media,” Physiol. Meas. 25(6), 1473–1483 (2004).
[Crossref]

2000 (1)

H. Kubba, J. P. Pearson, and J. P. Birchall, “The aetiology of otitis media with effusion: a review,” Clin. Otolaryngol. Allied Sciences 25(3), 181–194 (2000).
[Crossref]

1999 (1)

G. Fishman, A. DeRowe, E. Ophir, V. Scharf, A. Shabtai, D. Ophir, and A. Katzir, “Improved tympanic thermometer based on a fiber optic infrared radiometer and an otoscope and its use as a new diagnostic tool for acute otitis media,” Proc. SPIE 3590, 278–286 (1999).
[Crossref]

1995 (1)

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955 (1995).
[Crossref] [PubMed]

1993 (1)

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy,” Phys. Med. Biol. 38(6), 847 (1993).
[Crossref]

Bayston, R.

M. Daniel, S. Imtiaz-Umer, N. Fergie, J. P. Birchall, and R. Bayston, “Bacterial involvement in otitis media with effusion,” Int. J. Pediatr. Otorhi. 76(10), 1416–1422 (2012).
[Crossref]

Bedard, N.

N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In vivo middle ear imaging with a light field otoscope,” in Optics in the Life Sciences, OSA Technical Digest (online) (Optical Society of America, 2015), paper BW3A.3

Berkner, K.

N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In vivo middle ear imaging with a light field otoscope,” in Optics in the Life Sciences, OSA Technical Digest (online) (Optical Society of America, 2015), paper BW3A.3

Birchall, J. P.

D. S. Jung, J. A. Crowe, J. P. Birchall, M. G. Somekh, and C. W. See, “Anti-confocal versus confocal assessment of the middle ear simulated by monte carlo methods,” Biomed. Opt. Express 6(10), 3820–3825 (2015).
[Crossref] [PubMed]

M. Daniel, S. Imtiaz-Umer, N. Fergie, J. P. Birchall, and R. Bayston, “Bacterial involvement in otitis media with effusion,” Int. J. Pediatr. Otorhi. 76(10), 1416–1422 (2012).
[Crossref]

H. Kubba, J. P. Pearson, and J. P. Birchall, “The aetiology of otitis media with effusion: a review,” Clin. Otolaryngol. Allied Sciences 25(3), 181–194 (2000).
[Crossref]

Chandrasoma, P.

P. Chandrasoma and C. R. Taylor, Concise pathology (Appleton & Lange, 1998).

Cheng, L.

L. Cheng, J. Liu, C. E. Roehm, and T. A. Valdez, “Enhanced video images for tympanic membrane characterization,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2011), pp. 4002–4005.

Cho, N. H.

N. H. Cho, S. H. Lee, W. Jung, J. H. Jang, and J. Kim, “Optical coherence tomography for the diagnosis and evaluation of human otitis media,” J. Korean Med. Sci. 30(3), 328–335 (2015).
[Crossref] [PubMed]

Cholakis, A.

K.-Z. Liu, A. Cholakis, M. G. Sowa, and X. Xiang, “Diagnosis and Monitoring of Gingivitis in vivo Using Non-Invasive Technology-Infrared Spectroscopy,” in Gingival Diseases - Their Aetiology, Prevention and Treatment, F. Panagakos, ed. (INTECH Open Access Publisher, 2011).
[Crossref]

Claridge, E.

D. Hidovic-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005).
[Crossref] [PubMed]

Crowe, J. A.

Daniel, M.

M. Daniel, S. Imtiaz-Umer, N. Fergie, J. P. Birchall, and R. Bayston, “Bacterial involvement in otitis media with effusion,” Int. J. Pediatr. Otorhi. 76(10), 1416–1422 (2012).
[Crossref]

Delpy, D. T.

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955 (1995).
[Crossref] [PubMed]

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy,” Phys. Med. Biol. 38(6), 847 (1993).
[Crossref]

DeRowe, A.

G. Fishman, A. DeRowe, E. Ophir, V. Scharf, A. Shabtai, D. Ophir, and A. Katzir, “Improved tympanic thermometer based on a fiber optic infrared radiometer and an otoscope and its use as a new diagnostic tool for acute otitis media,” Proc. SPIE 3590, 278–286 (1999).
[Crossref]

Discolo, C. M.

R. Seth, C. M. Discolo, G. M. Palczewska, J. J. Lewandowski, and P. R. Krakovitz, “Ultrasound characterization of middle ear effusion,” Am. J. Otolaryng. 34(1), 44–50 (2013).
[Crossref]

Fergie, N.

