Abstract

The peripheral retina of the human eye offers a unique opportunity for assessment and monitoring of ocular diseases. We have developed a novel wide-field (>70°) optical coherence tomography system (WF-OCT) equipped with wavefront sensorless adaptive optics (WSAO) for enhancing the visualization of smaller (<25°) targeted regions in the peripheral retina. We iterated the WSAO algorithm at the speed of individual OCT B-scans (~20 ms) by using raw spectral interferograms to calculate the optimization metric. Our WSAO approach with a 3 mm beam diameter permitted primarily low- but also high- order peripheral wavefront correction in less than 10 seconds. In preliminary imaging studies in five normal human subjects, we quantified statistically significant changes with WSAO correction, corresponding to a 10.4% improvement in average pixel brightness (signal) and 7.0% improvement in high frequency content (resolution) when visualizing 1 mm (~3.5°) B-scans of the peripheral (>23°) retina. We demonstrated the ability of our WF-OCT system to acquire non wavefront-corrected wide-field images rapidly, which could then be used to locate regions of interest, zoom into targeted features, and visualize the same region at different time points. A pilot clinical study was conducted on seven healthy volunteers and two subjects with prodromal Alzheimer’s disease which illustrated the capability to image Drusen-like pathologies as far as 32.5° from the fovea in un-averaged volume scans. This work suggests that the proposed combination of WF-OCT and WSAO may find applications in the diagnosis and treatment of ocular, and potentially neurodegenerative, diseases of the peripheral retina, including diabetes and Alzheimer’s disease.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced visualization of peripheral retinal vasculature with wavefront sensorless adaptive optics optical coherence tomography angiography in diabetic patients

James Polans, David Cunefare, Eli Cole, Brenton Keller, Priyatham S. Mettu, Scott W. Cousins, Michael J. Allingham, Joseph A. Izatt, and Sina Farsiu
Opt. Lett. 42(1) 17-20 (2017)

Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics

Kazuhiro Kurokawa, Kazuhiro Sasaki, Shuichi Makita, Young-Joo Hong, and Yoshiaki Yasuno
Opt. Express 20(20) 22796-22812 (2012)

Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope

Stephen A. Burns, Remy Tumbar, Ann E. Elsner, Daniel Ferguson, and Daniel X. Hammer
J. Opt. Soc. Am. A 24(5) 1313-1326 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
    [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In Vivo Optical Coherence Tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
    [PubMed]
  3. J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, Optical Coherence Tomography of Ocular Diseases, 3rd ed. (Slack Inc., Thorofare, New Jersey, USA, 2012).
  4. O. Pomerantzeff, “Equator-Plus Camera,” Invest. Ophthalmol. 14(5), 401–406 (1975).
    [PubMed]
  5. M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, and S. Kiss, “Ultra-Wide-Field Angiography Improves the Detection and Classification of Diabetic Retinopathy,” Retina 32(4), 785–791 (2012).
    [PubMed]
  6. L. Reznicek, T. Klein, W. Wieser, M. Kernt, A. Wolf, C. Haritoglou, A. Kampik, R. Huber, and A. S. Neubauer, “Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices,” Graefes Arch. Clin. Exp. Ophthalmol. 252(6), 1009–1016 (2014).
    [PubMed]
  7. R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A 27(11), A265–A277 (2010).
    [PubMed]
  8. R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
    [PubMed]
  9. A. Manivannan, J. Plskova, A. Farrow, S. Mckay, P. F. Sharp, and J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140(3), 525–527 (2005).
    [PubMed]
  10. V. L. L. Torres, N. Brugnoni, P. K. Kaiser, and A. D. Singh, “Optical Coherence Tomography Enhanced Depth Imaging of Choroidal Tumors,” Am. J. Ophthalmol. 151(4), 586–593 (2011).
    [PubMed]
  11. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
    [PubMed]
  12. J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
    [PubMed]
  13. J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2, 124–134 (2015).
  14. B. Jaeken and P. Artal, “Optical Quality of Emmetropic and Myopic Eyes in the Periphery Measured with High-Angular Resolution,” Invest. Ophthalmol. Vis. Sci. 53(7), 3405–3413 (2012).
    [PubMed]
  15. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
    [PubMed]
  16. A. V. Dubinin, T. Y. Cherezova, A. I. Belyakov, and A. V. Kudryashov, “Isoplanatism of the optical system of the human eye,” J. Opt. Technol. 75, 172–174 (2008).
  17. M. Nowakowski, M. Sheehan, D. Neal, and A. V. Goncharov, “Investigation of the isoplanatic patch and wavefront aberration along the pupillary axis compared to the line of sight in the eye,” Biomed. Opt. Express 3(2), 240–258 (2012).
    [PubMed]
  18. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [PubMed]
  19. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [PubMed]
  20. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101(22), 8461–8466 (2004).
    [PubMed]
  21. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
    [PubMed]
  22. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
    [PubMed]
  23. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
    [PubMed]
  24. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
    [PubMed]
  25. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(7), 1864–1876 (2011).
    [PubMed]
  26. F. Felberer, J. S. Kroisamer, C. K. Hitzenberger, and M. Pircher, “Lens based adaptive optics scanning laser ophthalmoscope,” Opt. Express 20(16), 17297–17310 (2012).
    [PubMed]
  27. Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4(12), 3007–3029 (2013).
    [PubMed]
  28. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007).
    [PubMed]
  29. Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5(2), 547–559 (2014).
    [PubMed]
  30. K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
    [PubMed]
  31. H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
    [PubMed]
  32. S. Bonora and R. J. Zawadzki, “Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography,” Opt. Lett. 38(22), 4801–4804 (2013).
    [PubMed]
  33. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [PubMed]
  34. O. A. R. Board, “OpenMP Application Program Interface Version 2.5” (2005), retrieved http://www.openmp.org/mp-documents/spec30.pdf .
  35. M. A. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19(2), 356–368 (2002).
    [PubMed]
  36. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
    [PubMed]
  37. R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition) (Prentice-Hall, Inc., 2006).
  38. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
    [PubMed]
  39. B. Dubois and M. L. Albert, “Amnestic MCI or prodromal Alzheimer’s disease?” Lancet Neurol. 3(4), 246–248 (2004).
    [PubMed]
  40. F. LaRocca, D. Nankivil, T. DuBose, S. Farsiu, and J. A. Izatt, “Ultra-compact switchable SLO/OCT handheld probe design,” Ophthalmic Technologies Xxv 9307(2015).
  41. D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
    [PubMed]
  42. D. L. Fried, “Anisoplanatism in Adaptive Optics,” J. Opt. Soc. Am. 72, 52–61 (1982).
  43. A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16(3), 1692–1703 (2008).
    [PubMed]
  44. M. Rueckel and W. Denk, “Properties of coherence-gated wavefront sensing,” J. Opt. Soc. Am. A 24(11), 3517–3529 (2007).
    [PubMed]
  45. J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (John Wiley & Sons, 2006), Vol. 171.
  46. L. Lundström and P. Unsbo, “Unwrapping Hartmann-Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method,” Optom. Vis. Sci. 81(5), 383–388 (2004).
    [PubMed]
  47. S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
    [PubMed]
  48. A. Dubra, C. Paterson, and C. Dainty, “Study of the tear topography dynamics using a lateral shearing interferometer,” Opt. Express 12(25), 6278–6288 (2004).
    [PubMed]
  49. Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt. 18(5), 56007 (2013).
    [PubMed]
  50. H. R. G. W. Verstraete, S. Wahls, J. Kalkman, and M. Verhaegen, “Model-based sensor-less wavefront aberration correction in optical coherence tomography,” Opt. Lett. 40(24), 5722–5725 (2015).
    [PubMed]
  51. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
    [PubMed]
  52. S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, A.-R. E. D. S. Ancill, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative Classification of Eyes with and without Intermediate Age-Related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
    [PubMed]
  53. S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496 (2009).
    [PubMed]
  54. D. C. Hood, C. E. Lin, M. A. Lazow, K. G. Locke, X. Zhang, and D. G. Birch, “Thickness of Receptor and Post-Receptor Retinal Layers in Patients with Retinitis Pigmentosa Measured with Frequency-Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 50(5), 2328–2336 (2009).
    [PubMed]
  55. M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
    [PubMed]
  56. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005).
    [PubMed]
  57. S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral Domain Optical Coherence Tomography Imaging of Geographic Atrophy Margins,” Ophthalmology 116(9), 1762–1769 (2009).
    [PubMed]
  58. S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012).
    [PubMed]
  59. C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express 18(16), 16671–16684 (2010).
    [PubMed]
  60. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
    [PubMed]
  61. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [PubMed]
  62. M. Patel and S. Kiss, “Ultra-wide-field fluorescein angiography in retinal disease,” Curr. Opin. Ophthalmol. 25(3), 213–220 (2014).
    [PubMed]
  63. A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of Ocular Shape in Retinal Optical Coherence Tomography and Effect on Current Clinical Measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
    [PubMed]
  64. O. Carrasco-Zevallos, D. Nankivil, B. Keller, C. Viehland, B. J. Lujan, and J. A. Izatt, “Pupil tracking optical coherence tomography for precise control of pupil entry position,” Biomed. Opt. Express 6(9), 3405–3419 (2015).
    [PubMed]
  65. A. H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37(11), 1883–1885 (2012).
    [PubMed]

2016 (1)

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[PubMed]

2015 (6)

2014 (4)

M. Patel and S. Kiss, “Ultra-wide-field fluorescein angiography in retinal disease,” Curr. Opin. Ophthalmol. 25(3), 213–220 (2014).
[PubMed]

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, A.-R. E. D. S. Ancill, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative Classification of Eyes with and without Intermediate Age-Related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[PubMed]

Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5(2), 547–559 (2014).
[PubMed]

L. Reznicek, T. Klein, W. Wieser, M. Kernt, A. Wolf, C. Haritoglou, A. Kampik, R. Huber, and A. S. Neubauer, “Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices,” Graefes Arch. Clin. Exp. Ophthalmol. 252(6), 1009–1016 (2014).
[PubMed]

2013 (4)

S. Bonora and R. J. Zawadzki, “Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography,” Opt. Lett. 38(22), 4801–4804 (2013).
[PubMed]

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4(12), 3007–3029 (2013).
[PubMed]

Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt. 18(5), 56007 (2013).
[PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of Ocular Shape in Retinal Optical Coherence Tomography and Effect on Current Clinical Measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[PubMed]

2012 (6)

2011 (4)

2010 (3)

2009 (3)

S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496 (2009).
[PubMed]

D. C. Hood, C. E. Lin, M. A. Lazow, K. G. Locke, X. Zhang, and D. G. Birch, “Thickness of Receptor and Post-Receptor Retinal Layers in Patients with Retinitis Pigmentosa Measured with Frequency-Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 50(5), 2328–2336 (2009).
[PubMed]

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral Domain Optical Coherence Tomography Imaging of Geographic Atrophy Margins,” Ophthalmology 116(9), 1762–1769 (2009).
[PubMed]

2008 (4)

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16(3), 1692–1703 (2008).
[PubMed]

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[PubMed]

A. V. Dubinin, T. Y. Cherezova, A. I. Belyakov, and A. V. Kudryashov, “Isoplanatism of the optical system of the human eye,” J. Opt. Technol. 75, 172–174 (2008).

