Abstract

A new approach to assess the properties of the corneal micro-structure in vivo based on the statistical modeling of speckle obtained from Optical Coherence Tomography (OCT) is presented. A number of statistical models were proposed to fit the corneal speckle data obtained from OCT raw image. Short-term changes in corneal properties were studied by inducing corneal swelling whereas age-related changes were observed analyzing data of sixty-five subjects aged between twenty-four and seventy-three years. Generalized Gamma distribution has shown to be the best model, in terms of the Akaike’s Information Criterion, to fit the OCT corneal speckle. Its parameters have shown statistically significant differences (Kruskal-Wallis, p < 0.001) for short and age-related corneal changes. In addition, it was observed that age-related changes influence the corneal biomechanical behaviour when corneal swelling is induced. This study shows that Generalized Gamma distribution can be utilized to modeling corneal speckle in OCT in vivo providing complementary quantified information where micro-structure of corneal tissue is of essence.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed OCT-based ocular biometer combined with an air-puff system for determination of induced retraction-free eye dynamics

Alfonso Jiménez-villar, Ewa Mączyńska, Artur Cichański, Maciej Wojtkowski, Bartłomiej J. Kałużny, and Ireneusz Grulkowski
Biomed. Opt. Express 10(7) 3663-3680 (2019)

Full 3-D OCT-based pseudophakic custom computer eye model

M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos
Biomed. Opt. Express 7(3) 1074-1088 (2016)

Speckle statistics in OCT images: Monte Carlo simulations and experimental studies

Mikhail Yu. Kirillin, Golnaz Farhat, Ekaterina A. Sergeeva, Michael C. Kolios, and Alex Vitkin
Opt. Lett. 39(12) 3472-3475 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Olsen, “On the calculation of power from curvature of the cornea,” Br. J. Ophthalmolog. 70, 152–154 (1986).
    [Crossref]
  2. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. 19, 137–143 (2002).
    [Crossref]
  3. D. P. Piñero and N. Alcón, “Corneal biomechanics: a review,” Clin. Exp. Optom. 98, 107–116 (2015).
    [Crossref]
  4. S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
    [Crossref] [PubMed]
  5. R. R. Krueger and W. J. Dupps, “Biomechanical effects of femtosecond and microkeratome-based flap creation: prospective contralateral examination of two patients,” J. Refract. Surg. 23, 800–807 (2007).
    [PubMed]
  6. J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following lasik using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143, 39–47 (2007).
    [Crossref]
  7. A. Elsheikh, B. Geraghty, P. Rama, M. Campanelli, and K. M. Meek, “Characterization of age-related variation in corneal biomechanical properties,” J. R. Soc. Interface 7, 1475–1485 (2010).
    [Crossref] [PubMed]
  8. B. Geraghty, C. Whitford, C. Boote, R. Akhtar, and A. Elsheikh, “Age-related variation in the biomechanical and structural properties of the corneo-scleral tunic,” in “Mechanical Properties of Aging Soft Tissues,” (Springer, 2015), pp. 207–235.
  9. T. J. Liesegang, “Physiologic changes of the cornea with contact lens wear,” Eye & Contact Lens 28, 12–27 (2002).
  10. S. J. Vincent, D. Alonso-Caneiro, M. J. Collins, A. Beanland, L. Lam, C. C. Lim, A. Loke, and N. Nguyen, “Hypoxic corneal changes following eight hours of scleral contact lens wear,” Optom. Vis. Sci. 93, 293–299 (2016).
    [Crossref] [PubMed]
  11. S. Kingman, “Glaucoma is second leading cause of blindness globally,” Bulletin of the World Health Organization82, 887–888 (2004).
  12. H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90, 262–267 (2006).
    [Crossref] [PubMed]
  13. W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008).
    [Crossref]
  14. J. Rogowska and M. E. Brezinski, “Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging,” IEEE Trans. Med. Imag. 19, 1261–1266 (2000).
    [Crossref]
  15. B. Chong and Y.-K. Zhu, “Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified bm3d filter,” Opt. Commun. 291, 461–469 (2013).
    [Crossref]
  16. G. R. Wilkins, O. M. Houghton, and A. L. Oldenburg, “Automated segmentation of intraretinal cystoid fluid in optical coherence tomography,” IEEE Trans. Biomed. Eng. 59, 1109–1114 (2012).
    [Crossref] [PubMed]
  17. D. C. Fernandez, “Delineating fluid-filled region boundaries in optical coherence tomography images of the retina,” IEEE Trans. Med. Imag. 24, 929–945 (2005).
    [Crossref]
  18. H. Yu, J. Gao, and A. Li, “Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images,” Opt. Lett. 41, 994–997 (2016).
    [Crossref] [PubMed]
  19. J. M. Schmitt, S. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
    [Crossref] [PubMed]
  20. M. Caixinha, D. A. Jesus, E. Velte, M. J. Santos, and J. B. Santos, “Using ultrasound backscattering signals and nakagami statistical distribution to assess regional cataract hardness,” IEEE Trans. Biomed. Eng. 61, 2921–2929 (2014).
    [Crossref] [PubMed]
  21. X. Hao, C. J. Bruce, C. Pislaru, and J. F. Greenleaf, “Characterization of reperfused infarcted myocardium from high-frequency intracardiac ultrasound imaging using homodyned k distribution,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 49, 1530–1542 (2002).
    [Crossref]
  22. E. Franceschini, R. K. Saha, and G. Cloutier, “Comparison of three scattering models for ultrasound blood characterization,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 60, 2321–2334 (2013).
    [Crossref]
  23. G. Farhat, V. X. Yang, G. J. Czarnota, and M. C. Kolios, “Detecting cell death with optical coherence tomography and envelope statistics,” J. Biomed. Opt. 16, 026017 (2011).
    [Crossref] [PubMed]
  24. N. M. Grzywacz, J. De Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Trans. Med. Imag. 29, 1224–1237 (2010).
    [Crossref]
  25. Z. Amini and H. Rabbani, “Statistical modeling of retinal optical coherent tomography,” IEEE Trans. Med. Imag. 35, 1544–1554 (2016).
    [Crossref]
  26. D. A. Jesus and D. R. Iskander, “Age-related changes of the corneal speckle by optical coherence tomography,” in Proceedings of “37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,” (IEEE, 2015), pp. 5659–5662.
  27. F. Lu, S. Xu, J. Qu, M. Shen, X. Wang, H. Fang, and J. Wang, “Central corneal thickness and corneal hysteresis during corneal swelling induced by contact lens wear with eye closure,” Am. J. Ophthalmol. 143, 616–622 (2007).
    [Crossref] [PubMed]
  28. J. Wang, D. Fonn, and T. L. Simpson, “Topographical thickness of the epithelium and total cornea after hydrogel and pmma contact lens wear with eye closure,” Invest. Ophthalmol. Vis. Sci. 44, 1070–1074 (2003).
    [Crossref] [PubMed]
  29. R. L. Niederer, D. Perumal, T. Sherwin, and C. N. McGhee, “Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study,” Br. J. Ophthalmol. 91, 1165–1169 (2007).
    [Crossref] [PubMed]
  30. L. J. Müller, E. Pels, and G. F. Vrensen, “The specific architecture of the anterior stroma accounts for maintenance of corneal curvature,” Br. J. Ophthalmol. 85, 437–443 (2001).
    [Crossref] [PubMed]
  31. A. Akman, A. Leyla, and S. Güngör, “Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500,” Br. J. Ophthalmol. 100, 1201–1205 (2015).
    [Crossref] [PubMed]
  32. C. K. Hitzenberger, “Measurement of corneal thickness by low-coherence interferometry,” Appl. Opt. 31, 6637–6642 (1992).
    [Crossref] [PubMed]
  33. L. I. Petrella, H. de AzevedoValle, P. R. Issa, C. J. Martins, J. C. Machado, and W. C. A. Pereira, “Statistical analysis of high frequency ultrasonic backscattered signals from basal cell carcinomas,” Ultrasound Med. Biol. 38, 1811–1819 (2012).
    [Crossref] [PubMed]
  34. B. I. Raju and M. A. Srinivasan, “Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 49, 871–882 (2002).
    [Crossref]
  35. A. A. Lindenmaier, L. Conroy, G. Farhat, R. S. DaCosta, C. Flueraru, and I. A. Vitkin, “Texture analysis of optical coherence tomography speckle for characterizing biological tissues in vivo,” Opt. Lett. 38, 1280–1282 (2013).
    [Crossref] [PubMed]
  36. A. Gupta, “Statistical characterisation of speckle in clinical echocardiographic images with pearson family of distributions,” Def. Sci. J. 61, 473 (2011).
  37. E. W. Stacy and G. A. Mihram, “Parameter estimation for a generalized gamma distribution,” Technometrics 7, 349–358 (1965).
    [Crossref]
  38. F. Scholz, “Maximum likelihood estimation,” in Encyclopedia of Statistical Sciences (1985).
  39. D. Posada and T. R. Buckley, “Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests,” Syst. Biol. 53, 793–808 (2004).
    [Crossref] [PubMed]
  40. H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automat. Contr. 19, 716–723 (1974).
    [Crossref]
  41. F. Sharifipour, M. Panahi-bazaz, R. Bidar, A. Idani, and B. Cheraghian, “Age-related variations in corneal biomechanical properties,” J. Curr. Ophthalmol. 28, 117–122 (2016).
    [Crossref] [PubMed]
  42. M. Ali and B. Hadj, “Segmentation of oct skin images by classification of speckle statistical parameters,” in Proceedings of “17th IEEE International Conference on Image Processing” (IEEE, 2010), pp. 613–616.
  43. S. Seevaratnam, A. Bains, M. Farid, G. Farhat, M. Kolios, and B. A. Standish, “Quantifying temperature changes in tissue-mimicking fluid phantoms using optical coherence tomography and envelope statistics,” in Proceedings of “SPIE BiOS,” (International Society for Optics and Photonics, 2014), pp. 89380R.
  44. A. Tunis, G. Czarnota, A. Giles, M. Sherar, J. Hunt, and M. Kolios, “Monitoring structural changes in cells with high-frequency ultrasound signal statistics,” Ultrasound Med. Biol. 31, 1041–1049 (2005).
    [Crossref] [PubMed]
  45. D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg. 31, 156–162 (2005).
    [Crossref] [PubMed]
  46. A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?”; Surv. Ophthalmol. 52, S109–S114 (2007).
    [Crossref] [PubMed]
  47. W. J. Dupps, “Hysteresis: new mechanospeak for the ophthalmologist,” J. Cataract Refract. Surg. 33, 1499–1501 (2007).
    [Crossref] [PubMed]
  48. B. M. Fontes, R. Ambrósio, D. Jardim, G. C. Velarde, and W. Nosé, “Corneal biomechanical metrics and anterior segment parameters in mild keratoconus,” Ophthalmology 117, 673–679 (2010).
    [Crossref] [PubMed]
  49. P. Tonnu, T. Ho, T. Newson, A. El Sheikh, K. Sharma, E. White, C. Bunce, and D. Garway-Heath, “The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the tono-pen xl, and goldmann applanation tonometry,” Br. J. Ophthalmol. 89, 851–854 (2005).
    [Crossref] [PubMed]
  50. M. Sugita, A. Weatherbee, K. Bizheva, I. Popov, and A. Vitkin, “Analysis of scattering statistics and governing distribution functions in optical coherence tomography,” Biomed. Opt. Express 7, 2551–2564 (2016).
    [Crossref] [PubMed]