M. Daniel, S. Imtiaz-Umer, N. Fergie, J. P. Birchall, and R. Bayston, “Bacterial involvement in otitis media with effusion,” Int. J. Pediatr. Otorhi. 76(10), 1416–1422 (2012).
[Crossref]

Firbank, M.

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955 (1995).
[Crossref] [PubMed]

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy,” Phys. Med. Biol. 38(6), 847 (1993).
[Crossref]

Fishman, G.

G. Fishman, A. DeRowe, E. Ophir, V. Scharf, A. Shabtai, D. Ophir, and A. Katzir, “Improved tympanic thermometer based on a fiber optic infrared radiometer and an otoscope and its use as a new diagnostic tool for acute otitis media,” Proc. SPIE 3590, 278–286 (1999).
[Crossref]

Gheorghe, D. C.

C. Vertan, D. C. Gheorghe, and B. Ionescu, “Eardrum color content analysis in video-otoscopy images for the diagnosis support of pediatric otitis,” in 10th International Symposium on Signals, Circuits and Systems (IEEE, 2011), pp. 1–4.

Hidovic-Rowe, D.

D. Hidovic-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005).
[Crossref] [PubMed]

Hoberman, A.

N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In vivo middle ear imaging with a light field otoscope,” in Optics in the Life Sciences, OSA Technical Digest (online) (Optical Society of America, 2015), paper BW3A.3

Imtiaz-Umer, S.

M. Daniel, S. Imtiaz-Umer, N. Fergie, J. P. Birchall, and R. Bayston, “Bacterial involvement in otitis media with effusion,” Int. J. Pediatr. Otorhi. 76(10), 1416–1422 (2012).
[Crossref]

Ionescu, B.

C. Vertan, D. C. Gheorghe, and B. Ionescu, “Eardrum color content analysis in video-otoscopy images for the diagnosis support of pediatric otitis,” in 10th International Symposium on Signals, Circuits and Systems (IEEE, 2011), pp. 1–4.

Jang, J. H.

N. H. Cho, S. H. Lee, W. Jung, J. H. Jang, and J. Kim, “Optical coherence tomography for the diagnosis and evaluation of human otitis media,” J. Korean Med. Sci. 30(3), 328–335 (2015).
[Crossref] [PubMed]

Jung, D. S.

Jung, W.

N. H. Cho, S. H. Lee, W. Jung, J. H. Jang, and J. Kim, “Optical coherence tomography for the diagnosis and evaluation of human otitis media,” J. Korean Med. Sci. 30(3), 328–335 (2015).
[Crossref] [PubMed]

Katzir, A.

G. Fishman, A. DeRowe, E. Ophir, V. Scharf, A. Shabtai, D. Ophir, and A. Katzir, “Improved tympanic thermometer based on a fiber optic infrared radiometer and an otoscope and its use as a new diagnostic tool for acute otitis media,” Proc. SPIE 3590, 278–286 (1999).
[Crossref]

Kim, J.

N. H. Cho, S. H. Lee, W. Jung, J. H. Jang, and J. Kim, “Optical coherence tomography for the diagnosis and evaluation of human otitis media,” J. Korean Med. Sci. 30(3), 328–335 (2015).
[Crossref] [PubMed]

Kovacevic, J.

N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In vivo middle ear imaging with a light field otoscope,” in Optics in the Life Sciences, OSA Technical Digest (online) (Optical Society of America, 2015), paper BW3A.3

Krakovitz, P. R.

R. Seth, C. M. Discolo, G. M. Palczewska, J. J. Lewandowski, and P. R. Krakovitz, “Ultrasound characterization of middle ear effusion,” Am. J. Otolaryng. 34(1), 44–50 (2013).
[Crossref]

Kubba, H.

H. Kubba, J. P. Pearson, and J. P. Birchall, “The aetiology of otitis media with effusion: a review,” Clin. Otolaryngol. Allied Sciences 25(3), 181–194 (2000).
[Crossref]

Lee, S. H.

N. H. Cho, S. H. Lee, W. Jung, J. H. Jang, and J. Kim, “Optical coherence tomography for the diagnosis and evaluation of human otitis media,” J. Korean Med. Sci. 30(3), 328–335 (2015).
[Crossref] [PubMed]

Leung, F.

F. Leung, “Endoscopic reflectance spectrophotometry and visible light spectroscopy in clinical gastrointestinal studies,” Digest. Dis. Sci. 53(6), 1669–1677 (2008).
[Crossref]

Lewandowski, J. J.