2007 (3)

2006 (1)

2005 (5)

2004 (7)

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101(22), 8461–8466 (2004).
[PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[PubMed]

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[PubMed]

A. Dubra, C. Paterson, and C. Dainty, “Study of the tear topography dynamics using a lateral shearing interferometer,” Opt. Express 12(25), 6278–6288 (2004).
[PubMed]

L. Lundström and P. Unsbo, “Unwrapping Hartmann-Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method,” Optom. Vis. Sci. 81(5), 383–388 (2004).
[PubMed]

B. Dubois and M. L. Albert, “Amnestic MCI or prodromal Alzheimer’s disease?” Lancet Neurol. 3(4), 246–248 (2004).
[PubMed]

2002 (3)

1999 (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[PubMed]

1997 (1)

1993 (1)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In Vivo Optical Coherence Tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
[PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

1982 (1)

1975 (1)

O. Pomerantzeff, “Equator-Plus Camera,” Invest. Ophthalmol. 14(5), 401–406 (1975).
[PubMed]

Aaker, G. D.

M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, and S. Kiss, “Ultra-Wide-Field Angiography Improves the Detection and Classification of Diabetic Retinopathy,” Retina 32(4), 785–791 (2012).
[PubMed]

Aiello, L. P.

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

Albert, M. L.

B. Dubois and M. L. Albert, “Amnestic MCI or prodromal Alzheimer’s disease?” Lancet Neurol. 3(4), 246–248 (2004).
[PubMed]

Ancill, A.-R. E. D. S.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, A.-R. E. D. S. Ancill, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative Classification of Eyes with and without Intermediate Age-Related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[PubMed]

Artal, P.

Ashman, R.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[PubMed]

Bearelly, S.

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral Domain Optical Coherence Tomography Imaging of Geographic Atrophy Margins,” Ophthalmology 116(9), 1762–1769 (2009).
[PubMed]

Beaton, S.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[PubMed]

Bedggood, P.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[PubMed]

Belyakov, A. I.

Biedermann, B. R.

Birch, D. G.

D. C. Hood, C. E. Lin, M. A. Lazow, K. G. Locke, X. Zhang, and D. G. Birch, “Thickness of Receptor and Post-Receptor Retinal Layers in Patients with Retinitis Pigmentosa Measured with Frequency-Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 50(5), 2328–2336 (2009).
[PubMed]

Bonora, S.

Bower, B. A.

Bowes Rickman, C.

Bressler, N. M.

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

Bressler, S. B.

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

Browning, D. J.

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

Brugnoni, N.

V. L. L. Torres, N. Brugnoni, P. K. Kaiser, and A. D. Singh, “Optical Coherence Tomography Enhanced Depth Imaging of Choroidal Tumors,” Am. J. Ophthalmol. 151(4), 586–593 (2011).
[PubMed]

Burns, S. A.

Bustamante, T.

Cabrera Fernández, D.

Campbell, M.

Carrasco-Zevallos, O.

Carroll, J.

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(7), 1864–1876 (2011).
[PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101(22), 8461–8466 (2004).
[PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Chau, F. Y.

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral Domain Optical Coherence Tomography Imaging of Geographic Atrophy Margins,” Ophthalmology 116(9), 1762–1769 (2009).
[PubMed]

Chen, D. C.

Cherezova, T. Y.

Chiu, S. J.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, A.-R. E. D. S. Ancill, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative Classification of Eyes with and without Intermediate Age-Related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of Ocular Shape in Retinal Optical Coherence Tomography and Effect on Current Clinical Measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[PubMed]

S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012).
[PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[PubMed]

Cho, M.

M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, and S. Kiss, “Ultra-Wide-Field Angiography Improves the Detection and Classification of Diabetic Retinopathy,” Retina 32(4), 785–791 (2012).
[PubMed]

Choi, S.

Cooper, R. F.

Cua, M.

D’Amico, D. J.

M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, and S. Kiss, “Ultra-Wide-Field Angiography Improves the Detection and Classification of Diabetic Retinopathy,” Retina 32(4), 785–791 (2012).
[PubMed]

Daaboul, M.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[PubMed]

Dainty, C.

Davis, M. D.

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

Deng, C.

Denk, W.

Dhalla, A. H.

Donnelly Iii, W.

Drexler, W.

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[PubMed]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In Vivo Optical Coherence Tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
[PubMed]

Dubinin, A. V.

Dubis, A. M.

Dubois, B.

B. Dubois and M. L. Albert, “Amnestic MCI or prodromal Alzheimer’s disease?” Lancet Neurol. 3(4), 246–248 (2004).
[PubMed]

Dubra, A.

Duker, J.

Eigenwillig, C. M.

El-Dairi, M. A.

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of Ocular Shape in Retinal Optical Coherence Tomography and Effect on Current Clinical Measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[PubMed]

Farrow, A.