2016 (5)

S. J. Vincent, D. Alonso-Caneiro, M. J. Collins, A. Beanland, L. Lam, C. C. Lim, A. Loke, and N. Nguyen, “Hypoxic corneal changes following eight hours of scleral contact lens wear,” Optom. Vis. Sci. 93, 293–299 (2016).
[Crossref] [PubMed]

H. Yu, J. Gao, and A. Li, “Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images,” Opt. Lett. 41, 994–997 (2016).
[Crossref] [PubMed]

Z. Amini and H. Rabbani, “Statistical modeling of retinal optical coherent tomography,” IEEE Trans. Med. Imag. 35, 1544–1554 (2016).
[Crossref]

F. Sharifipour, M. Panahi-bazaz, R. Bidar, A. Idani, and B. Cheraghian, “Age-related variations in corneal biomechanical properties,” J. Curr. Ophthalmol. 28, 117–122 (2016).
[Crossref] [PubMed]

M. Sugita, A. Weatherbee, K. Bizheva, I. Popov, and A. Vitkin, “Analysis of scattering statistics and governing distribution functions in optical coherence tomography,” Biomed. Opt. Express 7, 2551–2564 (2016).
[Crossref] [PubMed]

2015 (2)

A. Akman, A. Leyla, and S. Güngör, “Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500,” Br. J. Ophthalmol. 100, 1201–1205 (2015).
[Crossref] [PubMed]

D. P. Piñero and N. Alcón, “Corneal biomechanics: a review,” Clin. Exp. Optom. 98, 107–116 (2015).
[Crossref]

2014 (1)

M. Caixinha, D. A. Jesus, E. Velte, M. J. Santos, and J. B. Santos, “Using ultrasound backscattering signals and nakagami statistical distribution to assess regional cataract hardness,” IEEE Trans. Biomed. Eng. 61, 2921–2929 (2014).
[Crossref] [PubMed]

2013 (3)

B. Chong and Y.-K. Zhu, “Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified bm3d filter,” Opt. Commun. 291, 461–469 (2013).
[Crossref]

E. Franceschini, R. K. Saha, and G. Cloutier, “Comparison of three scattering models for ultrasound blood characterization,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 60, 2321–2334 (2013).
[Crossref]

A. A. Lindenmaier, L. Conroy, G. Farhat, R. S. DaCosta, C. Flueraru, and I. A. Vitkin, “Texture analysis of optical coherence tomography speckle for characterizing biological tissues in vivo,” Opt. Lett. 38, 1280–1282 (2013).
[Crossref] [PubMed]

2012 (2)

L. I. Petrella, H. de AzevedoValle, P. R. Issa, C. J. Martins, J. C. Machado, and W. C. A. Pereira, “Statistical analysis of high frequency ultrasonic backscattered signals from basal cell carcinomas,” Ultrasound Med. Biol. 38, 1811–1819 (2012).
[Crossref] [PubMed]

G. R. Wilkins, O. M. Houghton, and A. L. Oldenburg, “Automated segmentation of intraretinal cystoid fluid in optical coherence tomography,” IEEE Trans. Biomed. Eng. 59, 1109–1114 (2012).
[Crossref] [PubMed]

2011 (2)

A. Gupta, “Statistical characterisation of speckle in clinical echocardiographic images with pearson family of distributions,” Def. Sci. J. 61, 473 (2011).

G. Farhat, V. X. Yang, G. J. Czarnota, and M. C. Kolios, “Detecting cell death with optical coherence tomography and envelope statistics,” J. Biomed. Opt. 16, 026017 (2011).
[Crossref] [PubMed]

2010 (3)

N. M. Grzywacz, J. De Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Trans. Med. Imag. 29, 1224–1237 (2010).
[Crossref]

A. Elsheikh, B. Geraghty, P. Rama, M. Campanelli, and K. M. Meek, “Characterization of age-related variation in corneal biomechanical properties,” J. R. Soc. Interface 7, 1475–1485 (2010).
[Crossref] [PubMed]

B. M. Fontes, R. Ambrósio, D. Jardim, G. C. Velarde, and W. Nosé, “Corneal biomechanical metrics and anterior segment parameters in mild keratoconus,” Ophthalmology 117, 673–679 (2010).
[Crossref] [PubMed]

2007 (7)

A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?”; Surv. Ophthalmol. 52, S109–S114 (2007).
[Crossref] [PubMed]

W. J. Dupps, “Hysteresis: new mechanospeak for the ophthalmologist,” J. Cataract Refract. Surg. 33, 1499–1501 (2007).
[Crossref] [PubMed]

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
[Crossref] [PubMed]

R. R. Krueger and W. J. Dupps, “Biomechanical effects of femtosecond and microkeratome-based flap creation: prospective contralateral examination of two patients,” J. Refract. Surg. 23, 800–807 (2007).
[PubMed]

J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following lasik using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143, 39–47 (2007).
[Crossref]

F. Lu, S. Xu, J. Qu, M. Shen, X. Wang, H. Fang, and J. Wang, “Central corneal thickness and corneal hysteresis during corneal swelling induced by contact lens wear with eye closure,” Am. J. Ophthalmol. 143, 616–622 (2007).
[Crossref] [PubMed]

R. L. Niederer, D. Perumal, T. Sherwin, and C. N. McGhee, “Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study,” Br. J. Ophthalmol. 91, 1165–1169 (2007).
[Crossref] [PubMed]

2006 (1)

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90, 262–267 (2006).
[Crossref] [PubMed]

2005 (4)