R. Seth, C. M. Discolo, G. M. Palczewska, J. J. Lewandowski, and P. R. Krakovitz, “Ultrasound characterization of middle ear effusion,” Am. J. Otolaryng. 34(1), 44–50 (2013).
[Crossref]

Liu, J.

L. Cheng, J. Liu, C. E. Roehm, and T. A. Valdez, “Enhanced video images for tympanic membrane characterization,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2011), pp. 4002–4005.

Liu, K.-Z.

K.-Z. Liu, A. Cholakis, M. G. Sowa, and X. Xiang, “Diagnosis and Monitoring of Gingivitis in vivo Using Non-Invasive Technology-Infrared Spectroscopy,” in Gingival Diseases - Their Aetiology, Prevention and Treatment, F. Panagakos, ed. (INTECH Open Access Publisher, 2011).
[Crossref]

Lundquist, P.-G.

M. Sundberg, M. Peebo, Å. Öberg, P.-G. Lundquist, and T. Strömberg, “Diffuse reflectance spectroscopy of the human tympanic membrane in otitis media,” Physiol. Meas. 25(6), 1473–1483 (2004).
[Crossref]

Meng, L.

N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In vivo middle ear imaging with a light field otoscope,” in Optics in the Life Sciences, OSA Technical Digest (online) (Optical Society of America, 2015), paper BW3A.3

Öberg, Å.

M. Sundberg, M. Peebo, Å. Öberg, P.-G. Lundquist, and T. Strömberg, “Diffuse reflectance spectroscopy of the human tympanic membrane in otitis media,” Physiol. Meas. 25(6), 1473–1483 (2004).
[Crossref]

Oda, M.

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955 (1995).
[Crossref] [PubMed]

Ophir, D.

G. Fishman, A. DeRowe, E. Ophir, V. Scharf, A. Shabtai, D. Ophir, and A. Katzir, “Improved tympanic thermometer based on a fiber optic infrared radiometer and an otoscope and its use as a new diagnostic tool for acute otitis media,” Proc. SPIE 3590, 278–286 (1999).
[Crossref]

Ophir, E.

G. Fishman, A. DeRowe, E. Ophir, V. Scharf, A. Shabtai, D. Ophir, and A. Katzir, “Improved tympanic thermometer based on a fiber optic infrared radiometer and an otoscope and its use as a new diagnostic tool for acute otitis media,” Proc. SPIE 3590, 278–286 (1999).
[Crossref]

Palczewska, G. M.

R. Seth, C. M. Discolo, G. M. Palczewska, J. J. Lewandowski, and P. R. Krakovitz, “Ultrasound characterization of middle ear effusion,” Am. J. Otolaryng. 34(1), 44–50 (2013).
[Crossref]

Pearson, J. P.

H. Kubba, J. P. Pearson, and J. P. Birchall, “The aetiology of otitis media with effusion: a review,” Clin. Otolaryngol. Allied Sciences 25(3), 181–194 (2000).
[Crossref]

Peebo, M.

M. Sundberg, M. Peebo, Å. Öberg, P.-G. Lundquist, and T. Strömberg, “Diffuse reflectance spectroscopy of the human tympanic membrane in otitis media,” Physiol. Meas. 25(6), 1473–1483 (2004).
[Crossref]

Pilon, L.

Roehm, C. E.

L. Cheng, J. Liu, C. E. Roehm, and T. A. Valdez, “Enhanced video images for tympanic membrane characterization,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2011), pp. 4002–4005.

Scharf, V.

G. Fishman, A. DeRowe, E. Ophir, V. Scharf, A. Shabtai, D. Ophir, and A. Katzir, “Improved tympanic thermometer based on a fiber optic infrared radiometer and an otoscope and its use as a new diagnostic tool for acute otitis media,” Proc. SPIE 3590, 278–286 (1999).
[Crossref]

See, C. W.

Seth, R.

R. Seth, C. M. Discolo, G. M. Palczewska, J. J. Lewandowski, and P. R. Krakovitz, “Ultrasound characterization of middle ear effusion,” Am. J. Otolaryng. 34(1), 44–50 (2013).
[Crossref]

Shabtai, A.

G. Fishman, A. DeRowe, E. Ophir, V. Scharf, A. Shabtai, D. Ophir, and A. Katzir, “Improved tympanic thermometer based on a fiber optic infrared radiometer and an otoscope and its use as a new diagnostic tool for acute otitis media,” Proc. SPIE 3590, 278–286 (1999).
[Crossref]

Somekh, M. G.

Sowa, M. G.

