Abstract

The fluorophore indocyanine green accumulates in areas of ischemia-reperfusion injury due to an increase in vascular permeability and extravasation of the dye. The aim of the study was to validate an indocyanine green-based technique of in vivo visualization of myocardial infarction. A further aim was to quantify infarct size ex vivo and compare this technique with the standard triphenyltetrazolium chloride staining. Wistar rats were subjected to regional myocardial ischemia (30 minutes) followed by reperfusion (n = 7). Indocyanine green (0.25 mg/mL in 1 mL of normal saline) was infused intravenously for 10 minutes starting from the 25th minute of ischemia. Video registration in the near-infrared fluorescence was performed. Epicardial fluorescence of indocyanine green corresponded to the injured area after 30 minutes of reperfusion. Infarct size was similar when determined ex vivo using traditional triphenyltetrazolium chloride assay and indocyanine green fluorescent labeling. Intravital visualization of irreversible injury can be done directly by fluorescence on the surface of the heart. This technique may also be an alternative for ex vivo measurements of infarct size.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution visualization of mouse cardiac microvasculature using optical histology

Austin J. Moy, Patrick C. Lo, and Bernard Choi
Biomed. Opt. Express 5(1) 69-77 (2014)

Noninvasive monitoring of estrogen effects against ischemic stroke in rats by near-infrared spectroscopy

Mengna Xia, Shaohua Yang, James W. Simpkins, and Hanli Liu
Appl. Opt. 46(34) 8315-8321 (2007)

Quantification of in vivo autofluorescence dynamics during renal ischemia and reperfusion under 355 nm excitation

Rajesh N. Raman, Christopher D. Pivetti, Dennis L. Matthews, Christoph Troppmann, and Stavros G. Demos
Opt. Express 16(7) 4930-4944 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. Goldman and T. E. Raya, “Rat infarct model of myocardial infarction and heart failure,” J. Card. Fail. 1(2), 169–177 (1995).
    [Crossref] [PubMed]
  2. W. D. Ito, S. Schaarschmidt, R. Klask, S. Hansen, H. J. Schäfer, D. Mathey, and S. Bhakdi, “Infarct size measurement by triphenyltetrazolium chloride staining versus in vivo injection of propidium iodide,” J. Mol. Cell. Cardiol. 29(8), 2169–2175 (1997).
    [Crossref] [PubMed]
  3. S. M. Grieve, J. Mazhar, F. Callaghan, C. Y. Kok, S. Tandy, R. Bhindi, and G. A. Figtree, “Automated quantification of myocardial salvage in a rat model of ischemia-reperfusion injury using 3D high-resolution magnetic resonance imaging (MRI),” J. Am. Heart Assoc. 3(4), e000956 (2014).
    [Crossref] [PubMed]
  4. E. R. Schwarz, Y. Somoano, S. L. Hale, and R. A. Kloner, “What is the required reperfusion period for assessment of myocardial infarct size using triphenyltetrazolium chloride staining in the rat?” J. Thromb. Thrombolysis 10(2), 181–187 (2000).
    [Crossref] [PubMed]
  5. A. Mayevsky and G. G. Rogatsky, “Mitochondrial Function In vivo Evaluated by NADH Fluorescence: From Animal Models to Human Studies,” Am. J. Physiol. Cell Physiol. 292(2), C615–C640 (2006).
    [Crossref] [PubMed]
  6. G. Papayan, N. Petrishchev, and M. Galagudza, “Autofluorescence Spectroscopy for NADH and Flavoproteins Redox State Monitoring in the Isolated Rat Heart Subjected to Ischemia-Reperfusion,” Photodiagn. Photodyn. Ther. 11(3), 400–408 (2014).
    [Crossref] [PubMed]
  7. M. Ranji, M. M. Motlagh, F. Salehpour, R. Sepehr, J. S. Heisner, R. K. Dash, and A. K. S. Camara, “Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion,” IEEE J. Transl. Eng. Health Med. 4, 1800210 (2016).
    [PubMed]
  8. X. Chen, K. Cui, J. Xiu, H. Lin, Y. Lao, B. Zhou, F. Liang, D. Zha, J. Bin, and Y. Liu, “Evaluation and simplified measurement of infarct size by myocardial contrast echocardiography in a rat model of myocardial infarction,” Int. J. Cardiovasc. Imaging 25(7), 713–716 (2009).
    [Crossref] [PubMed]
  9. L. J. Yuan, T. Wang, M. L. Kahn, and V. A. Ferrari, “High-resolution echocardiographic assessment of infarct size and cardiac function in mice with myocardial infarction,” J. Am. Soc. Echocardiogr. 24(2), 219–226 (2011).
    [Crossref] [PubMed]
  10. A. K. Tarikuz Zaman, J. L. Spees, and B. E. Sobel, “Attenuation of cardiac vascular rhexis: a promising therapeutic target,” Coron. Artery Dis. 24(3), 245–252 (2013).
    [Crossref] [PubMed]
  11. C. J. French, A. K. M. T. Zaman, R. J. Kelm, J. L. Spees, and B. E. Sobel, “Vascular Rhexis: Loss of Integrity of Coronary Vasculature in Mice Subjected to Myocardial Infarction,” Exp. Biol. Med. (Maywood) 235(8), 966–973 (2010).
    [Crossref] [PubMed]
  12. A. K. M. T. Zaman, C. J. French, J. L. Spees, A. S. Binbrek, and B. E. Sobel, “Vascular Rhexis in Mice Subjected to Non-Sustained Myocardial Ischemia and Its Therapeutic Implications,” Exp. Biol. Med. (Maywood) 236(5), 598–603 (2011).
    [Crossref] [PubMed]
  13. C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
    [Crossref] [PubMed]
  14. J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A Review of Indocyanine Green Fluorescent Imaging in Surgery,” Int. J. Biomed. Imaging 2012, 940585 (2012).
    [Crossref] [PubMed]
  15. D. C. Gray, E. M. Kim, V. E. Cotero, A. Bajaj, V. P. Staudinger, C. A. Hehir, and S. Yazdanfar, “Dual-mode laparoscopic fluorescence image-guided surgery using a single camera,” Biomed. Opt. Express 3(8), 1880–1890 (2012).
    [Crossref] [PubMed]
  16. Z. Chen, N. Zhu, S. Pacheco, X. Wang, and R. Liang, “Single camera imaging system for color and near-infrared fluorescence image guided surgery,” Biomed. Opt. Express 5(8), 2791–2797 (2014).
    [Crossref] [PubMed]
  17. A. L. Akopov, G. V. Papayan, I. V. Chistyakov, A. Karlson, A. V. Gerasin, and A. S. Agishev, “Intraoperative detection of sentinel lymph nodes using infrared imaging system in local non-small cell lung carcinoma of the lung,” Vestn. Khir. Im. I I Grek. 174(4), 13–17 (2015).
    [PubMed]
  18. G. V. Papayan and A. L. Akopov, “Near-infrared fluorescence diagnostics: Devices, Applications,” J. Opt. Technol. 83(9), 586–596 (2016).
  19. N. Himori and A. Matsuura, “A simple technique for occlusion and reperfusion of coronary artery in conscious rats,” Am. J. Physiol. 256(6 Pt 2), H1719–H1725 (1989).
    [PubMed]
  20. Uk. Kang and G. V. Papayan, “Fluorescent endoscope system having improved image detection module,” US Patent No US7635330. 22.12.2009.
  21. J. W. Jung, D. Y. Lee, and D. H. Nam, “Choroidal ischemia and serous macular detachment associated with severe postoperative pain,” Korean J. Ophthalmol. 22(2), 133–136 (2008).
    [Crossref] [PubMed]
  22. M. B. Aldrich and E. M. Sevick-Muraca, “Cytokines are systemic effectors of lymphatic function in acute inflammation,” Cytokine 64(1), 362–369 (2013).
    [Crossref] [PubMed]
  23. S. Chakraborty, S. D. Zawieja, W. Wang, Y. Lee, Y. J. Wang, P. Y. von der Weid, D. C. Zawieja, and M. Muthuchamy, “Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 309(12), H2042–H2057 (2015).
    [Crossref] [PubMed]
  24. M. L. Malbrain, D. Viaene, A. Kortgen, I. De Laet, H. Dits, N. Van Regenmortel, K. Schoonheydt, and M. Bauer, “Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension,” Ann. Intensive Care 2(2Suppl 1), S19 (2012).
    [Crossref] [PubMed]
  25. R. Philip, A. Penzkofer, W. Biiumler, R. M. Szeimies, and C. Abels, “Absorption and Fluorescence Spectroscopic Investigation of Indocyanine Green,” J. Photochem. Photobiol. Chem. 96(1-3), 137–148 (1996).
    [Crossref]
  26. B. Jung, V. I. Vullev, and B. Anvari, “Revisiting indocyanine green: effects of serum and physiological temperature on absorption and fluorescence characteristics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 149–157 (2014).
    [Crossref]
  27. E. Levesque, E. Martin, D. Dudau, C. Lim, G. Dhonneur, and D. Azoulay, “Current use and perspective of indocyanine green clearance in liver diseases,” Anaesth Crit Care Pain Med 35(1), 49–57 (2016).
    [Crossref] [PubMed]
  28. M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green: Historical Context, Current Applications, and Future Considerations,” Surg. Innov. 23(2), 166–175 (2016).
    [Crossref] [PubMed]
  29. Q. Chen, C. Liang, C. Wang, and Z. Liu, “An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors,” Adv. Mater. 27(5), 903–910 (2015).
    [Crossref] [PubMed]
  30. T. B. Ferguson, C. Chen, J. D. Babb, J. T. Efird, R. Daggubati, and J. M. Cahill, “Fractional Flow Reserve-Guided Coronary Artery Bypass Grafting: Can Intraoperative Physiologic Imaging Guide Decision Making?” J. Thorac. Cardiovasc. Surg. 146(4), 824–835 (2013).
    [Crossref] [PubMed]
  31. M. Yamamoto, S. Sasaguri, and T. Sato, “Assessing intraoperative blood flow in cardiovascular surgery,” Surg. Today 41(11), 1467–1474 (2011).
    [Crossref] [PubMed]