D. C. Fernandez, “Delineating fluid-filled region boundaries in optical coherence tomography images of the retina,” IEEE Trans. Med. Imag. 24, 929–945 (2005).
[Crossref]

A. Tunis, G. Czarnota, A. Giles, M. Sherar, J. Hunt, and M. Kolios, “Monitoring structural changes in cells with high-frequency ultrasound signal statistics,” Ultrasound Med. Biol. 31, 1041–1049 (2005).
[Crossref] [PubMed]

D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg. 31, 156–162 (2005).
[Crossref] [PubMed]

P. Tonnu, T. Ho, T. Newson, A. El Sheikh, K. Sharma, E. White, C. Bunce, and D. Garway-Heath, “The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the tono-pen xl, and goldmann applanation tonometry,” Br. J. Ophthalmol. 89, 851–854 (2005).
[Crossref] [PubMed]

2004 (1)

D. Posada and T. R. Buckley, “Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests,” Syst. Biol. 53, 793–808 (2004).
[Crossref] [PubMed]

2003 (1)

J. Wang, D. Fonn, and T. L. Simpson, “Topographical thickness of the epithelium and total cornea after hydrogel and pmma contact lens wear with eye closure,” Invest. Ophthalmol. Vis. Sci. 44, 1070–1074 (2003).
[Crossref] [PubMed]

2002 (4)

B. I. Raju and M. A. Srinivasan, “Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 49, 871–882 (2002).
[Crossref]

X. Hao, C. J. Bruce, C. Pislaru, and J. F. Greenleaf, “Characterization of reperfused infarcted myocardium from high-frequency intracardiac ultrasound imaging using homodyned k distribution,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 49, 1530–1542 (2002).
[Crossref]

T. J. Liesegang, “Physiologic changes of the cornea with contact lens wear,” Eye & Contact Lens 28, 12–27 (2002).

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. 19, 137–143 (2002).
[Crossref]

2001 (1)

L. J. Müller, E. Pels, and G. F. Vrensen, “The specific architecture of the anterior stroma accounts for maintenance of corneal curvature,” Br. J. Ophthalmol. 85, 437–443 (2001).
[Crossref] [PubMed]

2000 (1)

J. Rogowska and M. E. Brezinski, “Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging,” IEEE Trans. Med. Imag. 19, 1261–1266 (2000).
[Crossref]

1999 (1)

J. M. Schmitt, S. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref] [PubMed]

1992 (1)

1986 (1)

T. Olsen, “On the calculation of power from curvature of the cornea,” Br. J. Ophthalmolog. 70, 152–154 (1986).
[Crossref]

1974 (1)

H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automat. Contr. 19, 716–723 (1974).
[Crossref]

1965 (1)

E. W. Stacy and G. A. Mihram, “Parameter estimation for a generalized gamma distribution,” Technometrics 7, 349–358 (1965).
[Crossref]

Akaike, H.

H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automat. Contr. 19, 716–723 (1974).
[Crossref]

Akhtar, R.

B. Geraghty, C. Whitford, C. Boote, R. Akhtar, and A. Elsheikh, “Age-related variation in the biomechanical and structural properties of the corneo-scleral tunic,” in “Mechanical Properties of Aging Soft Tissues,” (Springer, 2015), pp. 207–235.

Akman, A.

A. Akman, A. Leyla, and S. Güngör, “Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500,” Br. J. Ophthalmol. 100, 1201–1205 (2015).
[Crossref] [PubMed]

Alcón, N.

D. P. Piñero and N. Alcón, “Corneal biomechanics: a review,” Clin. Exp. Optom. 98, 107–116 (2015).
[Crossref]

Ali, M.

M. Ali and B. Hadj, “Segmentation of oct skin images by classification of speckle statistical parameters,” in Proceedings of “17th IEEE International Conference on Image Processing” (IEEE, 2010), pp. 613–616.

Alonso-Caneiro, D.

S. J. Vincent, D. Alonso-Caneiro, M. J. Collins, A. Beanland, L. Lam, C. C. Lim, A. Loke, and N. Nguyen, “Hypoxic corneal changes following eight hours of scleral contact lens wear,” Optom. Vis. Sci. 93, 293–299 (2016).
[Crossref] [PubMed]

Ambrósio, R.

B. M. Fontes, R. Ambrósio, D. Jardim, G. C. Velarde, and W. Nosé, “Corneal biomechanical metrics and anterior segment parameters in mild keratoconus,” Ophthalmology 117, 673–679 (2010).
[Crossref] [PubMed]

Amini, Z.

Z. Amini and H. Rabbani, “Statistical modeling of retinal optical coherent tomography,” IEEE Trans. Med. Imag. 35, 1544–1554 (2016).
[Crossref]

Artal, P.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. 19, 137–143 (2002).
[Crossref]

Bains, A.

S. Seevaratnam, A. Bains, M. Farid, G. Farhat, M. Kolios, and B. A. Standish, “Quantifying temperature changes in tissue-mimicking fluid phantoms using optical coherence tomography and envelope statistics,” in Proceedings of “SPIE BiOS,” (International Society for Optics and Photonics, 2014), pp. 89380R.

Beanland, A.

S. J. Vincent, D. Alonso-Caneiro, M. J. Collins, A. Beanland, L. Lam, C. C. Lim, A. Loke, and N. Nguyen, “Hypoxic corneal changes following eight hours of scleral contact lens wear,” Optom. Vis. Sci. 93, 293–299 (2016).
[Crossref] [PubMed]

Berrio, E.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. 19, 137–143 (2002).
[Crossref]

Bhojwani, R.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
[Crossref] [PubMed]

Bidar, R.

F. Sharifipour, M. Panahi-bazaz, R. Bidar, A. Idani, and B. Cheraghian, “Age-related variations in corneal biomechanical properties,” J. Curr. Ophthalmol. 28, 117–122 (2016).
[Crossref] [PubMed]

Bizheva, K.

Boote, C.

B. Geraghty, C. Whitford, C. Boote, R. Akhtar, and A. Elsheikh, “Age-related variation in the biomechanical and structural properties of the corneo-scleral tunic,” in “Mechanical Properties of Aging Soft Tissues,” (Springer, 2015), pp. 207–235.

Brezinski, M. E.

J. Rogowska and M. E. Brezinski, “Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging,” IEEE Trans. Med. Imag. 19, 1261–1266 (2000).
[Crossref]

Broman, A. T.

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90, 262–267 (2006).
[Crossref] [PubMed]

Bruce, C. J.

X. Hao, C. J. Bruce, C. Pislaru, and J. F. Greenleaf, “Characterization of reperfused infarcted myocardium from high-frequency intracardiac ultrasound imaging using homodyned k distribution,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 49, 1530–1542 (2002).
[Crossref]

Bruni, C.

N. M. Grzywacz, J. De Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Trans. Med. Imag. 29, 1224–1237 (2010).
[Crossref]

Buckley, T. R.

D. Posada and T. R. Buckley, “Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests,” Syst. Biol. 53, 793–808 (2004).
[Crossref] [PubMed]

Bunce, C.

P. Tonnu, T. Ho, T. Newson, A. El Sheikh, K. Sharma, E. White, C. Bunce, and D. Garway-Heath, “The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the tono-pen xl, and goldmann applanation tonometry,” Br. J. Ophthalmol. 89, 851–854 (2005).
[Crossref] [PubMed]

Caixinha, M.

M. Caixinha, D. A. Jesus, E. Velte, M. J. Santos, and J. B. Santos, “Using ultrasound backscattering signals and nakagami statistical distribution to assess regional cataract hardness,” IEEE Trans. Biomed. Eng. 61, 2921–2929 (2014).
[Crossref] [PubMed]

Campanelli, M.

A. Elsheikh, B. Geraghty, P. Rama, M. Campanelli, and K. M. Meek, “Characterization of age-related variation in corneal biomechanical properties,” J. R. Soc. Interface 7, 1475–1485 (2010).
[Crossref] [PubMed]

Cheraghian, B.

F. Sharifipour, M. Panahi-bazaz, R. Bidar, A. Idani, and B. Cheraghian, “Age-related variations in corneal biomechanical properties,” J. Curr. Ophthalmol. 28, 117–122 (2016).
[Crossref] [PubMed]

Chong, B.

B. Chong and Y.-K. Zhu, “Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified bm3d filter,” Opt. Commun. 291, 461–469 (2013).
[Crossref]

Cloutier, G.

E. Franceschini, R. K. Saha, and G. Cloutier, “Comparison of three scattering models for ultrasound blood characterization,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 60, 2321–2334 (2013).
[Crossref]

Collins, M. J.