A. Manivannan, J. Plskova, A. Farrow, S. Mckay, P. F. Sharp, and J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140(3), 525–527 (2005).
[PubMed]

Farsiu, S.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, A.-R. E. D. S. Ancill, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative Classification of Eyes with and without Intermediate Age-Related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of Ocular Shape in Retinal Optical Coherence Tomography and Effect on Current Clinical Measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[PubMed]

S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012).
[PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[PubMed]

S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496 (2009).
[PubMed]

Felberer, F.

Fercher, A. F.

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[PubMed]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In Vivo Optical Coherence Tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
[PubMed]

Ferguson, R. D.

Fernández, E. J.

Flaxel, C. J.

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Folgar, F. A.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, A.-R. E. D. S. Ancill, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative Classification of Eyes with and without Intermediate Age-Related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[PubMed]

Fong, D. S.

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

Forrester, J. V.

A. Manivannan, J. Plskova, A. Farrow, S. Mckay, P. F. Sharp, and J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140(3), 525–527 (2005).
[PubMed]

Foster, W. J.

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

Fried, D. L.

Fujikado, T.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[PubMed]

Fujimoto, J.

Fujimoto, J. G.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Glassman, A. R.

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

Goncharov, A. V.

Gradowski, M. A.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Grewal, D. S.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[PubMed]

Gruber, A.

Hammer, D. X.

Hanson, S. R.

Haritoglou, C.

L. Reznicek, T. Klein, W. Wieser, M. Kernt, A. Wolf, C. Haritoglou, A. Kampik, R. Huber, and A. S. Neubauer, “Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices,” Graefes Arch. Clin. Exp. Ophthalmol. 252(6), 1009–1016 (2014).
[PubMed]

Hartnett, M. E. R.

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

Hebert, T.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Hermann, B.

Hirohara, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[PubMed]

Hitzenberger, C. K.

F. Felberer, J. S. Kroisamer, C. K. Hitzenberger, and M. Pircher, “Lens based adaptive optics scanning laser ophthalmoscope,” Opt. Express 20(16), 17297–17310 (2012).
[PubMed]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In Vivo Optical Coherence Tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
[PubMed]

Hofer, H.

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
[PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101(22), 8461–8466 (2004).
[PubMed]

Hong, Y.

Hood, D. C.

D. C. Hood, C. E. Lin, M. A. Lazow, K. G. Locke, X. Zhang, and D. G. Birch, “Thickness of Receptor and Post-Receptor Retinal Layers in Patients with Retinitis Pigmentosa Measured with Frequency-Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 50(5), 2328–2336 (2009).
[PubMed]

Hori, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Hubel, D. H.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[PubMed]

Huber, R.

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[PubMed]

L. Reznicek, T. Klein, W. Wieser, M. Kernt, A. Wolf, C. Haritoglou, A. Kampik, R. Huber, and A. S. Neubauer, “Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices,” Graefes Arch. Clin. Exp. Ophthalmol. 252(6), 1009–1016 (2014).
[PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[PubMed]

Hurst, S.

Ishikawa, H.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[PubMed]

Ivers, K. M.

Izatt, J. A.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[PubMed]

J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2, 124–134 (2015).

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[PubMed]

O. Carrasco-Zevallos, D. Nankivil, B. Keller, C. Viehland, B. J. Lujan, and J. A. Izatt, “Pupil tracking optical coherence tomography for precise control of pupil entry position,” Biomed. Opt. Express 6(9), 3405–3419 (2015).
[PubMed]

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, A.-R. E. D. S. Ancill, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative Classification of Eyes with and without Intermediate Age-Related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of Ocular Shape in Retinal Optical Coherence Tomography and Effect on Current Clinical Measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[PubMed]

A. H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37(11), 1883–1885 (2012).
[PubMed]

S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012).
[PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[PubMed]

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral Domain Optical Coherence Tomography Imaging of Geographic Atrophy Margins,” Ophthalmology 116(9), 1762–1769 (2009).
[PubMed]

S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496 (2009).
[PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[PubMed]

Jacques, S. L.

Jaeken, B.

J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2, 124–134 (2015).

B. Jaeken and P. Artal, “Optical Quality of Emmetropic and Myopic Eyes in the Periphery Measured with High-Angular Resolution,” Invest. Ophthalmol. Vis. Sci. 53(7), 3405–3413 (2012).
[PubMed]

Jaffe, G. J.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[PubMed]

Jian, Y.

Jones, S. M.

Jonnal, R.

Jung, S. H.

S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496 (2009).
[PubMed]

Kaiser, P. K.

V. L. L. Torres, N. Brugnoni, P. K. Kaiser, and A. D. Singh, “Optical Coherence Tomography Enhanced Depth Imaging of Choroidal Tumors,” Am. J. Ophthalmol. 151(4), 586–593 (2011).
[PubMed]

Kalkman, J.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In Vivo Optical Coherence Tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
[PubMed]

Kampik, A.

L. Reznicek, T. Klein, W. Wieser, M. Kernt, A. Wolf, C. Haritoglou, A. Kampik, R. Huber, and A. S. Neubauer, “Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices,” Graefes Arch. Clin. Exp. Ophthalmol. 252(6), 1009–1016 (2014).
[PubMed]

Keller, B.

Kernt, M.

L. Reznicek, T. Klein, W. Wieser, M. Kernt, A. Wolf, C. Haritoglou, A. Kampik, R. Huber, and A. S. Neubauer, “Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices,” Graefes Arch. Clin. Exp. Ophthalmol. 252(6), 1009–1016 (2014).
[PubMed]

Kiss, S.