2016 (5)

M. Ranji, M. M. Motlagh, F. Salehpour, R. Sepehr, J. S. Heisner, R. K. Dash, and A. K. S. Camara, “Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion,” IEEE J. Transl. Eng. Health Med. 4, 1800210 (2016).
[PubMed]

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

G. V. Papayan and A. L. Akopov, “Near-infrared fluorescence diagnostics: Devices, Applications,” J. Opt. Technol. 83(9), 586–596 (2016).

E. Levesque, E. Martin, D. Dudau, C. Lim, G. Dhonneur, and D. Azoulay, “Current use and perspective of indocyanine green clearance in liver diseases,” Anaesth Crit Care Pain Med 35(1), 49–57 (2016).
[Crossref] [PubMed]

M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green: Historical Context, Current Applications, and Future Considerations,” Surg. Innov. 23(2), 166–175 (2016).
[Crossref] [PubMed]

2015 (3)

Q. Chen, C. Liang, C. Wang, and Z. Liu, “An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors,” Adv. Mater. 27(5), 903–910 (2015).
[Crossref] [PubMed]

A. L. Akopov, G. V. Papayan, I. V. Chistyakov, A. Karlson, A. V. Gerasin, and A. S. Agishev, “Intraoperative detection of sentinel lymph nodes using infrared imaging system in local non-small cell lung carcinoma of the lung,” Vestn. Khir. Im. I I Grek. 174(4), 13–17 (2015).
[PubMed]

S. Chakraborty, S. D. Zawieja, W. Wang, Y. Lee, Y. J. Wang, P. Y. von der Weid, D. C. Zawieja, and M. Muthuchamy, “Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 309(12), H2042–H2057 (2015).
[Crossref] [PubMed]

2014 (4)

B. Jung, V. I. Vullev, and B. Anvari, “Revisiting indocyanine green: effects of serum and physiological temperature on absorption and fluorescence characteristics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 149–157 (2014).
[Crossref]

Z. Chen, N. Zhu, S. Pacheco, X. Wang, and R. Liang, “Single camera imaging system for color and near-infrared fluorescence image guided surgery,” Biomed. Opt. Express 5(8), 2791–2797 (2014).
[Crossref] [PubMed]

G. Papayan, N. Petrishchev, and M. Galagudza, “Autofluorescence Spectroscopy for NADH and Flavoproteins Redox State Monitoring in the Isolated Rat Heart Subjected to Ischemia-Reperfusion,” Photodiagn. Photodyn. Ther. 11(3), 400–408 (2014).
[Crossref] [PubMed]

S. M. Grieve, J. Mazhar, F. Callaghan, C. Y. Kok, S. Tandy, R. Bhindi, and G. A. Figtree, “Automated quantification of myocardial salvage in a rat model of ischemia-reperfusion injury using 3D high-resolution magnetic resonance imaging (MRI),” J. Am. Heart Assoc. 3(4), e000956 (2014).
[Crossref] [PubMed]

2013 (3)

A. K. Tarikuz Zaman, J. L. Spees, and B. E. Sobel, “Attenuation of cardiac vascular rhexis: a promising therapeutic target,” Coron. Artery Dis. 24(3), 245–252 (2013).
[Crossref] [PubMed]

M. B. Aldrich and E. M. Sevick-Muraca, “Cytokines are systemic effectors of lymphatic function in acute inflammation,” Cytokine 64(1), 362–369 (2013).
[Crossref] [PubMed]

T. B. Ferguson, C. Chen, J. D. Babb, J. T. Efird, R. Daggubati, and J. M. Cahill, “Fractional Flow Reserve-Guided Coronary Artery Bypass Grafting: Can Intraoperative Physiologic Imaging Guide Decision Making?” J. Thorac. Cardiovasc. Surg. 146(4), 824–835 (2013).
[Crossref] [PubMed]

2012 (3)

M. L. Malbrain, D. Viaene, A. Kortgen, I. De Laet, H. Dits, N. Van Regenmortel, K. Schoonheydt, and M. Bauer, “Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension,” Ann. Intensive Care 2(2Suppl 1), S19 (2012).
[Crossref] [PubMed]