S. J. Vincent, D. Alonso-Caneiro, M. J. Collins, A. Beanland, L. Lam, C. C. Lim, A. Loke, and N. Nguyen, “Hypoxic corneal changes following eight hours of scleral contact lens wear,” Optom. Vis. Sci. 93, 293–299 (2016).
[Crossref] [PubMed]

Conroy, L.

Cunliffe, I.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
[Crossref] [PubMed]

Czarnota, G.

A. Tunis, G. Czarnota, A. Giles, M. Sherar, J. Hunt, and M. Kolios, “Monitoring structural changes in cells with high-frequency ultrasound signal statistics,” Ultrasound Med. Biol. 31, 1041–1049 (2005).
[Crossref] [PubMed]

Czarnota, G. J.

G. Farhat, V. X. Yang, G. J. Czarnota, and M. C. Kolios, “Detecting cell death with optical coherence tomography and envelope statistics,” J. Biomed. Opt. 16, 026017 (2011).
[Crossref] [PubMed]

DaCosta, R. S.

de AzevedoValle, H.

L. I. Petrella, H. de AzevedoValle, P. R. Issa, C. J. Martins, J. C. Machado, and W. C. A. Pereira, “Statistical analysis of high frequency ultrasonic backscattered signals from basal cell carcinomas,” Ultrasound Med. Biol. 38, 1811–1819 (2012).
[Crossref] [PubMed]

De Juan, J.

N. M. Grzywacz, J. De Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Trans. Med. Imag. 29, 1224–1237 (2010).
[Crossref]

Drexler, W.

W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008).
[Crossref]

Dupps, W. J.

R. R. Krueger and W. J. Dupps, “Biomechanical effects of femtosecond and microkeratome-based flap creation: prospective contralateral examination of two patients,” J. Refract. Surg. 23, 800–807 (2007).
[PubMed]

W. J. Dupps, “Hysteresis: new mechanospeak for the ophthalmologist,” J. Cataract Refract. Surg. 33, 1499–1501 (2007).
[Crossref] [PubMed]

El Sheikh, A.

P. Tonnu, T. Ho, T. Newson, A. El Sheikh, K. Sharma, E. White, C. Bunce, and D. Garway-Heath, “The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the tono-pen xl, and goldmann applanation tonometry,” Br. J. Ophthalmol. 89, 851–854 (2005).
[Crossref] [PubMed]

Elsheikh, A.

A. Elsheikh, B. Geraghty, P. Rama, M. Campanelli, and K. M. Meek, “Characterization of age-related variation in corneal biomechanical properties,” J. R. Soc. Interface 7, 1475–1485 (2010).
[Crossref] [PubMed]

B. Geraghty, C. Whitford, C. Boote, R. Akhtar, and A. Elsheikh, “Age-related variation in the biomechanical and structural properties of the corneo-scleral tunic,” in “Mechanical Properties of Aging Soft Tissues,” (Springer, 2015), pp. 207–235.

Fang, H.

F. Lu, S. Xu, J. Qu, M. Shen, X. Wang, H. Fang, and J. Wang, “Central corneal thickness and corneal hysteresis during corneal swelling induced by contact lens wear with eye closure,” Am. J. Ophthalmol. 143, 616–622 (2007).
[Crossref] [PubMed]

Farhat, G.

A. A. Lindenmaier, L. Conroy, G. Farhat, R. S. DaCosta, C. Flueraru, and I. A. Vitkin, “Texture analysis of optical coherence tomography speckle for characterizing biological tissues in vivo,” Opt. Lett. 38, 1280–1282 (2013).
[Crossref] [PubMed]

G. Farhat, V. X. Yang, G. J. Czarnota, and M. C. Kolios, “Detecting cell death with optical coherence tomography and envelope statistics,” J. Biomed. Opt. 16, 026017 (2011).
[Crossref] [PubMed]

S. Seevaratnam, A. Bains, M. Farid, G. Farhat, M. Kolios, and B. A. Standish, “Quantifying temperature changes in tissue-mimicking fluid phantoms using optical coherence tomography and envelope statistics,” in Proceedings of “SPIE BiOS,” (International Society for Optics and Photonics, 2014), pp. 89380R.

Farid, M.

S. Seevaratnam, A. Bains, M. Farid, G. Farhat, M. Kolios, and B. A. Standish, “Quantifying temperature changes in tissue-mimicking fluid phantoms using optical coherence tomography and envelope statistics,” in Proceedings of “SPIE BiOS,” (International Society for Optics and Photonics, 2014), pp. 89380R.

Feigenbaum, S. K.

J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following lasik using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143, 39–47 (2007).
[Crossref]

Fernandez, D. C.

D. C. Fernandez, “Delineating fluid-filled region boundaries in optical coherence tomography images of the retina,” IEEE Trans. Med. Imag. 24, 929–945 (2005).
[Crossref]

Ferrone, C.

N. M. Grzywacz, J. De Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Trans. Med. Imag. 29, 1224–1237 (2010).
[Crossref]

Flueraru, C.

Fonn, D.

J. Wang, D. Fonn, and T. L. Simpson, “Topographical thickness of the epithelium and total cornea after hydrogel and pmma contact lens wear with eye closure,” Invest. Ophthalmol. Vis. Sci. 44, 1070–1074 (2003).
[Crossref] [PubMed]

Fontes, B. M.

B. M. Fontes, R. Ambrósio, D. Jardim, G. C. Velarde, and W. Nosé, “Corneal biomechanical metrics and anterior segment parameters in mild keratoconus,” Ophthalmology 117, 673–679 (2010).
[Crossref] [PubMed]

Franceschini, E.

E. Franceschini, R. K. Saha, and G. Cloutier, “Comparison of three scattering models for ultrasound blood characterization,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 60, 2321–2334 (2013).
[Crossref]

Fujimoto, J. G.

W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008).
[Crossref]

Gao, J.

Garway-Heath, D.

P. Tonnu, T. Ho, T. Newson, A. El Sheikh, K. Sharma, E. White, C. Bunce, and D. Garway-Heath, “The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the tono-pen xl, and goldmann applanation tonometry,” Br. J. Ophthalmol. 89, 851–854 (2005).
[Crossref] [PubMed]

Geraghty, B.

A. Elsheikh, B. Geraghty, P. Rama, M. Campanelli, and K. M. Meek, “Characterization of age-related variation in corneal biomechanical properties,” J. R. Soc. Interface 7, 1475–1485 (2010).
[Crossref] [PubMed]

B. Geraghty, C. Whitford, C. Boote, R. Akhtar, and A. Elsheikh, “Age-related variation in the biomechanical and structural properties of the corneo-scleral tunic,” in “Mechanical Properties of Aging Soft Tissues,” (Springer, 2015), pp. 207–235.

Giannini, D.

N. M. Grzywacz, J. De Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Trans. Med. Imag. 29, 1224–1237 (2010).
[Crossref]

Giles, A.

A. Tunis, G. Czarnota, A. Giles, M. Sherar, J. Hunt, and M. Kolios, “Monitoring structural changes in cells with high-frequency ultrasound signal statistics,” Ultrasound Med. Biol. 31, 1041–1049 (2005).
[Crossref] [PubMed]

Greenleaf, J. F.

X. Hao, C. J. Bruce, C. Pislaru, and J. F. Greenleaf, “Characterization of reperfused infarcted myocardium from high-frequency intracardiac ultrasound imaging using homodyned k distribution,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 49, 1530–1542 (2002).
[Crossref]

Grzywacz, N. M.

N. M. Grzywacz, J. De Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Trans. Med. Imag. 29, 1224–1237 (2010).
[Crossref]

Guirao, A.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. 19, 137–143 (2002).
[Crossref]

Güngör, S.

A. Akman, A. Leyla, and S. Güngör, “Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500,” Br. J. Ophthalmol. 100, 1201–1205 (2015).
[Crossref] [PubMed]

Gupta, A.

A. Gupta, “Statistical characterisation of speckle in clinical echocardiographic images with pearson family of distributions,” Def. Sci. J. 61, 473 (2011).

Hadj, B.

M. Ali and B. Hadj, “Segmentation of oct skin images by classification of speckle statistical parameters,” in Proceedings of “17th IEEE International Conference on Image Processing” (IEEE, 2010), pp. 613–616.

Hao, X.

X. Hao, C. J. Bruce, C. Pislaru, and J. F. Greenleaf, “Characterization of reperfused infarcted myocardium from high-frequency intracardiac ultrasound imaging using homodyned k distribution,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 49, 1530–1542 (2002).
[Crossref]

Hitzenberger, C. K.