M. Patel and S. Kiss, “Ultra-wide-field fluorescein angiography in retinal disease,” Curr. Opin. Ophthalmol. 25(3), 213–220 (2014).
[PubMed]

M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, and S. Kiss, “Ultra-Wide-Field Angiography Improves the Detection and Classification of Diabetic Retinopathy,” Retina 32(4), 785–791 (2012).
[PubMed]

Klein, T.

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[PubMed]

L. Reznicek, T. Klein, W. Wieser, M. Kernt, A. Wolf, C. Haritoglou, A. Kampik, R. Huber, and A. S. Neubauer, “Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices,” Graefes Arch. Clin. Exp. Ophthalmol. 252(6), 1009–1016 (2014).
[PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[PubMed]

Ko, T.

Kocaoglu, O. P.

Koh, S.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[PubMed]

Kolb, J. P.

Kollman, C.

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

Koreishi, A.

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral Domain Optical Coherence Tomography Imaging of Geographic Atrophy Margins,” Ophthalmology 116(9), 1762–1769 (2009).
[PubMed]

Koreishi, A. F.

S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496 (2009).
[PubMed]

Kowalczyk, A.

Kroisamer, J. S.

Kudryashov, A. V.

Kufner, C. L.

Kuo, A.

Kuo, A. N.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of Ocular Shape in Retinal Optical Coherence Tomography and Effect on Current Clinical Measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[PubMed]

Kuroda, T.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[PubMed]

LaRocca, F.

Laut, S.

Lazow, M. A.

D. C. Hood, C. E. Lin, M. A. Lazow, K. G. Locke, X. Zhang, and D. G. Birch, “Thickness of Receptor and Post-Receptor Retinal Layers in Patients with Retinitis Pigmentosa Measured with Frequency-Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 50(5), 2328–2336 (2009).
[PubMed]

Li, C.

Li, H. K.

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

Li, X. T.

Liang, J.

Lin, C. E.

D. C. Hood, C. E. Lin, M. A. Lazow, K. G. Locke, X. Zhang, and D. G. Birch, “Thickness of Receptor and Post-Receptor Retinal Layers in Patients with Retinitis Pigmentosa Measured with Frequency-Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 50(5), 2328–2336 (2009).
[PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Liu, Z.

Locke, K. G.

D. C. Hood, C. E. Lin, M. A. Lazow, K. G. Locke, X. Zhang, and D. G. Birch, “Thickness of Receptor and Post-Receptor Retinal Layers in Patients with Retinitis Pigmentosa Measured with Frequency-Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 50(5), 2328–2336 (2009).
[PubMed]

Lujan, B. J.

Lundström, L.

L. Lundström and P. Unsbo, “Unwrapping Hartmann-Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method,” Optom. Vis. Sci. 81(5), 383–388 (2004).
[PubMed]

Ma, Z.

Macknik, S. L.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[PubMed]

Maeda, N.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[PubMed]

Mahmoud, T. H.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[PubMed]

Makita, S.

Manivannan, A.

A. Manivannan, J. Plskova, A. Farrow, S. Mckay, P. F. Sharp, and J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140(3), 525–527 (2005).
[PubMed]

Martinez-Conde, S.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[PubMed]

Mckay, S.

A. Manivannan, J. Plskova, A. Farrow, S. Mckay, P. F. Sharp, and J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140(3), 525–527 (2005).
[PubMed]

McNabb, R. P.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[PubMed]

J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2, 124–134 (2015).

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of Ocular Shape in Retinal Optical Coherence Tomography and Effect on Current Clinical Measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[PubMed]

Mehta, R.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[PubMed]

Metha, A.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[PubMed]

Mihashi, T.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[PubMed]

Miller, D.

Miller, D. T.

Mruthyunjaya, P.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[PubMed]

Mujat, M.

Nankivil, D.

Neal, D.

Neitz, J.

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101(22), 8461–8466 (2004).
[PubMed]

Neitz, M.

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101(22), 8461–8466 (2004).
[PubMed]

Neubauer, A. S.

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[PubMed]

L. Reznicek, T. Klein, W. Wieser, M. Kernt, A. Wolf, C. Haritoglou, A. Kampik, R. Huber, and A. S. Neubauer, “Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices,” Graefes Arch. Clin. Exp. Ophthalmol. 252(6), 1009–1016 (2014).
[PubMed]

Nicholas, P.

Norris, J. L.

Nowakowski, M.

O’Connell, R. V.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, A.-R. E. D. S. Ancill, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative Classification of Eyes with and without Intermediate Age-Related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[PubMed]

Olivier, S. S.

Parlitsis, G.

M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, and S. Kiss, “Ultra-Wide-Field Angiography Improves the Detection and Classification of Diabetic Retinopathy,” Retina 32(4), 785–791 (2012).
[PubMed]

Patel, A. H.

Patel, M.

M. Patel and S. Kiss, “Ultra-wide-field fluorescein angiography in retinal disease,” Curr. Opin. Ophthalmol. 25(3), 213–220 (2014).
[PubMed]

Paterson, C.

Pircher, M.

Plskova, J.

A. Manivannan, J. Plskova, A. Farrow, S. Mckay, P. F. Sharp, and J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140(3), 525–527 (2005).
[PubMed]

Polans, J.

Pomerantzeff, O.

O. Pomerantzeff, “Equator-Plus Camera,” Invest. Ophthalmol. 14(5), 401–406 (1975).
[PubMed]

Porter, J.