D. C. Gray, E. M. Kim, V. E. Cotero, A. Bajaj, V. P. Staudinger, C. A. Hehir, and S. Yazdanfar, “Dual-mode laparoscopic fluorescence image-guided surgery using a single camera,” Biomed. Opt. Express 3(8), 1880–1890 (2012).
[Crossref] [PubMed]

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A Review of Indocyanine Green Fluorescent Imaging in Surgery,” Int. J. Biomed. Imaging 2012, 940585 (2012).
[Crossref] [PubMed]

2011 (3)

L. J. Yuan, T. Wang, M. L. Kahn, and V. A. Ferrari, “High-resolution echocardiographic assessment of infarct size and cardiac function in mice with myocardial infarction,” J. Am. Soc. Echocardiogr. 24(2), 219–226 (2011).
[Crossref] [PubMed]

A. K. M. T. Zaman, C. J. French, J. L. Spees, A. S. Binbrek, and B. E. Sobel, “Vascular Rhexis in Mice Subjected to Non-Sustained Myocardial Ischemia and Its Therapeutic Implications,” Exp. Biol. Med. (Maywood) 236(5), 598–603 (2011).
[Crossref] [PubMed]

M. Yamamoto, S. Sasaguri, and T. Sato, “Assessing intraoperative blood flow in cardiovascular surgery,” Surg. Today 41(11), 1467–1474 (2011).
[Crossref] [PubMed]

2010 (1)

C. J. French, A. K. M. T. Zaman, R. J. Kelm, J. L. Spees, and B. E. Sobel, “Vascular Rhexis: Loss of Integrity of Coronary Vasculature in Mice Subjected to Myocardial Infarction,” Exp. Biol. Med. (Maywood) 235(8), 966–973 (2010).
[Crossref] [PubMed]

2009 (1)

X. Chen, K. Cui, J. Xiu, H. Lin, Y. Lao, B. Zhou, F. Liang, D. Zha, J. Bin, and Y. Liu, “Evaluation and simplified measurement of infarct size by myocardial contrast echocardiography in a rat model of myocardial infarction,” Int. J. Cardiovasc. Imaging 25(7), 713–716 (2009).
[Crossref] [PubMed]

2008 (1)

J. W. Jung, D. Y. Lee, and D. H. Nam, “Choroidal ischemia and serous macular detachment associated with severe postoperative pain,” Korean J. Ophthalmol. 22(2), 133–136 (2008).
[Crossref] [PubMed]

2006 (1)

A. Mayevsky and G. G. Rogatsky, “Mitochondrial Function In vivo Evaluated by NADH Fluorescence: From Animal Models to Human Studies,” Am. J. Physiol. Cell Physiol. 292(2), C615–C640 (2006).
[Crossref] [PubMed]

2000 (1)

E. R. Schwarz, Y. Somoano, S. L. Hale, and R. A. Kloner, “What is the required reperfusion period for assessment of myocardial infarct size using triphenyltetrazolium chloride staining in the rat?” J. Thromb. Thrombolysis 10(2), 181–187 (2000).
[Crossref] [PubMed]

1997 (1)

W. D. Ito, S. Schaarschmidt, R. Klask, S. Hansen, H. J. Schäfer, D. Mathey, and S. Bhakdi, “Infarct size measurement by triphenyltetrazolium chloride staining versus in vivo injection of propidium iodide,” J. Mol. Cell. Cardiol. 29(8), 2169–2175 (1997).
[Crossref] [PubMed]

1996 (1)

R. Philip, A. Penzkofer, W. Biiumler, R. M. Szeimies, and C. Abels, “Absorption and Fluorescence Spectroscopic Investigation of Indocyanine Green,” J. Photochem. Photobiol. Chem. 96(1-3), 137–148 (1996).
[Crossref]

1995 (1)

S. Goldman and T. E. Raya, “Rat infarct model of myocardial infarction and heart failure,” J. Card. Fail. 1(2), 169–177 (1995).
[Crossref] [PubMed]

1989 (1)

N. Himori and A. Matsuura, “A simple technique for occlusion and reperfusion of coronary artery in conscious rats,” Am. J. Physiol. 256(6 Pt 2), H1719–H1725 (1989).
[PubMed]

Abels, C.

R. Philip, A. Penzkofer, W. Biiumler, R. M. Szeimies, and C. Abels, “Absorption and Fluorescence Spectroscopic Investigation of Indocyanine Green,” J. Photochem. Photobiol. Chem. 96(1-3), 137–148 (1996).
[Crossref]

Agishev, A. S.

A. L. Akopov, G. V. Papayan, I. V. Chistyakov, A. Karlson, A. V. Gerasin, and A. S. Agishev, “Intraoperative detection of sentinel lymph nodes using infrared imaging system in local non-small cell lung carcinoma of the lung,” Vestn. Khir. Im. I I Grek. 174(4), 13–17 (2015).
[PubMed]

Akopov, A. L.

G. V. Papayan and A. L. Akopov, “Near-infrared fluorescence diagnostics: Devices, Applications,” J. Opt. Technol. 83(9), 586–596 (2016).

A. L. Akopov, G. V. Papayan, I. V. Chistyakov, A. Karlson, A. V. Gerasin, and A. S. Agishev, “Intraoperative detection of sentinel lymph nodes using infrared imaging system in local non-small cell lung carcinoma of the lung,” Vestn. Khir. Im. I I Grek. 174(4), 13–17 (2015).
[PubMed]

Alander, J. T.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A Review of Indocyanine Green Fluorescent Imaging in Surgery,” Int. J. Biomed. Imaging 2012, 940585 (2012).
[Crossref] [PubMed]

Aldrich, M. B.

M. B. Aldrich and E. M. Sevick-Muraca, “Cytokines are systemic effectors of lymphatic function in acute inflammation,” Cytokine 64(1), 362–369 (2013).
[Crossref] [PubMed]

Anvari, B.

B. Jung, V. I. Vullev, and B. Anvari, “Revisiting indocyanine green: effects of serum and physiological temperature on absorption and fluorescence characteristics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 149–157 (2014).
[Crossref]

Augenstein, V. A.

M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green: Historical Context, Current Applications, and Future Considerations,” Surg. Innov. 23(2), 166–175 (2016).
[Crossref] [PubMed]

Azoulay, D.

E. Levesque, E. Martin, D. Dudau, C. Lim, G. Dhonneur, and D. Azoulay, “Current use and perspective of indocyanine green clearance in liver diseases,” Anaesth Crit Care Pain Med 35(1), 49–57 (2016).
[Crossref] [PubMed]

Babb, J. D.

T. B. Ferguson, C. Chen, J. D. Babb, J. T. Efird, R. Daggubati, and J. M. Cahill, “Fractional Flow Reserve-Guided Coronary Artery Bypass Grafting: Can Intraoperative Physiologic Imaging Guide Decision Making?” J. Thorac. Cardiovasc. Surg. 146(4), 824–835 (2013).
[Crossref] [PubMed]

Bajaj, A.