Ho, T.

P. Tonnu, T. Ho, T. Newson, A. El Sheikh, K. Sharma, E. White, C. Bunce, and D. Garway-Heath, “The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the tono-pen xl, and goldmann applanation tonometry,” Br. J. Ophthalmol. 89, 851–854 (2005).
[Crossref] [PubMed]

Houghton, O. M.

G. R. Wilkins, O. M. Houghton, and A. L. Oldenburg, “Automated segmentation of intraretinal cystoid fluid in optical coherence tomography,” IEEE Trans. Biomed. Eng. 59, 1109–1114 (2012).
[Crossref] [PubMed]

Huang, D.

N. M. Grzywacz, J. De Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Trans. Med. Imag. 29, 1224–1237 (2010).
[Crossref]

Hunt, J.

A. Tunis, G. Czarnota, A. Giles, M. Sherar, J. Hunt, and M. Kolios, “Monitoring structural changes in cells with high-frequency ultrasound signal statistics,” Ultrasound Med. Biol. 31, 1041–1049 (2005).
[Crossref] [PubMed]

Idani, A.

F. Sharifipour, M. Panahi-bazaz, R. Bidar, A. Idani, and B. Cheraghian, “Age-related variations in corneal biomechanical properties,” J. Curr. Ophthalmol. 28, 117–122 (2016).
[Crossref] [PubMed]

Iskander, D. R.

D. A. Jesus and D. R. Iskander, “Age-related changes of the corneal speckle by optical coherence tomography,” in Proceedings of “37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,” (IEEE, 2015), pp. 5659–5662.

Issa, P. R.

L. I. Petrella, H. de AzevedoValle, P. R. Issa, C. J. Martins, J. C. Machado, and W. C. A. Pereira, “Statistical analysis of high frequency ultrasonic backscattered signals from basal cell carcinomas,” Ultrasound Med. Biol. 38, 1811–1819 (2012).
[Crossref] [PubMed]

Jardim, D.

B. M. Fontes, R. Ambrósio, D. Jardim, G. C. Velarde, and W. Nosé, “Corneal biomechanical metrics and anterior segment parameters in mild keratoconus,” Ophthalmology 117, 673–679 (2010).
[Crossref] [PubMed]

Jesus, D. A.

M. Caixinha, D. A. Jesus, E. Velte, M. J. Santos, and J. B. Santos, “Using ultrasound backscattering signals and nakagami statistical distribution to assess regional cataract hardness,” IEEE Trans. Biomed. Eng. 61, 2921–2929 (2014).
[Crossref] [PubMed]

D. A. Jesus and D. R. Iskander, “Age-related changes of the corneal speckle by optical coherence tomography,” in Proceedings of “37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,” (IEEE, 2015), pp. 5659–5662.

Kingman, S.

S. Kingman, “Glaucoma is second leading cause of blindness globally,” Bulletin of the World Health Organization82, 887–888 (2004).

Koch, G.

N. M. Grzywacz, J. De Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Trans. Med. Imag. 29, 1224–1237 (2010).
[Crossref]

Kolios, M.

A. Tunis, G. Czarnota, A. Giles, M. Sherar, J. Hunt, and M. Kolios, “Monitoring structural changes in cells with high-frequency ultrasound signal statistics,” Ultrasound Med. Biol. 31, 1041–1049 (2005).
[Crossref] [PubMed]

S. Seevaratnam, A. Bains, M. Farid, G. Farhat, M. Kolios, and B. A. Standish, “Quantifying temperature changes in tissue-mimicking fluid phantoms using optical coherence tomography and envelope statistics,” in Proceedings of “SPIE BiOS,” (International Society for Optics and Photonics, 2014), pp. 89380R.

Kolios, M. C.

G. Farhat, V. X. Yang, G. J. Czarnota, and M. C. Kolios, “Detecting cell death with optical coherence tomography and envelope statistics,” J. Biomed. Opt. 16, 026017 (2011).
[Crossref] [PubMed]

Kotecha, A.

A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?”; Surv. Ophthalmol. 52, S109–S114 (2007).
[Crossref] [PubMed]

Krueger, R. R.

R. R. Krueger and W. J. Dupps, “Biomechanical effects of femtosecond and microkeratome-based flap creation: prospective contralateral examination of two patients,” J. Refract. Surg. 23, 800–807 (2007).
[PubMed]

Laiquzzaman, M.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
[Crossref] [PubMed]

Lam, L.

S. J. Vincent, D. Alonso-Caneiro, M. J. Collins, A. Beanland, L. Lam, C. C. Lim, A. Loke, and N. Nguyen, “Hypoxic corneal changes following eight hours of scleral contact lens wear,” Optom. Vis. Sci. 93, 293–299 (2016).
[Crossref] [PubMed]

Leyla, A.

A. Akman, A. Leyla, and S. Güngör, “Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500,” Br. J. Ophthalmol. 100, 1201–1205 (2015).
[Crossref] [PubMed]

Li, A.

Liesegang, T. J.

T. J. Liesegang, “Physiologic changes of the cornea with contact lens wear,” Eye & Contact Lens 28, 12–27 (2002).

Lim, C. C.

S. J. Vincent, D. Alonso-Caneiro, M. J. Collins, A. Beanland, L. Lam, C. C. Lim, A. Loke, and N. Nguyen, “Hypoxic corneal changes following eight hours of scleral contact lens wear,” Optom. Vis. Sci. 93, 293–299 (2016).
[Crossref] [PubMed]

Lindenmaier, A. A.

Loke, A.

S. J. Vincent, D. Alonso-Caneiro, M. J. Collins, A. Beanland, L. Lam, C. C. Lim, A. Loke, and N. Nguyen, “Hypoxic corneal changes following eight hours of scleral contact lens wear,” Optom. Vis. Sci. 93, 293–299 (2016).
[Crossref] [PubMed]

Lu, F.

F. Lu, S. Xu, J. Qu, M. Shen, X. Wang, H. Fang, and J. Wang, “Central corneal thickness and corneal hysteresis during corneal swelling induced by contact lens wear with eye closure,” Am. J. Ophthalmol. 143, 616–622 (2007).
[Crossref] [PubMed]

Luce, D. A.

D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg. 31, 156–162 (2005).
[Crossref] [PubMed]

Machado, J. C.

L. I. Petrella, H. de AzevedoValle, P. R. Issa, C. J. Martins, J. C. Machado, and W. C. A. Pereira, “Statistical analysis of high frequency ultrasonic backscattered signals from basal cell carcinomas,” Ultrasound Med. Biol. 38, 1811–1819 (2012).
[Crossref] [PubMed]

Mantry, S.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
[Crossref] [PubMed]

Martins, C. J.

L. I. Petrella, H. de AzevedoValle, P. R. Issa, C. J. Martins, J. C. Machado, and W. C. A. Pereira, “Statistical analysis of high frequency ultrasonic backscattered signals from basal cell carcinomas,” Ultrasound Med. Biol. 38, 1811–1819 (2012).
[Crossref] [PubMed]

McGhee, C. N.

R. L. Niederer, D. Perumal, T. Sherwin, and C. N. McGhee, “Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study,” Br. J. Ophthalmol. 91, 1165–1169 (2007).
[Crossref] [PubMed]

Meek, K. M.

A. Elsheikh, B. Geraghty, P. Rama, M. Campanelli, and K. M. Meek, “Characterization of age-related variation in corneal biomechanical properties,” J. R. Soc. Interface 7, 1475–1485 (2010).
[Crossref] [PubMed]

Mihram, G. A.

E. W. Stacy and G. A. Mihram, “Parameter estimation for a generalized gamma distribution,” Technometrics 7, 349–358 (1965).
[Crossref]

Müller, L. J.

L. J. Müller, E. Pels, and G. F. Vrensen, “The specific architecture of the anterior stroma accounts for maintenance of corneal curvature,” Br. J. Ophthalmol. 85, 437–443 (2001).
[Crossref] [PubMed]

Newson, T.

P. Tonnu, T. Ho, T. Newson, A. El Sheikh, K. Sharma, E. White, C. Bunce, and D. Garway-Heath, “The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the tono-pen xl, and goldmann applanation tonometry,” Br. J. Ophthalmol. 89, 851–854 (2005).
[Crossref] [PubMed]

Nguyen, N.