Prieto, P. M.

Puliafito, C. A.

D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Qin, H.

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

Queener, H.

Reznicek, L.

L. Reznicek, T. Klein, W. Wieser, M. Kernt, A. Wolf, C. Haritoglou, A. Kampik, R. Huber, and A. S. Neubauer, “Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices,” Graefes Arch. Clin. Exp. Ophthalmol. 252(6), 1009–1016 (2014).
[PubMed]

Rha, J.

Romero-Borja, F.

Roorda, A.

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[PubMed]

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[PubMed]

Rueckel, M.

Salinas, H. M.

Sarunic, M. V.

Sattmann, H.

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[PubMed]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In Vivo Optical Coherence Tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
[PubMed]

Schuman, J. S.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Schuman, S. G.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[PubMed]

S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496 (2009).
[PubMed]

Scott, I. U.

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

Sharp, P. F.

A. Manivannan, J. Plskova, A. Farrow, S. Mckay, P. F. Sharp, and J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140(3), 525–527 (2005).
[PubMed]

Sheehan, M.

Sheehan, M. T.

Silva, D. A.

Singh, A. D.

V. L. L. Torres, N. Brugnoni, P. K. Kaiser, and A. D. Singh, “Optical Coherence Tomography Enhanced Depth Imaging of Choroidal Tumors,” Am. J. Ophthalmol. 151(4), 586–593 (2011).
[PubMed]

Smith, G.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[PubMed]

Sredar, N.

Srinivasan, V.

Stein, D. M.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[PubMed]

Stinnett, S. S.

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral Domain Optical Coherence Tomography Imaging of Geographic Atrophy Margins,” Ophthalmology 116(9), 1762–1769 (2009).
[PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Sulai, Y.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Tano, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[PubMed]

Torres, V. L. L.

V. L. L. Torres, N. Brugnoni, P. K. Kaiser, and A. D. Singh, “Optical Coherence Tomography Enhanced Depth Imaging of Choroidal Tumors,” Am. J. Ophthalmol. 151(4), 586–593 (2011).
[PubMed]

Toth, C. A.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, A.-R. E. D. S. Ancill, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative Classification of Eyes with and without Intermediate Age-Related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of Ocular Shape in Retinal Optical Coherence Tomography and Effect on Current Clinical Measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[PubMed]

S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012).
[PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[PubMed]

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral Domain Optical Coherence Tomography Imaging of Geographic Atrophy Margins,” Ophthalmology 116(9), 1762–1769 (2009).
[PubMed]

S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496 (2009).
[PubMed]

Unsbo, P.

L. Lundström and P. Unsbo, “Unwrapping Hartmann-Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method,” Optom. Vis. Sci. 81(5), 383–388 (2004).
[PubMed]

Unterhuber, A.

Verhaegen, M.

Verstraete, H. R. G. W.

Viehland, C.

Vorontsov, M. A.

Wahls, S.

Wang, R. K.

Watanabe, H.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[PubMed]

Waterman, G.

Werner, J. S.

Wessel, M. M.

M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, and S. Kiss, “Ultra-Wide-Field Angiography Improves the Detection and Classification of Diabetic Retinopathy,” Retina 32(4), 785–791 (2012).
[PubMed]

Wieser, W.

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[PubMed]

L. Reznicek, T. Klein, W. Wieser, M. Kernt, A. Wolf, C. Haritoglou, A. Kampik, R. Huber, and A. S. Neubauer, “Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices,” Graefes Arch. Clin. Exp. Ophthalmol. 252(6), 1009–1016 (2014).
[PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[PubMed]

Williams, D. R.

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(7), 1864–1876 (2011).
[PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101(22), 8461–8466 (2004).
[PubMed]

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[PubMed]

Wojtkowski, M.

Wolf, A.

L. Reznicek, T. Klein, W. Wieser, M. Kernt, A. Wolf, C. Haritoglou, A. Kampik, R. Huber, and A. S. Neubauer, “Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices,” Graefes Arch. Clin. Exp. Ophthalmol. 252(6), 1009–1016 (2014).
[PubMed]

Wollstein, G.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[PubMed]

Wong, K. S. K.

Xu, J.

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yuan, E.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, A.-R. E. D. S. Ancill, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative Classification of Eyes with and without Intermediate Age-Related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[PubMed]

Zawadzki, R. J.

Zhang, X.

D. C. Hood, C. E. Lin, M. A. Lazow, K. G. Locke, X. Zhang, and D. G. Birch, “Thickness of Receptor and Post-Receptor Retinal Layers in Patients with Retinitis Pigmentosa Measured with Frequency-Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 50(5), 2328–2336 (2009).
[PubMed]

Zhang, Y.

Zhao, M.

Zhong, Z.

Zou, W.