Bauer, M.

M. L. Malbrain, D. Viaene, A. Kortgen, I. De Laet, H. Dits, N. Van Regenmortel, K. Schoonheydt, and M. Bauer, “Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension,” Ann. Intensive Care 2(2Suppl 1), S19 (2012).
[Crossref] [PubMed]

Bhakdi, S.

W. D. Ito, S. Schaarschmidt, R. Klask, S. Hansen, H. J. Schäfer, D. Mathey, and S. Bhakdi, “Infarct size measurement by triphenyltetrazolium chloride staining versus in vivo injection of propidium iodide,” J. Mol. Cell. Cardiol. 29(8), 2169–2175 (1997).
[Crossref] [PubMed]

Bhindi, R.

S. M. Grieve, J. Mazhar, F. Callaghan, C. Y. Kok, S. Tandy, R. Bhindi, and G. A. Figtree, “Automated quantification of myocardial salvage in a rat model of ischemia-reperfusion injury using 3D high-resolution magnetic resonance imaging (MRI),” J. Am. Heart Assoc. 3(4), e000956 (2014).
[Crossref] [PubMed]

Biiumler, W.

R. Philip, A. Penzkofer, W. Biiumler, R. M. Szeimies, and C. Abels, “Absorption and Fluorescence Spectroscopic Investigation of Indocyanine Green,” J. Photochem. Photobiol. Chem. 96(1-3), 137–148 (1996).
[Crossref]

Bin, J.

X. Chen, K. Cui, J. Xiu, H. Lin, Y. Lao, B. Zhou, F. Liang, D. Zha, J. Bin, and Y. Liu, “Evaluation and simplified measurement of infarct size by myocardial contrast echocardiography in a rat model of myocardial infarction,” Int. J. Cardiovasc. Imaging 25(7), 713–716 (2009).
[Crossref] [PubMed]

Binbrek, A. S.

A. K. M. T. Zaman, C. J. French, J. L. Spees, A. S. Binbrek, and B. E. Sobel, “Vascular Rhexis in Mice Subjected to Non-Sustained Myocardial Ischemia and Its Therapeutic Implications,” Exp. Biol. Med. (Maywood) 236(5), 598–603 (2011).
[Crossref] [PubMed]

Blair, L. J.

M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green: Historical Context, Current Applications, and Future Considerations,” Surg. Innov. 23(2), 166–175 (2016).
[Crossref] [PubMed]

Cahill, J. M.

T. B. Ferguson, C. Chen, J. D. Babb, J. T. Efird, R. Daggubati, and J. M. Cahill, “Fractional Flow Reserve-Guided Coronary Artery Bypass Grafting: Can Intraoperative Physiologic Imaging Guide Decision Making?” J. Thorac. Cardiovasc. Surg. 146(4), 824–835 (2013).
[Crossref] [PubMed]

Callaghan, F.

S. M. Grieve, J. Mazhar, F. Callaghan, C. Y. Kok, S. Tandy, R. Bhindi, and G. A. Figtree, “Automated quantification of myocardial salvage in a rat model of ischemia-reperfusion injury using 3D high-resolution magnetic resonance imaging (MRI),” J. Am. Heart Assoc. 3(4), e000956 (2014).
[Crossref] [PubMed]

Camara, A. K. S.

M. Ranji, M. M. Motlagh, F. Salehpour, R. Sepehr, J. S. Heisner, R. K. Dash, and A. K. S. Camara, “Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion,” IEEE J. Transl. Eng. Health Med. 4, 1800210 (2016).
[PubMed]

Chakraborty, S.

S. Chakraborty, S. D. Zawieja, W. Wang, Y. Lee, Y. J. Wang, P. Y. von der Weid, D. C. Zawieja, and M. Muthuchamy, “Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 309(12), H2042–H2057 (2015).
[Crossref] [PubMed]

Chen, C.

T. B. Ferguson, C. Chen, J. D. Babb, J. T. Efird, R. Daggubati, and J. M. Cahill, “Fractional Flow Reserve-Guided Coronary Artery Bypass Grafting: Can Intraoperative Physiologic Imaging Guide Decision Making?” J. Thorac. Cardiovasc. Surg. 146(4), 824–835 (2013).
[Crossref] [PubMed]

Chen, Q.

Q. Chen, C. Liang, C. Wang, and Z. Liu, “An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors,” Adv. Mater. 27(5), 903–910 (2015).
[Crossref] [PubMed]

Chen, X.

X. Chen, K. Cui, J. Xiu, H. Lin, Y. Lao, B. Zhou, F. Liang, D. Zha, J. Bin, and Y. Liu, “Evaluation and simplified measurement of infarct size by myocardial contrast echocardiography in a rat model of myocardial infarction,” Int. J. Cardiovasc. Imaging 25(7), 713–716 (2009).
[Crossref] [PubMed]

Chen, Z.

Chi, C.

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

Chistyakov, I. V.

A. L. Akopov, G. V. Papayan, I. V. Chistyakov, A. Karlson, A. V. Gerasin, and A. S. Agishev, “Intraoperative detection of sentinel lymph nodes using infrared imaging system in local non-small cell lung carcinoma of the lung,” Vestn. Khir. Im. I I Grek. 174(4), 13–17 (2015).
[PubMed]

Cotero, V. E.

Cui, K.

X. Chen, K. Cui, J. Xiu, H. Lin, Y. Lao, B. Zhou, F. Liang, D. Zha, J. Bin, and Y. Liu, “Evaluation and simplified measurement of infarct size by myocardial contrast echocardiography in a rat model of myocardial infarction,” Int. J. Cardiovasc. Imaging 25(7), 713–716 (2009).
[Crossref] [PubMed]

Daggubati, R.

T. B. Ferguson, C. Chen, J. D. Babb, J. T. Efird, R. Daggubati, and J. M. Cahill, “Fractional Flow Reserve-Guided Coronary Artery Bypass Grafting: Can Intraoperative Physiologic Imaging Guide Decision Making?” J. Thorac. Cardiovasc. Surg. 146(4), 824–835 (2013).
[Crossref] [PubMed]

Dash, R. K.

M. Ranji, M. M. Motlagh, F. Salehpour, R. Sepehr, J. S. Heisner, R. K. Dash, and A. K. S. Camara, “Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion,” IEEE J. Transl. Eng. Health Med. 4, 1800210 (2016).
[PubMed]

De Laet, I.

M. L. Malbrain, D. Viaene, A. Kortgen, I. De Laet, H. Dits, N. Van Regenmortel, K. Schoonheydt, and M. Bauer, “Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension,” Ann. Intensive Care 2(2Suppl 1), S19 (2012).
[Crossref] [PubMed]

Dhonneur, G.

E. Levesque, E. Martin, D. Dudau, C. Lim, G. Dhonneur, and D. Azoulay, “Current use and perspective of indocyanine green clearance in liver diseases,” Anaesth Crit Care Pain Med 35(1), 49–57 (2016).
[Crossref] [PubMed]

Dits, H.