K.-Z. Liu, A. Cholakis, M. G. Sowa, and X. Xiang, “Diagnosis and Monitoring of Gingivitis in vivo Using Non-Invasive Technology-Infrared Spectroscopy,” in Gingival Diseases - Their Aetiology, Prevention and Treatment, F. Panagakos, ed. (INTECH Open Access Publisher, 2011).
[Crossref]

Strömberg, T.

M. Sundberg, M. Peebo, Å. Öberg, P.-G. Lundquist, and T. Strömberg, “Diffuse reflectance spectroscopy of the human tympanic membrane in otitis media,” Physiol. Meas. 25(6), 1473–1483 (2004).
[Crossref]

Sundberg, M.

M. Sundberg, M. Peebo, Å. Öberg, P.-G. Lundquist, and T. Strömberg, “Diffuse reflectance spectroscopy of the human tympanic membrane in otitis media,” Physiol. Meas. 25(6), 1473–1483 (2004).
[Crossref]

Taylor, C. R.

P. Chandrasoma and C. R. Taylor, Concise pathology (Appleton & Lange, 1998).

Tošic, I.

N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In vivo middle ear imaging with a light field otoscope,” in Optics in the Life Sciences, OSA Technical Digest (online) (Optical Society of America, 2015), paper BW3A.3

Valdez, T. A.

L. Cheng, J. Liu, C. E. Roehm, and T. A. Valdez, “Enhanced video images for tympanic membrane characterization,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2011), pp. 4002–4005.

Vertan, C.

C. Vertan, D. C. Gheorghe, and B. Ionescu, “Eardrum color content analysis in video-otoscopy images for the diagnosis support of pediatric otitis,” in 10th International Symposium on Signals, Circuits and Systems (IEEE, 2011), pp. 1–4.

Xiang, X.

K.-Z. Liu, A. Cholakis, M. G. Sowa, and X. Xiang, “Diagnosis and Monitoring of Gingivitis in vivo Using Non-Invasive Technology-Infrared Spectroscopy,” in Gingival Diseases - Their Aetiology, Prevention and Treatment, F. Panagakos, ed. (INTECH Open Access Publisher, 2011).
[Crossref]

Yudovsky, D.

Am. J. Otolaryng. (1)

R. Seth, C. M. Discolo, G. M. Palczewska, J. J. Lewandowski, and P. R. Krakovitz, “Ultrasound characterization of middle ear effusion,” Am. J. Otolaryng. 34(1), 44–50 (2013).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Clin. Otolaryngol. Allied Sciences (1)

H. Kubba, J. P. Pearson, and J. P. Birchall, “The aetiology of otitis media with effusion: a review,” Clin. Otolaryngol. Allied Sciences 25(3), 181–194 (2000).
[Crossref]

Digest. Dis. Sci. (1)

F. Leung, “Endoscopic reflectance spectrophotometry and visible light spectroscopy in clinical gastrointestinal studies,” Digest. Dis. Sci. 53(6), 1669–1677 (2008).
[Crossref]

Int. J. Pediatr. Otorhi. (1)

M. Daniel, S. Imtiaz-Umer, N. Fergie, J. P. Birchall, and R. Bayston, “Bacterial involvement in otitis media with effusion,” Int. J. Pediatr. Otorhi. 76(10), 1416–1422 (2012).
[Crossref]

J. Korean Med. Sci. (1)

N. H. Cho, S. H. Lee, W. Jung, J. H. Jang, and J. Kim, “Optical coherence tomography for the diagnosis and evaluation of human otitis media,” J. Korean Med. Sci. 30(3), 328–335 (2015).
[Crossref] [PubMed]

Phys. Med. Biol. (3)

D. Hidovic-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005).
[Crossref] [PubMed]

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955 (1995).
[Crossref] [PubMed]

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy,” Phys. Med. Biol. 38(6), 847 (1993).
[Crossref]

Physiol. Meas. (1)

M. Sundberg, M. Peebo, Å. Öberg, P.-G. Lundquist, and T. Strömberg, “Diffuse reflectance spectroscopy of the human tympanic membrane in otitis media,” Physiol. Meas. 25(6), 1473–1483 (2004).
[Crossref]

Proc. SPIE (1)

G. Fishman, A. DeRowe, E. Ophir, V. Scharf, A. Shabtai, D. Ophir, and A. Katzir, “Improved tympanic thermometer based on a fiber optic infrared radiometer and an otoscope and its use as a new diagnostic tool for acute otitis media,” Proc. SPIE 3590, 278–286 (1999).
[Crossref]

Other (5)