S. J. Vincent, D. Alonso-Caneiro, M. J. Collins, A. Beanland, L. Lam, C. C. Lim, A. Loke, and N. Nguyen, “Hypoxic corneal changes following eight hours of scleral contact lens wear,” Optom. Vis. Sci. 93, 293–299 (2016).
[Crossref] [PubMed]

Niederer, R. L.

R. L. Niederer, D. Perumal, T. Sherwin, and C. N. McGhee, “Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study,” Br. J. Ophthalmol. 91, 1165–1169 (2007).
[Crossref] [PubMed]

Nosé, W.

B. M. Fontes, R. Ambrósio, D. Jardim, G. C. Velarde, and W. Nosé, “Corneal biomechanical metrics and anterior segment parameters in mild keratoconus,” Ophthalmology 117, 673–679 (2010).
[Crossref] [PubMed]

Oldenburg, A. L.

G. R. Wilkins, O. M. Houghton, and A. L. Oldenburg, “Automated segmentation of intraretinal cystoid fluid in optical coherence tomography,” IEEE Trans. Biomed. Eng. 59, 1109–1114 (2012).
[Crossref] [PubMed]

Olsen, T.

T. Olsen, “On the calculation of power from curvature of the cornea,” Br. J. Ophthalmolog. 70, 152–154 (1986).
[Crossref]

Panahi-bazaz, M.

F. Sharifipour, M. Panahi-bazaz, R. Bidar, A. Idani, and B. Cheraghian, “Age-related variations in corneal biomechanical properties,” J. Curr. Ophthalmol. 28, 117–122 (2016).
[Crossref] [PubMed]

Pels, E.

L. J. Müller, E. Pels, and G. F. Vrensen, “The specific architecture of the anterior stroma accounts for maintenance of corneal curvature,” Br. J. Ophthalmol. 85, 437–443 (2001).
[Crossref] [PubMed]

Pepose, J. S.

J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following lasik using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143, 39–47 (2007).
[Crossref]

Pereira, W. C. A.

L. I. Petrella, H. de AzevedoValle, P. R. Issa, C. J. Martins, J. C. Machado, and W. C. A. Pereira, “Statistical analysis of high frequency ultrasonic backscattered signals from basal cell carcinomas,” Ultrasound Med. Biol. 38, 1811–1819 (2012).
[Crossref] [PubMed]

Perumal, D.

R. L. Niederer, D. Perumal, T. Sherwin, and C. N. McGhee, “Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study,” Br. J. Ophthalmol. 91, 1165–1169 (2007).
[Crossref] [PubMed]

Petrella, L. I.

L. I. Petrella, H. de AzevedoValle, P. R. Issa, C. J. Martins, J. C. Machado, and W. C. A. Pereira, “Statistical analysis of high frequency ultrasonic backscattered signals from basal cell carcinomas,” Ultrasound Med. Biol. 38, 1811–1819 (2012).
[Crossref] [PubMed]

Piers, P.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. 19, 137–143 (2002).
[Crossref]

Piñero, D. P.

D. P. Piñero and N. Alcón, “Corneal biomechanics: a review,” Clin. Exp. Optom. 98, 107–116 (2015).
[Crossref]

Pislaru, C.

X. Hao, C. J. Bruce, C. Pislaru, and J. F. Greenleaf, “Characterization of reperfused infarcted myocardium from high-frequency intracardiac ultrasound imaging using homodyned k distribution,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 49, 1530–1542 (2002).
[Crossref]

Popov, I.

Posada, D.

D. Posada and T. R. Buckley, “Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests,” Syst. Biol. 53, 793–808 (2004).
[Crossref] [PubMed]

Qazi, M. A.

J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following lasik using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143, 39–47 (2007).
[Crossref]

Qu, J.

F. Lu, S. Xu, J. Qu, M. Shen, X. Wang, H. Fang, and J. Wang, “Central corneal thickness and corneal hysteresis during corneal swelling induced by contact lens wear with eye closure,” Am. J. Ophthalmol. 143, 616–622 (2007).
[Crossref] [PubMed]

Quigley, H. A.

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90, 262–267 (2006).
[Crossref] [PubMed]

Rabbani, H.

Z. Amini and H. Rabbani, “Statistical modeling of retinal optical coherent tomography,” IEEE Trans. Med. Imag. 35, 1544–1554 (2016).
[Crossref]

Raju, B. I.

B. I. Raju and M. A. Srinivasan, “Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 49, 871–882 (2002).
[Crossref]

Rama, P.

A. Elsheikh, B. Geraghty, P. Rama, M. Campanelli, and K. M. Meek, “Characterization of age-related variation in corneal biomechanical properties,” J. R. Soc. Interface 7, 1475–1485 (2010).
[Crossref] [PubMed]

Roberts, C. J.

J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following lasik using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143, 39–47 (2007).
[Crossref]

Rogowska, J.

J. Rogowska and M. E. Brezinski, “Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging,” IEEE Trans. Med. Imag. 19, 1261–1266 (2000).
[Crossref]

Russo, V.

N. M. Grzywacz, J. De Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Trans. Med. Imag. 29, 1224–1237 (2010).
[Crossref]

Saha, R. K.

E. Franceschini, R. K. Saha, and G. Cloutier, “Comparison of three scattering models for ultrasound blood characterization,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 60, 2321–2334 (2013).
[Crossref]

Sanderson, J. P.

J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following lasik using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143, 39–47 (2007).
[Crossref]

Santos, J. B.

M. Caixinha, D. A. Jesus, E. Velte, M. J. Santos, and J. B. Santos, “Using ultrasound backscattering signals and nakagami statistical distribution to assess regional cataract hardness,” IEEE Trans. Biomed. Eng. 61, 2921–2929 (2014).
[Crossref] [PubMed]

Santos, M. J.

M. Caixinha, D. A. Jesus, E. Velte, M. J. Santos, and J. B. Santos, “Using ultrasound backscattering signals and nakagami statistical distribution to assess regional cataract hardness,” IEEE Trans. Biomed. Eng. 61, 2921–2929 (2014).
[Crossref] [PubMed]

Schmitt, J. M.

J. M. Schmitt, S. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref] [PubMed]

Scholz, F.

F. Scholz, “Maximum likelihood estimation,” in Encyclopedia of Statistical Sciences (1985).

Seevaratnam, S.

S. Seevaratnam, A. Bains, M. Farid, G. Farhat, M. Kolios, and B. A. Standish, “Quantifying temperature changes in tissue-mimicking fluid phantoms using optical coherence tomography and envelope statistics,” in Proceedings of “SPIE BiOS,” (International Society for Optics and Photonics, 2014), pp. 89380R.

Shah, S.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
[Crossref] [PubMed]

Sharifipour, F.

F. Sharifipour, M. Panahi-bazaz, R. Bidar, A. Idani, and B. Cheraghian, “Age-related variations in corneal biomechanical properties,” J. Curr. Ophthalmol. 28, 117–122 (2016).
[Crossref] [PubMed]

Sharma, K.

P. Tonnu, T. Ho, T. Newson, A. El Sheikh, K. Sharma, E. White, C. Bunce, and D. Garway-Heath, “The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the tono-pen xl, and goldmann applanation tonometry,” Br. J. Ophthalmol. 89, 851–854 (2005).
[Crossref] [PubMed]

Shen, M.

F. Lu, S. Xu, J. Qu, M. Shen, X. Wang, H. Fang, and J. Wang, “Central corneal thickness and corneal hysteresis during corneal swelling induced by contact lens wear with eye closure,” Am. J. Ophthalmol. 143, 616–622 (2007).
[Crossref] [PubMed]

Sherar, M.

A. Tunis, G. Czarnota, A. Giles, M. Sherar, J. Hunt, and M. Kolios, “Monitoring structural changes in cells with high-frequency ultrasound signal statistics,” Ultrasound Med. Biol. 31, 1041–1049 (2005).
[Crossref] [PubMed]

Sherwin, T.

R. L. Niederer, D. Perumal, T. Sherwin, and C. N. McGhee, “Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study,” Br. J. Ophthalmol. 91, 1165–1169 (2007).
[Crossref] [PubMed]

Simpson, T. L.

J. Wang, D. Fonn, and T. L. Simpson, “Topographical thickness of the epithelium and total cornea after hydrogel and pmma contact lens wear with eye closure,” Invest. Ophthalmol. Vis. Sci. 44, 1070–1074 (2003).
[Crossref] [PubMed]

Srinivasan, M. A.

B. I. Raju and M. A. Srinivasan, “Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 49, 871–882 (2002).
[Crossref]

Stacy, E. W.