M. L. Malbrain, D. Viaene, A. Kortgen, I. De Laet, H. Dits, N. Van Regenmortel, K. Schoonheydt, and M. Bauer, “Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension,” Ann. Intensive Care 2(2Suppl 1), S19 (2012).
[Crossref] [PubMed]

Dudau, D.

E. Levesque, E. Martin, D. Dudau, C. Lim, G. Dhonneur, and D. Azoulay, “Current use and perspective of indocyanine green clearance in liver diseases,” Anaesth Crit Care Pain Med 35(1), 49–57 (2016).
[Crossref] [PubMed]

Efird, J. T.

T. B. Ferguson, C. Chen, J. D. Babb, J. T. Efird, R. Daggubati, and J. M. Cahill, “Fractional Flow Reserve-Guided Coronary Artery Bypass Grafting: Can Intraoperative Physiologic Imaging Guide Decision Making?” J. Thorac. Cardiovasc. Surg. 146(4), 824–835 (2013).
[Crossref] [PubMed]

Fan, Y.

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

Fang, C.

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

Ferguson, T. B.

T. B. Ferguson, C. Chen, J. D. Babb, J. T. Efird, R. Daggubati, and J. M. Cahill, “Fractional Flow Reserve-Guided Coronary Artery Bypass Grafting: Can Intraoperative Physiologic Imaging Guide Decision Making?” J. Thorac. Cardiovasc. Surg. 146(4), 824–835 (2013).
[Crossref] [PubMed]

Ferrari, V. A.

L. J. Yuan, T. Wang, M. L. Kahn, and V. A. Ferrari, “High-resolution echocardiographic assessment of infarct size and cardiac function in mice with myocardial infarction,” J. Am. Soc. Echocardiogr. 24(2), 219–226 (2011).
[Crossref] [PubMed]

Figtree, G. A.

S. M. Grieve, J. Mazhar, F. Callaghan, C. Y. Kok, S. Tandy, R. Bhindi, and G. A. Figtree, “Automated quantification of myocardial salvage in a rat model of ischemia-reperfusion injury using 3D high-resolution magnetic resonance imaging (MRI),” J. Am. Heart Assoc. 3(4), e000956 (2014).
[Crossref] [PubMed]

French, C. J.

A. K. M. T. Zaman, C. J. French, J. L. Spees, A. S. Binbrek, and B. E. Sobel, “Vascular Rhexis in Mice Subjected to Non-Sustained Myocardial Ischemia and Its Therapeutic Implications,” Exp. Biol. Med. (Maywood) 236(5), 598–603 (2011).
[Crossref] [PubMed]

C. J. French, A. K. M. T. Zaman, R. J. Kelm, J. L. Spees, and B. E. Sobel, “Vascular Rhexis: Loss of Integrity of Coronary Vasculature in Mice Subjected to Myocardial Infarction,” Exp. Biol. Med. (Maywood) 235(8), 966–973 (2010).
[Crossref] [PubMed]

Galagudza, M.

G. Papayan, N. Petrishchev, and M. Galagudza, “Autofluorescence Spectroscopy for NADH and Flavoproteins Redox State Monitoring in the Isolated Rat Heart Subjected to Ischemia-Reperfusion,” Photodiagn. Photodyn. Ther. 11(3), 400–408 (2014).
[Crossref] [PubMed]

Gerasin, A. V.

A. L. Akopov, G. V. Papayan, I. V. Chistyakov, A. Karlson, A. V. Gerasin, and A. S. Agishev, “Intraoperative detection of sentinel lymph nodes using infrared imaging system in local non-small cell lung carcinoma of the lung,” Vestn. Khir. Im. I I Grek. 174(4), 13–17 (2015).
[PubMed]

Goldman, S.

S. Goldman and T. E. Raya, “Rat infarct model of myocardial infarction and heart failure,” J. Card. Fail. 1(2), 169–177 (1995).
[Crossref] [PubMed]

Gray, D. C.

Grieve, S. M.

S. M. Grieve, J. Mazhar, F. Callaghan, C. Y. Kok, S. Tandy, R. Bhindi, and G. A. Figtree, “Automated quantification of myocardial salvage in a rat model of ischemia-reperfusion injury using 3D high-resolution magnetic resonance imaging (MRI),” J. Am. Heart Assoc. 3(4), e000956 (2014).
[Crossref] [PubMed]

Hale, S. L.

E. R. Schwarz, Y. Somoano, S. L. Hale, and R. A. Kloner, “What is the required reperfusion period for assessment of myocardial infarct size using triphenyltetrazolium chloride staining in the rat?” J. Thromb. Thrombolysis 10(2), 181–187 (2000).
[Crossref] [PubMed]

Hansen, S.

W. D. Ito, S. Schaarschmidt, R. Klask, S. Hansen, H. J. Schäfer, D. Mathey, and S. Bhakdi, “Infarct size measurement by triphenyltetrazolium chloride staining versus in vivo injection of propidium iodide,” J. Mol. Cell. Cardiol. 29(8), 2169–2175 (1997).
[Crossref] [PubMed]

Hehir, C. A.

Heisner, J. S.

M. Ranji, M. M. Motlagh, F. Salehpour, R. Sepehr, J. S. Heisner, R. K. Dash, and A. K. S. Camara, “Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion,” IEEE J. Transl. Eng. Health Med. 4, 1800210 (2016).
[PubMed]

Heniford, B. T.

M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green: Historical Context, Current Applications, and Future Considerations,” Surg. Innov. 23(2), 166–175 (2016).
[Crossref] [PubMed]

Himori, N.

N. Himori and A. Matsuura, “A simple technique for occlusion and reperfusion of coronary artery in conscious rats,” Am. J. Physiol. 256(6 Pt 2), H1719–H1725 (1989).
[PubMed]

Huntington, C. R.

M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green: Historical Context, Current Applications, and Future Considerations,” Surg. Innov. 23(2), 166–175 (2016).
[Crossref] [PubMed]

Ito, W. D.

W. D. Ito, S. Schaarschmidt, R. Klask, S. Hansen, H. J. Schäfer, D. Mathey, and S. Bhakdi, “Infarct size measurement by triphenyltetrazolium chloride staining versus in vivo injection of propidium iodide,” J. Mol. Cell. Cardiol. 29(8), 2169–2175 (1997).
[Crossref] [PubMed]

Jung, B.

B. Jung, V. I. Vullev, and B. Anvari, “Revisiting indocyanine green: effects of serum and physiological temperature on absorption and fluorescence characteristics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 149–157 (2014).
[Crossref]

Jung, J. W.

J. W. Jung, D. Y. Lee, and D. H. Nam, “Choroidal ischemia and serous macular detachment associated with severe postoperative pain,” Korean J. Ophthalmol. 22(2), 133–136 (2008).
[Crossref] [PubMed]

Kaartinen, I.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A Review of Indocyanine Green Fluorescent Imaging in Surgery,” Int. J. Biomed. Imaging 2012, 940585 (2012).
[Crossref] [PubMed]

Kahn, M. L.

L. J. Yuan, T. Wang, M. L. Kahn, and V. A. Ferrari, “High-resolution echocardiographic assessment of infarct size and cardiac function in mice with myocardial infarction,” J. Am. Soc. Echocardiogr. 24(2), 219–226 (2011).
[Crossref] [PubMed]

Karlson, A.