P. Chandrasoma and C. R. Taylor, Concise pathology (Appleton & Lange, 1998).

K.-Z. Liu, A. Cholakis, M. G. Sowa, and X. Xiang, “Diagnosis and Monitoring of Gingivitis in vivo Using Non-Invasive Technology-Infrared Spectroscopy,” in Gingival Diseases - Their Aetiology, Prevention and Treatment, F. Panagakos, ed. (INTECH Open Access Publisher, 2011).
[Crossref]

C. Vertan, D. C. Gheorghe, and B. Ionescu, “Eardrum color content analysis in video-otoscopy images for the diagnosis support of pediatric otitis,” in 10th International Symposium on Signals, Circuits and Systems (IEEE, 2011), pp. 1–4.

L. Cheng, J. Liu, C. E. Roehm, and T. A. Valdez, “Enhanced video images for tympanic membrane characterization,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2011), pp. 4002–4005.

N. Bedard, I. Tošić, L. Meng, A. Hoberman, J. Kovačević, and K. Berkner, “In vivo middle ear imaging with a light field otoscope,” in Optics in the Life Sciences, OSA Technical Digest (online) (Optical Society of America, 2015), paper BW3A.3

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Optical system consisting of beam expansion and alignment of two lasers and the anti-confocal setup including beam splitter, focusing lenses, and CCD detector allowing filtering in post-processing. Illumination is shown in yellow, background from the eardrum in blue, and signal from the mucosa in red. The expected signal distribution on the CCD is also shown.
Fig. 2
Fig. 2 Characterisation of the dyes. Spectrum of both dyes on the left and absorption coefficient at two wavelengths dependent on dye concentrations on the right.
Fig. 3
Fig. 3 Signal detected by an anti-confocal system with stop radius according to the legend, when scanning a mirror along the optical (z) axis.
Fig. 4
Fig. 4 Distribution of the detected power plotted over radius from center of the camera. The measurement was taken on five phantoms; mucosa phantom 1 to 4 with eardrum phantom placed in front (P1–4) and eardrum phantom only (Scat.), each measured at both wavelengths, green and NIR.
Fig. 5
Fig. 5 Detected power with varied stop radius, according tot legend, as a function of the mucosa phantom absorption coefficient. An increase on the x-axis denotes increasing blood level and thus inflammation. Error bars indicate the standard deviation of five measurements. Measured at 532 nm on the left and 808 nm on the right.
Fig. 6
Fig. 6 Inflammation index for different stop radii, according to legend, as a function of µa. Again, an increase on the x-axis denotes increasing inflammation.
Fig. 7
Fig. 7 Inflammation index dependent of variations of the sample. A stop radius of 576 µm is used. The left figure shows the influence of angle, distance, and scattering of the eardrum while the right figure shows the influence of absorption of the eardrum on the measured inflammation index. Measurements are shown as nodes and linearly interpolated.
Fig. 8
Fig. 8 Correcting the inflammation index. The left figure shows the relation of the confocal signal measured at 808 and 532 nm for each eardrum phantom, with the error bars indicating the standard deviation of six measurements and measurements linearly interpolated. The right figure shows the corrected inflammation index for each eardrum phantom in dependence on µa, increasing with worsened inflammation along the x-axis. The measurements are indicated by the nodes and linearly interpolated.
Fig. 9
Fig. 9 Time course of the inflammation index measured on human volunteers. The photographs show the hand of volunteer 2 before (t = 0) and after (t = 4) the measurement series. The measurements are exponentially interpolated.

Tables (1)

Tables Icon

Table 1 Desired optical coefficients and required concentrations of scattering and absorbing agents for the mucosa phantoms.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R ( λ ) = R eardrum ( λ ) + R mucosa ( μ a ( λ ) ) A ( λ )
I I = R ( λ 1 ) R ( λ 2 ) = R eardrum ( λ 1 ) + R mucosa ( λ 1 ) A ( λ 1 ) R eardrum ( λ 2 ) + R mucosa ( λ 2 ) A ( λ 2 ) R mucosa ( λ 1 ) R mucosa ( λ 2 ) c A ( λ 1 , λ 2 )
μ a ( λ ) = V Hb ln ( 10 ) c Hb ( α ϵ HbO 2 ( λ ) + ( 1 α ) ϵ Hb ( λ ) ) 64500 [ g / mol ]
μ a , scaled = 0.62 μ a + 0.03
μ a ( λ ) = c red α red ( λ ) + c NIR α NIR ( λ )
M = m R 2 σ
I I = m II μ a ( 532 ) + b
c = 1 m II = m s confocal + b

Metrics