Am. J. Ophthalmol. (5)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In Vivo Optical Coherence Tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993).
[PubMed]

A. Manivannan, J. Plskova, A. Farrow, S. Mckay, P. F. Sharp, and J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140(3), 525–527 (2005).
[PubMed]

V. L. L. Torres, N. Brugnoni, P. K. Kaiser, and A. D. Singh, “Optical Coherence Tomography Enhanced Depth Imaging of Choroidal Tumors,” Am. J. Ophthalmol. 151(4), 586–593 (2011).
[PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of Ocular Shape in Retinal Optical Coherence Tomography and Effect on Current Clinical Measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[PubMed]

Biomed. Opt. Express (9)

O. Carrasco-Zevallos, D. Nankivil, B. Keller, C. Viehland, B. J. Lujan, and J. A. Izatt, “Pupil tracking optical coherence tomography for precise control of pupil entry position,” Biomed. Opt. Express 6(9), 3405–3419 (2015).
[PubMed]

S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012).
[PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[PubMed]

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[PubMed]

M. Nowakowski, M. Sheehan, D. Neal, and A. V. Goncharov, “Investigation of the isoplanatic patch and wavefront aberration along the pupillary axis compared to the line of sight in the eye,” Biomed. Opt. Express 3(2), 240–258 (2012).
[PubMed]

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(7), 1864–1876 (2011).
[PubMed]

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4(12), 3007–3029 (2013).
[PubMed]

Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5(2), 547–559 (2014).
[PubMed]

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
[PubMed]

Br. J. Ophthalmol. (1)

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[PubMed]

Curr. Opin. Ophthalmol. (1)

M. Patel and S. Kiss, “Ultra-wide-field fluorescein angiography in retinal disease,” Curr. Opin. Ophthalmol. 25(3), 213–220 (2014).
[PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

L. Reznicek, T. Klein, W. Wieser, M. Kernt, A. Wolf, C. Haritoglou, A. Kampik, R. Huber, and A. S. Neubauer, “Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices,” Graefes Arch. Clin. Exp. Ophthalmol. 252(6), 1009–1016 (2014).
[PubMed]

Invest. Ophthalmol. (1)

O. Pomerantzeff, “Equator-Plus Camera,” Invest. Ophthalmol. 14(5), 401–406 (1975).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (4)

B. Jaeken and P. Artal, “Optical Quality of Emmetropic and Myopic Eyes in the Periphery Measured with High-Angular Resolution,” Invest. Ophthalmol. Vis. Sci. 53(7), 3405–3413 (2012).
[PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[PubMed]

D. C. Hood, C. E. Lin, M. A. Lazow, K. G. Locke, X. Zhang, and D. G. Birch, “Thickness of Receptor and Post-Receptor Retinal Layers in Patients with Retinitis Pigmentosa Measured with Frequency-Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 50(5), 2328–2336 (2009).
[PubMed]

M. D. Davis, S. B. Bressler, L. P. Aiello, N. M. Bressler, D. J. Browning, C. J. Flaxel, D. S. Fong, W. J. Foster, A. R. Glassman, M. E. R. Hartnett, C. Kollman, H. K. Li, H. Qin, I. U. Scott, and Diabetic Retinopathy Clinical Research Network Study Group, “Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 49(5), 1745–1752 (2008).
[PubMed]

J. Biomed. Opt. (2)

Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt. 18(5), 56007 (2013).
[PubMed]

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

J. Opt. Technol. (1)

Lancet Neurol. (1)

B. Dubois and M. L. Albert, “Amnestic MCI or prodromal Alzheimer’s disease?” Lancet Neurol. 3(4), 246–248 (2004).
[PubMed]

Nat. Rev. Neurosci. (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[PubMed]

Nature (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[PubMed]

Ophthalmology (3)

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, A.-R. E. D. S. Ancill, and Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative Classification of Eyes with and without Intermediate Age-Related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[PubMed]

S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496 (2009).
[PubMed]

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral Domain Optical Coherence Tomography Imaging of Geographic Atrophy Margins,” Ophthalmology 116(9), 1762–1769 (2009).
[PubMed]

Opt. Express (14)

C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express 18(16), 16671–16684 (2010).
[PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[PubMed]

D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005).
[PubMed]

A. Dubra, C. Paterson, and C. Dainty, “Study of the tear topography dynamics using a lateral shearing interferometer,” Opt. Express 12(25), 6278–6288 (2004).
[PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[PubMed]

A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16(3), 1692–1703 (2008).
[PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[PubMed]

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
[PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
[PubMed]

F. Felberer, J. S. Kroisamer, C. K. Hitzenberger, and M. Pircher, “Lens based adaptive optics scanning laser ophthalmoscope,” Opt. Express 20(16), 17297–17310 (2012).
[PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[PubMed]

Opt. Lett. (4)

Optica (1)

Optom. Vis. Sci. (1)

L. Lundström and P. Unsbo, “Unwrapping Hartmann-Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method,” Optom. Vis. Sci. 81(5), 383–388 (2004).
[PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101(22), 8461–8466 (2004).
[PubMed]

Retina (1)

M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, and S. Kiss, “Ultra-Wide-Field Angiography Improves the Detection and Classification of Diabetic Retinopathy,” Retina 32(4), 785–791 (2012).
[PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Other (5)

J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, Optical Coherence Tomography of Ocular Diseases, 3rd ed. (Slack Inc., Thorofare, New Jersey, USA, 2012).

O. A. R. Board, “OpenMP Application Program Interface Version 2.5” (2005), retrieved http://www.openmp.org/mp-documents/spec30.pdf .

R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition) (Prentice-Hall, Inc., 2006).

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (John Wiley & Sons, 2006), Vol. 171.

F. LaRocca, D. Nankivil, T. DuBose, S. Farsiu, and J. A. Izatt, “Ultra-compact switchable SLO/OCT handheld probe design,” Ophthalmic Technologies Xxv 9307(2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

System overview. A ray-tracing diagram of the wide-field sample arm shows the positions of the galvo mirrors (GM), galvo relay, deformable mirror (DM), fixation target (FT), deformable mirror relay, and the objective relay. The fall-off plot shows an axial resolution of 7.24 µm, a peak sensitivity of 103 dB, and a −6 dB fall-off of 5.24 mm. The red envelope is a double Gaussian fit to the peak of each pathlength difference.