A. L. Akopov, G. V. Papayan, I. V. Chistyakov, A. Karlson, A. V. Gerasin, and A. S. Agishev, “Intraoperative detection of sentinel lymph nodes using infrared imaging system in local non-small cell lung carcinoma of the lung,” Vestn. Khir. Im. I I Grek. 174(4), 13–17 (2015).
[PubMed]

Kelm, R. J.

C. J. French, A. K. M. T. Zaman, R. J. Kelm, J. L. Spees, and B. E. Sobel, “Vascular Rhexis: Loss of Integrity of Coronary Vasculature in Mice Subjected to Myocardial Infarction,” Exp. Biol. Med. (Maywood) 235(8), 966–973 (2010).
[Crossref] [PubMed]

Kim, E. M.

Klask, R.

W. D. Ito, S. Schaarschmidt, R. Klask, S. Hansen, H. J. Schäfer, D. Mathey, and S. Bhakdi, “Infarct size measurement by triphenyltetrazolium chloride staining versus in vivo injection of propidium iodide,” J. Mol. Cell. Cardiol. 29(8), 2169–2175 (1997).
[Crossref] [PubMed]

Kloner, R. A.

E. R. Schwarz, Y. Somoano, S. L. Hale, and R. A. Kloner, “What is the required reperfusion period for assessment of myocardial infarct size using triphenyltetrazolium chloride staining in the rat?” J. Thromb. Thrombolysis 10(2), 181–187 (2000).
[Crossref] [PubMed]

Kok, C. Y.

S. M. Grieve, J. Mazhar, F. Callaghan, C. Y. Kok, S. Tandy, R. Bhindi, and G. A. Figtree, “Automated quantification of myocardial salvage in a rat model of ischemia-reperfusion injury using 3D high-resolution magnetic resonance imaging (MRI),” J. Am. Heart Assoc. 3(4), e000956 (2014).
[Crossref] [PubMed]

Kortgen, A.

M. L. Malbrain, D. Viaene, A. Kortgen, I. De Laet, H. Dits, N. Van Regenmortel, K. Schoonheydt, and M. Bauer, “Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension,” Ann. Intensive Care 2(2Suppl 1), S19 (2012).
[Crossref] [PubMed]

Laakso, A.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A Review of Indocyanine Green Fluorescent Imaging in Surgery,” Int. J. Biomed. Imaging 2012, 940585 (2012).
[Crossref] [PubMed]

Lao, Y.

X. Chen, K. Cui, J. Xiu, H. Lin, Y. Lao, B. Zhou, F. Liang, D. Zha, J. Bin, and Y. Liu, “Evaluation and simplified measurement of infarct size by myocardial contrast echocardiography in a rat model of myocardial infarction,” Int. J. Cardiovasc. Imaging 25(7), 713–716 (2009).
[Crossref] [PubMed]

Lee, D. Y.

J. W. Jung, D. Y. Lee, and D. H. Nam, “Choroidal ischemia and serous macular detachment associated with severe postoperative pain,” Korean J. Ophthalmol. 22(2), 133–136 (2008).
[Crossref] [PubMed]

Lee, Y.

S. Chakraborty, S. D. Zawieja, W. Wang, Y. Lee, Y. J. Wang, P. Y. von der Weid, D. C. Zawieja, and M. Muthuchamy, “Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 309(12), H2042–H2057 (2015).
[Crossref] [PubMed]

Levesque, E.

E. Levesque, E. Martin, D. Dudau, C. Lim, G. Dhonneur, and D. Azoulay, “Current use and perspective of indocyanine green clearance in liver diseases,” Anaesth Crit Care Pain Med 35(1), 49–57 (2016).
[Crossref] [PubMed]

Liang, C.

Q. Chen, C. Liang, C. Wang, and Z. Liu, “An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors,” Adv. Mater. 27(5), 903–910 (2015).
[Crossref] [PubMed]

Liang, F.

X. Chen, K. Cui, J. Xiu, H. Lin, Y. Lao, B. Zhou, F. Liang, D. Zha, J. Bin, and Y. Liu, “Evaluation and simplified measurement of infarct size by myocardial contrast echocardiography in a rat model of myocardial infarction,” Int. J. Cardiovasc. Imaging 25(7), 713–716 (2009).
[Crossref] [PubMed]

Liang, R.

Lim, C.

E. Levesque, E. Martin, D. Dudau, C. Lim, G. Dhonneur, and D. Azoulay, “Current use and perspective of indocyanine green clearance in liver diseases,” Anaesth Crit Care Pain Med 35(1), 49–57 (2016).
[Crossref] [PubMed]

Lin, H.

X. Chen, K. Cui, J. Xiu, H. Lin, Y. Lao, B. Zhou, F. Liang, D. Zha, J. Bin, and Y. Liu, “Evaluation and simplified measurement of infarct size by myocardial contrast echocardiography in a rat model of myocardial infarction,” Int. J. Cardiovasc. Imaging 25(7), 713–716 (2009).
[Crossref] [PubMed]

Liu, Y.

X. Chen, K. Cui, J. Xiu, H. Lin, Y. Lao, B. Zhou, F. Liang, D. Zha, J. Bin, and Y. Liu, “Evaluation and simplified measurement of infarct size by myocardial contrast echocardiography in a rat model of myocardial infarction,” Int. J. Cardiovasc. Imaging 25(7), 713–716 (2009).
[Crossref] [PubMed]

Liu, Z.

Q. Chen, C. Liang, C. Wang, and Z. Liu, “An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors,” Adv. Mater. 27(5), 903–910 (2015).
[Crossref] [PubMed]

Malbrain, M. L.

M. L. Malbrain, D. Viaene, A. Kortgen, I. De Laet, H. Dits, N. Van Regenmortel, K. Schoonheydt, and M. Bauer, “Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension,” Ann. Intensive Care 2(2Suppl 1), S19 (2012).
[Crossref] [PubMed]

Mao, Y.

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

Martin, E.

E. Levesque, E. Martin, D. Dudau, C. Lim, G. Dhonneur, and D. Azoulay, “Current use and perspective of indocyanine green clearance in liver diseases,” Anaesth Crit Care Pain Med 35(1), 49–57 (2016).
[Crossref] [PubMed]

Mathey, D.

W. D. Ito, S. Schaarschmidt, R. Klask, S. Hansen, H. J. Schäfer, D. Mathey, and S. Bhakdi, “Infarct size measurement by triphenyltetrazolium chloride staining versus in vivo injection of propidium iodide,” J. Mol. Cell. Cardiol. 29(8), 2169–2175 (1997).
[Crossref] [PubMed]

Matsuura, A.

N. Himori and A. Matsuura, “A simple technique for occlusion and reperfusion of coronary artery in conscious rats,” Am. J. Physiol. 256(6 Pt 2), H1719–H1725 (1989).
[PubMed]

Mayevsky, A.