E. W. Stacy and G. A. Mihram, “Parameter estimation for a generalized gamma distribution,” Technometrics 7, 349–358 (1965).
[Crossref]

Standish, B. A.

S. Seevaratnam, A. Bains, M. Farid, G. Farhat, M. Kolios, and B. A. Standish, “Quantifying temperature changes in tissue-mimicking fluid phantoms using optical coherence tomography and envelope statistics,” in Proceedings of “SPIE BiOS,” (International Society for Optics and Photonics, 2014), pp. 89380R.

Sugita, M.

Tan, O.

N. M. Grzywacz, J. De Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Trans. Med. Imag. 29, 1224–1237 (2010).
[Crossref]

Tonnu, P.

P. Tonnu, T. Ho, T. Newson, A. El Sheikh, K. Sharma, E. White, C. Bunce, and D. Garway-Heath, “The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the tono-pen xl, and goldmann applanation tonometry,” Br. J. Ophthalmol. 89, 851–854 (2005).
[Crossref] [PubMed]

Tunis, A.

A. Tunis, G. Czarnota, A. Giles, M. Sherar, J. Hunt, and M. Kolios, “Monitoring structural changes in cells with high-frequency ultrasound signal statistics,” Ultrasound Med. Biol. 31, 1041–1049 (2005).
[Crossref] [PubMed]

Velarde, G. C.

B. M. Fontes, R. Ambrósio, D. Jardim, G. C. Velarde, and W. Nosé, “Corneal biomechanical metrics and anterior segment parameters in mild keratoconus,” Ophthalmology 117, 673–679 (2010).
[Crossref] [PubMed]

Velte, E.

M. Caixinha, D. A. Jesus, E. Velte, M. J. Santos, and J. B. Santos, “Using ultrasound backscattering signals and nakagami statistical distribution to assess regional cataract hardness,” IEEE Trans. Biomed. Eng. 61, 2921–2929 (2014).
[Crossref] [PubMed]

Vincent, S. J.

S. J. Vincent, D. Alonso-Caneiro, M. J. Collins, A. Beanland, L. Lam, C. C. Lim, A. Loke, and N. Nguyen, “Hypoxic corneal changes following eight hours of scleral contact lens wear,” Optom. Vis. Sci. 93, 293–299 (2016).
[Crossref] [PubMed]

Vitkin, A.

Vitkin, I. A.

Vrensen, G. F.

L. J. Müller, E. Pels, and G. F. Vrensen, “The specific architecture of the anterior stroma accounts for maintenance of corneal curvature,” Br. J. Ophthalmol. 85, 437–443 (2001).
[Crossref] [PubMed]

Wang, J.

F. Lu, S. Xu, J. Qu, M. Shen, X. Wang, H. Fang, and J. Wang, “Central corneal thickness and corneal hysteresis during corneal swelling induced by contact lens wear with eye closure,” Am. J. Ophthalmol. 143, 616–622 (2007).
[Crossref] [PubMed]

J. Wang, D. Fonn, and T. L. Simpson, “Topographical thickness of the epithelium and total cornea after hydrogel and pmma contact lens wear with eye closure,” Invest. Ophthalmol. Vis. Sci. 44, 1070–1074 (2003).
[Crossref] [PubMed]

Wang, X.

F. Lu, S. Xu, J. Qu, M. Shen, X. Wang, H. Fang, and J. Wang, “Central corneal thickness and corneal hysteresis during corneal swelling induced by contact lens wear with eye closure,” Am. J. Ophthalmol. 143, 616–622 (2007).
[Crossref] [PubMed]

Weatherbee, A.

White, E.

P. Tonnu, T. Ho, T. Newson, A. El Sheikh, K. Sharma, E. White, C. Bunce, and D. Garway-Heath, “The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the tono-pen xl, and goldmann applanation tonometry,” Br. J. Ophthalmol. 89, 851–854 (2005).
[Crossref] [PubMed]

Whitford, C.

B. Geraghty, C. Whitford, C. Boote, R. Akhtar, and A. Elsheikh, “Age-related variation in the biomechanical and structural properties of the corneo-scleral tunic,” in “Mechanical Properties of Aging Soft Tissues,” (Springer, 2015), pp. 207–235.

Wilkins, G. R.

G. R. Wilkins, O. M. Houghton, and A. L. Oldenburg, “Automated segmentation of intraretinal cystoid fluid in optical coherence tomography,” IEEE Trans. Biomed. Eng. 59, 1109–1114 (2012).
[Crossref] [PubMed]

Xiang, S.

J. M. Schmitt, S. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref] [PubMed]

Xu, S.

F. Lu, S. Xu, J. Qu, M. Shen, X. Wang, H. Fang, and J. Wang, “Central corneal thickness and corneal hysteresis during corneal swelling induced by contact lens wear with eye closure,” Am. J. Ophthalmol. 143, 616–622 (2007).
[Crossref] [PubMed]

Yang, V. X.

G. Farhat, V. X. Yang, G. J. Czarnota, and M. C. Kolios, “Detecting cell death with optical coherence tomography and envelope statistics,” J. Biomed. Opt. 16, 026017 (2011).
[Crossref] [PubMed]

Yu, H.

Yung, K. M.

J. M. Schmitt, S. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref] [PubMed]

Zhu, Y.-K.

B. Chong and Y.-K. Zhu, “Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified bm3d filter,” Opt. Commun. 291, 461–469 (2013).
[Crossref]

Am. J. Ophthalmol. (2)

J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following lasik using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143, 39–47 (2007).
[Crossref]

F. Lu, S. Xu, J. Qu, M. Shen, X. Wang, H. Fang, and J. Wang, “Central corneal thickness and corneal hysteresis during corneal swelling induced by contact lens wear with eye closure,” Am. J. Ophthalmol. 143, 616–622 (2007).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Br. J. Ophthalmol. (5)

P. Tonnu, T. Ho, T. Newson, A. El Sheikh, K. Sharma, E. White, C. Bunce, and D. Garway-Heath, “The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the tono-pen xl, and goldmann applanation tonometry,” Br. J. Ophthalmol. 89, 851–854 (2005).
[Crossref] [PubMed]

R. L. Niederer, D. Perumal, T. Sherwin, and C. N. McGhee, “Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study,” Br. J. Ophthalmol. 91, 1165–1169 (2007).
[Crossref] [PubMed]

L. J. Müller, E. Pels, and G. F. Vrensen, “The specific architecture of the anterior stroma accounts for maintenance of corneal curvature,” Br. J. Ophthalmol. 85, 437–443 (2001).
[Crossref] [PubMed]

A. Akman, A. Leyla, and S. Güngör, “Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500,” Br. J. Ophthalmol. 100, 1201–1205 (2015).
[Crossref] [PubMed]

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90, 262–267 (2006).
[Crossref] [PubMed]

Br. J. Ophthalmolog. (1)

T. Olsen, “On the calculation of power from curvature of the cornea,” Br. J. Ophthalmolog. 70, 152–154 (1986).
[Crossref]

Clin. Exp. Optom. (1)

D. P. Piñero and N. Alcón, “Corneal biomechanics: a review,” Clin. Exp. Optom. 98, 107–116 (2015).
[Crossref]

Def. Sci. J. (1)

A. Gupta, “Statistical characterisation of speckle in clinical echocardiographic images with pearson family of distributions,” Def. Sci. J. 61, 473 (2011).