Fig. 2
Fig. 2

Flow-diagram of the WSAO optimization algorithm. The first part of the algorithm (left path) swept through a range of predefined defocus values. After the coarse defocus was removed, the algorithm followed the stochastic parallel gradient descent technique laid out previously in [31]. If at any point the current brightness of the B-scan image exceeded the previously established maximum value, the algorithm broke and updated the mirror to the shape associated with the brightest image.

Fig. 3
Fig. 3

Plots exhibiting the performance of the WSAO algorithm in the periphery (19.25° off-axis) of a static model eye. The time course over the first 15 seconds (left) and 300 seconds (left inset) demonstrated an increase in the optimization metric beyond the initial defocus sweep, suggesting that higher-order aberrations also were corrected. The error bars corresponded to the standard deviation over 40 WSAO optimizations. The corrected wavefront shape on the DM after 15 and 300 seconds was plotted (right), where the error bars once again corresponded to the standard deviation over 40 runs. The RMS error between the 15- and 300-second optimized DM shapes was 0.0089 μm. The high degree of overlap suggested that higher-order aberrations were being corrected reliably for the 15-second optimization window.

Fig. 4
Fig. 4

Plots depicting the change in mean B-scan intensity (left) and high spatial frequency content (right) with and without WSAO correction at various locations in the peripheral retina (>23°). The error bars of the line plots correspond to the standard error (n = 5) for within-subjects variability. The lines connecting the pairs of points represent the interaction of the main effect of location with WSAO correction.

Fig. 5
Fig. 5

Demonstration of WF-OCT system’s large (70° or ~22 mm x 22 mm) FOV and uniform intensity distribution in a healthy volunteer. No WSAO correction was applied in these images. A 5x averaged foveal B-scan (A) with the deformable mirror in the flat position (AO off) was shown (blue dashed line) in context of the un-averaged wide field-of-view SVP (B), which depicted the imaging range of the wide-field sample arm. A 5x averaged wide-field B-scan (C) taken across the horizontal meridian (yellow dashed line) demonstrated good choroidal penetration even in the periphery of the retina. The orange and white dotted lines correspond to the locations of the independently acquired B-scan images shown in Figs. 6 and 8, while the purple dotted box corresponds to the independently acquired volume image of Fig. 7.

Fig. 6
Fig. 6

Averaged (5x) repeated peripheral B-scan images (~3.4 mm wide) from the location marked by the white line in Fig. 5 when the deformable mirror had a flat (left) and optimized (right) mirror shape. The contrast levels were matched such that white and black corresponded to the same intensity value in the images. There was an increase of 14.3% in average pixel brightness and 7.4% in high frequency content with WSAO.

Fig. 7
Fig. 7

Maximum intensity projections (A, B) of the region indicated by the purple box (~6.0 mm x 4.4 mm) in Fig. 5 when the deformable mirror conformed to the flat (top) and optimized (bottom) mirror shapes. The contrast levels were matched in the left pair of images such that white and black in the images corresponded to the same intensity values. The area bounded by the colored boxes in the left pair of images were enlarged digitally and histogram matched (C, D) in order to more fairly compare vessel visibility without bias to image brightness.

Fig. 9
Fig. 9

Panel showing the differences in structure in a maximum projection image (~5.0 mm x 5.0 mm) of the retina (A, white dashes and dots), SVP of the region containing the choriocapillaris layer (C, yellow dots), and SVP of the deep choroid layer (D, blue dashes) when the deformable mirror was turned from off (bottom half) to on (top half) midway through the scan. The B-scan image (B) shows the location of the retinal layers used to display the SVPs of the various retinal layers. Radially averaged Fourier Spectrum (E, F) were plotted for the AO off (red line) and on (green line) portions of the SVPs. An increase in high frequency content was seen visually from the SVPs and quantitatively from the graphs of the radially averaged Fourier Spectra.

Fig. 10
Fig. 10

Un-averaged wide-field (65° or ~20.5 mm x 20.5 mm) images taken from a subject with mild cognitive impairment (prodromal Alzheimer’s disease) and cataracts. The colored lines in the wide-field image (B) corresponded to the peripheral (A) and central (C) B-scan locations. The peripheral B-scan image showed clear retinal pathology (yellow arrows) throughout the horizontal scan, whereas the central B-scan image only showed pathology in the extreme of the horizontal scan (yellow arrow). The purple dotted box represents the location of the volume image of Fig. 11.

Fig. 11
Fig. 11

Maximum intensity projection (A) of peripheral (27°) vasculature when the deformable mirror was switched between the unoptimized (top) and optimized (bottom) mirror shapes. WSAO increased the brightness of the en face volume projection (~4.4 mm x 4.4 mm) by 26.3%. Corresponding B-scans for regions without (B) and with (C) wavefront correction were shown on the right. The volume image was acquired in the location indicated by the purple dotted box in Fig. 10.

Fig. 12
Fig. 12

RMS wavefront error versus retinal eccentricity as predicted by a wide-field eye model [13] for low-order (left) and high-order (right) aberrations. The eye model was designed to reproduce the mean aberrations measured in 101 eyes. A 4 mm pupil was used to generate this data. Both the magnitude and rate of change of RMS wavefront error are greatest in the periphery, where low-order aberrations dominate.

Metrics