A. Mayevsky and G. G. Rogatsky, “Mitochondrial Function In vivo Evaluated by NADH Fluorescence: From Animal Models to Human Studies,” Am. J. Physiol. Cell Physiol. 292(2), C615–C640 (2006).
[Crossref] [PubMed]

Mazhar, J.

S. M. Grieve, J. Mazhar, F. Callaghan, C. Y. Kok, S. Tandy, R. Bhindi, and G. A. Figtree, “Automated quantification of myocardial salvage in a rat model of ischemia-reperfusion injury using 3D high-resolution magnetic resonance imaging (MRI),” J. Am. Heart Assoc. 3(4), e000956 (2014).
[Crossref] [PubMed]

Motlagh, M. M.

M. Ranji, M. M. Motlagh, F. Salehpour, R. Sepehr, J. S. Heisner, R. K. Dash, and A. K. S. Camara, “Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion,” IEEE J. Transl. Eng. Health Med. 4, 1800210 (2016).
[PubMed]

Muthuchamy, M.

S. Chakraborty, S. D. Zawieja, W. Wang, Y. Lee, Y. J. Wang, P. Y. von der Weid, D. C. Zawieja, and M. Muthuchamy, “Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 309(12), H2042–H2057 (2015).
[Crossref] [PubMed]

Nam, D. H.

J. W. Jung, D. Y. Lee, and D. H. Nam, “Choroidal ischemia and serous macular detachment associated with severe postoperative pain,” Korean J. Ophthalmol. 22(2), 133–136 (2008).
[Crossref] [PubMed]

Pacheco, S.

Papayan, G.

G. Papayan, N. Petrishchev, and M. Galagudza, “Autofluorescence Spectroscopy for NADH and Flavoproteins Redox State Monitoring in the Isolated Rat Heart Subjected to Ischemia-Reperfusion,” Photodiagn. Photodyn. Ther. 11(3), 400–408 (2014).
[Crossref] [PubMed]

Papayan, G. V.

G. V. Papayan and A. L. Akopov, “Near-infrared fluorescence diagnostics: Devices, Applications,” J. Opt. Technol. 83(9), 586–596 (2016).

A. L. Akopov, G. V. Papayan, I. V. Chistyakov, A. Karlson, A. V. Gerasin, and A. S. Agishev, “Intraoperative detection of sentinel lymph nodes using infrared imaging system in local non-small cell lung carcinoma of the lung,” Vestn. Khir. Im. I I Grek. 174(4), 13–17 (2015).
[PubMed]

Pätilä, T.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A Review of Indocyanine Green Fluorescent Imaging in Surgery,” Int. J. Biomed. Imaging 2012, 940585 (2012).
[Crossref] [PubMed]

Penzkofer, A.

R. Philip, A. Penzkofer, W. Biiumler, R. M. Szeimies, and C. Abels, “Absorption and Fluorescence Spectroscopic Investigation of Indocyanine Green,” J. Photochem. Photobiol. Chem. 96(1-3), 137–148 (1996).
[Crossref]

Petrishchev, N.

G. Papayan, N. Petrishchev, and M. Galagudza, “Autofluorescence Spectroscopy for NADH and Flavoproteins Redox State Monitoring in the Isolated Rat Heart Subjected to Ischemia-Reperfusion,” Photodiagn. Photodyn. Ther. 11(3), 400–408 (2014).
[Crossref] [PubMed]

Philip, R.

R. Philip, A. Penzkofer, W. Biiumler, R. M. Szeimies, and C. Abels, “Absorption and Fluorescence Spectroscopic Investigation of Indocyanine Green,” J. Photochem. Photobiol. Chem. 96(1-3), 137–148 (1996).
[Crossref]

Ranji, M.

M. Ranji, M. M. Motlagh, F. Salehpour, R. Sepehr, J. S. Heisner, R. K. Dash, and A. K. S. Camara, “Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion,” IEEE J. Transl. Eng. Health Med. 4, 1800210 (2016).
[PubMed]

Raya, T. E.

S. Goldman and T. E. Raya, “Rat infarct model of myocardial infarction and heart failure,” J. Card. Fail. 1(2), 169–177 (1995).
[Crossref] [PubMed]

Reinhart, M. B.

M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green: Historical Context, Current Applications, and Future Considerations,” Surg. Innov. 23(2), 166–175 (2016).
[Crossref] [PubMed]

Rogatsky, G. G.

A. Mayevsky and G. G. Rogatsky, “Mitochondrial Function In vivo Evaluated by NADH Fluorescence: From Animal Models to Human Studies,” Am. J. Physiol. Cell Physiol. 292(2), C615–C640 (2006).
[Crossref] [PubMed]

Salehpour, F.

M. Ranji, M. M. Motlagh, F. Salehpour, R. Sepehr, J. S. Heisner, R. K. Dash, and A. K. S. Camara, “Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion,” IEEE J. Transl. Eng. Health Med. 4, 1800210 (2016).
[PubMed]

Sasaguri, S.

M. Yamamoto, S. Sasaguri, and T. Sato, “Assessing intraoperative blood flow in cardiovascular surgery,” Surg. Today 41(11), 1467–1474 (2011).
[Crossref] [PubMed]

Sato, T.

M. Yamamoto, S. Sasaguri, and T. Sato, “Assessing intraoperative blood flow in cardiovascular surgery,” Surg. Today 41(11), 1467–1474 (2011).
[Crossref] [PubMed]

Schaarschmidt, S.

W. D. Ito, S. Schaarschmidt, R. Klask, S. Hansen, H. J. Schäfer, D. Mathey, and S. Bhakdi, “Infarct size measurement by triphenyltetrazolium chloride staining versus in vivo injection of propidium iodide,” J. Mol. Cell. Cardiol. 29(8), 2169–2175 (1997).
[Crossref] [PubMed]

Schäfer, H. J.

W. D. Ito, S. Schaarschmidt, R. Klask, S. Hansen, H. J. Schäfer, D. Mathey, and S. Bhakdi, “Infarct size measurement by triphenyltetrazolium chloride staining versus in vivo injection of propidium iodide,” J. Mol. Cell. Cardiol. 29(8), 2169–2175 (1997).
[Crossref] [PubMed]

Schoonheydt, K.

M. L. Malbrain, D. Viaene, A. Kortgen, I. De Laet, H. Dits, N. Van Regenmortel, K. Schoonheydt, and M. Bauer, “Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension,” Ann. Intensive Care 2(2Suppl 1), S19 (2012).
[Crossref] [PubMed]

Schwarz, E. R.

E. R. Schwarz, Y. Somoano, S. L. Hale, and R. A. Kloner, “What is the required reperfusion period for assessment of myocardial infarct size using triphenyltetrazolium chloride staining in the rat?” J. Thromb. Thrombolysis 10(2), 181–187 (2000).
[Crossref] [PubMed]

Sepehr, R.

M. Ranji, M. M. Motlagh, F. Salehpour, R. Sepehr, J. S. Heisner, R. K. Dash, and A. K. S. Camara, “Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion,” IEEE J. Transl. Eng. Health Med. 4, 1800210 (2016).
[PubMed]

Sevick-Muraca, E. M.