Eye & Contact Lens (1)

T. J. Liesegang, “Physiologic changes of the cornea with contact lens wear,” Eye & Contact Lens 28, 12–27 (2002).

IEEE Trans. Automat. Contr. (1)

H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automat. Contr. 19, 716–723 (1974).
[Crossref]

IEEE Trans. Biomed. Eng. (2)

G. R. Wilkins, O. M. Houghton, and A. L. Oldenburg, “Automated segmentation of intraretinal cystoid fluid in optical coherence tomography,” IEEE Trans. Biomed. Eng. 59, 1109–1114 (2012).
[Crossref] [PubMed]

M. Caixinha, D. A. Jesus, E. Velte, M. J. Santos, and J. B. Santos, “Using ultrasound backscattering signals and nakagami statistical distribution to assess regional cataract hardness,” IEEE Trans. Biomed. Eng. 61, 2921–2929 (2014).
[Crossref] [PubMed]

IEEE Trans. Med. Imag. (4)

J. Rogowska and M. E. Brezinski, “Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging,” IEEE Trans. Med. Imag. 19, 1261–1266 (2000).
[Crossref]

D. C. Fernandez, “Delineating fluid-filled region boundaries in optical coherence tomography images of the retina,” IEEE Trans. Med. Imag. 24, 929–945 (2005).
[Crossref]

N. M. Grzywacz, J. De Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Trans. Med. Imag. 29, 1224–1237 (2010).
[Crossref]

Z. Amini and H. Rabbani, “Statistical modeling of retinal optical coherent tomography,” IEEE Trans. Med. Imag. 35, 1544–1554 (2016).
[Crossref]

IEEE Trans. Ultrason., Ferroelect., Freq. Control (3)

X. Hao, C. J. Bruce, C. Pislaru, and J. F. Greenleaf, “Characterization of reperfused infarcted myocardium from high-frequency intracardiac ultrasound imaging using homodyned k distribution,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 49, 1530–1542 (2002).
[Crossref]

E. Franceschini, R. K. Saha, and G. Cloutier, “Comparison of three scattering models for ultrasound blood characterization,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 60, 2321–2334 (2013).
[Crossref]

B. I. Raju and M. A. Srinivasan, “Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 49, 871–882 (2002).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (2)

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
[Crossref] [PubMed]

J. Wang, D. Fonn, and T. L. Simpson, “Topographical thickness of the epithelium and total cornea after hydrogel and pmma contact lens wear with eye closure,” Invest. Ophthalmol. Vis. Sci. 44, 1070–1074 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

J. M. Schmitt, S. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref] [PubMed]

G. Farhat, V. X. Yang, G. J. Czarnota, and M. C. Kolios, “Detecting cell death with optical coherence tomography and envelope statistics,” J. Biomed. Opt. 16, 026017 (2011).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (2)

D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg. 31, 156–162 (2005).
[Crossref] [PubMed]

W. J. Dupps, “Hysteresis: new mechanospeak for the ophthalmologist,” J. Cataract Refract. Surg. 33, 1499–1501 (2007).
[Crossref] [PubMed]

J. Curr. Ophthalmol. (1)

F. Sharifipour, M. Panahi-bazaz, R. Bidar, A. Idani, and B. Cheraghian, “Age-related variations in corneal biomechanical properties,” J. Curr. Ophthalmol. 28, 117–122 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. 19, 137–143 (2002).
[Crossref]

J. R. Soc. Interface (1)

A. Elsheikh, B. Geraghty, P. Rama, M. Campanelli, and K. M. Meek, “Characterization of age-related variation in corneal biomechanical properties,” J. R. Soc. Interface 7, 1475–1485 (2010).
[Crossref] [PubMed]

J. Refract. Surg. (1)

R. R. Krueger and W. J. Dupps, “Biomechanical effects of femtosecond and microkeratome-based flap creation: prospective contralateral examination of two patients,” J. Refract. Surg. 23, 800–807 (2007).
[PubMed]

Ophthalmology (1)

B. M. Fontes, R. Ambrósio, D. Jardim, G. C. Velarde, and W. Nosé, “Corneal biomechanical metrics and anterior segment parameters in mild keratoconus,” Ophthalmology 117, 673–679 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

B. Chong and Y.-K. Zhu, “Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified bm3d filter,” Opt. Commun. 291, 461–469 (2013).
[Crossref]

Opt. Lett. (2)

Optom. Vis. Sci. (1)

S. J. Vincent, D. Alonso-Caneiro, M. J. Collins, A. Beanland, L. Lam, C. C. Lim, A. Loke, and N. Nguyen, “Hypoxic corneal changes following eight hours of scleral contact lens wear,” Optom. Vis. Sci. 93, 293–299 (2016).
[Crossref] [PubMed]

Surv. Ophthalmol. (1)

A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?”; Surv. Ophthalmol. 52, S109–S114 (2007).
[Crossref] [PubMed]

Syst. Biol. (1)

D. Posada and T. R. Buckley, “Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests,” Syst. Biol. 53, 793–808 (2004).
[Crossref] [PubMed]

Technometrics (1)

E. W. Stacy and G. A. Mihram, “Parameter estimation for a generalized gamma distribution,” Technometrics 7, 349–358 (1965).
[Crossref]

Ultrasound Med. Biol. (2)

A. Tunis, G. Czarnota, A. Giles, M. Sherar, J. Hunt, and M. Kolios, “Monitoring structural changes in cells with high-frequency ultrasound signal statistics,” Ultrasound Med. Biol. 31, 1041–1049 (2005).
[Crossref] [PubMed]

L. I. Petrella, H. de AzevedoValle, P. R. Issa, C. J. Martins, J. C. Machado, and W. C. A. Pereira, “Statistical analysis of high frequency ultrasonic backscattered signals from basal cell carcinomas,” Ultrasound Med. Biol. 38, 1811–1819 (2012).
[Crossref] [PubMed]

Other (7)

M. Ali and B. Hadj, “Segmentation of oct skin images by classification of speckle statistical parameters,” in Proceedings of “17th IEEE International Conference on Image Processing” (IEEE, 2010), pp. 613–616.

S. Seevaratnam, A. Bains, M. Farid, G. Farhat, M. Kolios, and B. A. Standish, “Quantifying temperature changes in tissue-mimicking fluid phantoms using optical coherence tomography and envelope statistics,” in Proceedings of “SPIE BiOS,” (International Society for Optics and Photonics, 2014), pp. 89380R.

F. Scholz, “Maximum likelihood estimation,” in Encyclopedia of Statistical Sciences (1985).

D. A. Jesus and D. R. Iskander, “Age-related changes of the corneal speckle by optical coherence tomography,” in Proceedings of “37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,” (IEEE, 2015), pp. 5659–5662.

S. Kingman, “Glaucoma is second leading cause of blindness globally,” Bulletin of the World Health Organization82, 887–888 (2004).

B. Geraghty, C. Whitford, C. Boote, R. Akhtar, and A. Elsheikh, “Age-related variation in the biomechanical and structural properties of the corneo-scleral tunic,” in “Mechanical Properties of Aging Soft Tissues,” (Springer, 2015), pp. 207–235.

W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Corneal OCT image and the ROI (indicated by red lines) for age-related (a) and short-term (b) structural changes analysis. The rationale for the choice of ROI is given in the text. Blue lines indicate, from the top: epithelium, Bowman’s capsule and endothelium. Both x and y axes indicate geometrical distances where, for the latter, the refractive index is set to n = 1.336 (paraxial approximation).
Fig. 2
Fig. 2 Cumulative distribution function of the raw data and the competing models (GG - Generalized Gamma; G - Gamma; W - Weibull; N - Nakagami; R - Rayleigh; K - K-distribution; L - Lognormal; Ri - Rician) for an exemplary subject.
Fig. 3
Fig. 3 Values of the Kolmogorov-Smirnov statistics regarding to each competing model cdf and respective critical value represented by the dashed line.
Fig. 4
Fig. 4 Akaike’s Information Criterion of the data approximated by Generalized Gamma, Weibull, Nakagami and Rayleigh distribution.
Fig. 5
Fig. 5 Corneal OCT image of a subject aged 25, 29, 45 and 53 years and the respective central corneal thickness.
Fig. 6
Fig. 6 Probability density function of the Generalized Gamma distribution for all age groups.
Fig. 7
Fig. 7 Example of a corneal OCT image before (a) and after inducing corneal swelling at 0 (b), 60 (c) and 120 (d) minutes and the respective central corneal thickness.
Fig. 8
Fig. 8 Probability density function of the Generalized Gamma distribution for each short-time group.
Fig. 9
Fig. 9 Parameter p of Generalized Gamma distribution during de-swelling of four subjects with different ages. The equations represent the linear regression for each subject based on least squares.

Tables (2)

Tables Icon

Table 1 Average and standard deviation of the Generalized Gamma parameters for each age-group.

Tables Icon

Table 2 Average and standard deviation of the central corneal thickness and Generalized Gamma parameters measured before patching and after removing eye patch at 0, 60 and 120 minutes and the respective values for the control eye (OS).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f G G ( x ; a , v , p ) = | p | x p v 1 exp { ( x a ) p } / a p v Γ ( v )
f K ( x ; u , φ , L ) = 2 ξ ( β + 1 ) / 2 x ( β 1 ) / 2 Γ ( L ) Γ ( φ ) K α ( 2 ξ x )
f L D ( x ; μ , σ ) = 1 x σ 2 π exp { ( l n ( x ) μ ) 2 2 σ 2 }
f R i ( x ; s , ϑ ) = I 0 ( x s ϑ 2 ) x ϑ 2 exp { ( x 2 + s 2 2 ϑ 2 ) }
A I C k = 2 ln ( L k ) + 2 p k

Metrics