M. B. Aldrich and E. M. Sevick-Muraca, “Cytokines are systemic effectors of lymphatic function in acute inflammation,” Cytokine 64(1), 362–369 (2013).
[Crossref] [PubMed]

Shang, W.

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

Sobel, B. E.

A. K. Tarikuz Zaman, J. L. Spees, and B. E. Sobel, “Attenuation of cardiac vascular rhexis: a promising therapeutic target,” Coron. Artery Dis. 24(3), 245–252 (2013).
[Crossref] [PubMed]

A. K. M. T. Zaman, C. J. French, J. L. Spees, A. S. Binbrek, and B. E. Sobel, “Vascular Rhexis in Mice Subjected to Non-Sustained Myocardial Ischemia and Its Therapeutic Implications,” Exp. Biol. Med. (Maywood) 236(5), 598–603 (2011).
[Crossref] [PubMed]

C. J. French, A. K. M. T. Zaman, R. J. Kelm, J. L. Spees, and B. E. Sobel, “Vascular Rhexis: Loss of Integrity of Coronary Vasculature in Mice Subjected to Myocardial Infarction,” Exp. Biol. Med. (Maywood) 235(8), 966–973 (2010).
[Crossref] [PubMed]

Somoano, Y.

E. R. Schwarz, Y. Somoano, S. L. Hale, and R. A. Kloner, “What is the required reperfusion period for assessment of myocardial infarct size using triphenyltetrazolium chloride staining in the rat?” J. Thromb. Thrombolysis 10(2), 181–187 (2000).
[Crossref] [PubMed]

Spees, J. L.

A. K. Tarikuz Zaman, J. L. Spees, and B. E. Sobel, “Attenuation of cardiac vascular rhexis: a promising therapeutic target,” Coron. Artery Dis. 24(3), 245–252 (2013).
[Crossref] [PubMed]

A. K. M. T. Zaman, C. J. French, J. L. Spees, A. S. Binbrek, and B. E. Sobel, “Vascular Rhexis in Mice Subjected to Non-Sustained Myocardial Ischemia and Its Therapeutic Implications,” Exp. Biol. Med. (Maywood) 236(5), 598–603 (2011).
[Crossref] [PubMed]

C. J. French, A. K. M. T. Zaman, R. J. Kelm, J. L. Spees, and B. E. Sobel, “Vascular Rhexis: Loss of Integrity of Coronary Vasculature in Mice Subjected to Myocardial Infarction,” Exp. Biol. Med. (Maywood) 235(8), 966–973 (2010).
[Crossref] [PubMed]

Spillmann, T.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A Review of Indocyanine Green Fluorescent Imaging in Surgery,” Int. J. Biomed. Imaging 2012, 940585 (2012).
[Crossref] [PubMed]

Staudinger, V. P.

Szeimies, R. M.

R. Philip, A. Penzkofer, W. Biiumler, R. M. Szeimies, and C. Abels, “Absorption and Fluorescence Spectroscopic Investigation of Indocyanine Green,” J. Photochem. Photobiol. Chem. 96(1-3), 137–148 (1996).
[Crossref]

Tandy, S.

S. M. Grieve, J. Mazhar, F. Callaghan, C. Y. Kok, S. Tandy, R. Bhindi, and G. A. Figtree, “Automated quantification of myocardial salvage in a rat model of ischemia-reperfusion injury using 3D high-resolution magnetic resonance imaging (MRI),” J. Am. Heart Assoc. 3(4), e000956 (2014).
[Crossref] [PubMed]

Tarikuz Zaman, A. K.

A. K. Tarikuz Zaman, J. L. Spees, and B. E. Sobel, “Attenuation of cardiac vascular rhexis: a promising therapeutic target,” Coron. Artery Dis. 24(3), 245–252 (2013).
[Crossref] [PubMed]

Tian, J.

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

Tuchin, V. V.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A Review of Indocyanine Green Fluorescent Imaging in Surgery,” Int. J. Biomed. Imaging 2012, 940585 (2012).
[Crossref] [PubMed]

Välisuo, P.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A Review of Indocyanine Green Fluorescent Imaging in Surgery,” Int. J. Biomed. Imaging 2012, 940585 (2012).
[Crossref] [PubMed]

Van Regenmortel, N.

M. L. Malbrain, D. Viaene, A. Kortgen, I. De Laet, H. Dits, N. Van Regenmortel, K. Schoonheydt, and M. Bauer, “Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension,” Ann. Intensive Care 2(2Suppl 1), S19 (2012).
[Crossref] [PubMed]

Venermo, M.

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A Review of Indocyanine Green Fluorescent Imaging in Surgery,” Int. J. Biomed. Imaging 2012, 940585 (2012).
[Crossref] [PubMed]

Viaene, D.

M. L. Malbrain, D. Viaene, A. Kortgen, I. De Laet, H. Dits, N. Van Regenmortel, K. Schoonheydt, and M. Bauer, “Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension,” Ann. Intensive Care 2(2Suppl 1), S19 (2012).
[Crossref] [PubMed]

von der Weid, P. Y.

S. Chakraborty, S. D. Zawieja, W. Wang, Y. Lee, Y. J. Wang, P. Y. von der Weid, D. C. Zawieja, and M. Muthuchamy, “Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 309(12), H2042–H2057 (2015).
[Crossref] [PubMed]

Vullev, V. I.

B. Jung, V. I. Vullev, and B. Anvari, “Revisiting indocyanine green: effects of serum and physiological temperature on absorption and fluorescence characteristics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 149–157 (2014).
[Crossref]

Wang, C.

Q. Chen, C. Liang, C. Wang, and Z. Liu, “An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors,” Adv. Mater. 27(5), 903–910 (2015).
[Crossref] [PubMed]

Wang, K.

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

Wang, T.

L. J. Yuan, T. Wang, M. L. Kahn, and V. A. Ferrari, “High-resolution echocardiographic assessment of infarct size and cardiac function in mice with myocardial infarction,” J. Am. Soc. Echocardiogr. 24(2), 219–226 (2011).
[Crossref] [PubMed]

Wang, W.

S. Chakraborty, S. D. Zawieja, W. Wang, Y. Lee, Y. J. Wang, P. Y. von der Weid, D. C. Zawieja, and M. Muthuchamy, “Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 309(12), H2042–H2057 (2015).
[Crossref] [PubMed]

Wang, X.

Wang, Y. J.

S. Chakraborty, S. D. Zawieja, W. Wang, Y. Lee, Y. J. Wang, P. Y. von der Weid, D. C. Zawieja, and M. Muthuchamy, “Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 309(12), H2042–H2057 (2015).
[Crossref] [PubMed]

Xiang, N.

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

Xiu, J.

X. Chen, K. Cui, J. Xiu, H. Lin, Y. Lao, B. Zhou, F. Liang, D. Zha, J. Bin, and Y. Liu, “Evaluation and simplified measurement of infarct size by myocardial contrast echocardiography in a rat model of myocardial infarction,” Int. J. Cardiovasc. Imaging 25(7), 713–716 (2009).
[Crossref] [PubMed]

Yamamoto, M.

M. Yamamoto, S. Sasaguri, and T. Sato, “Assessing intraoperative blood flow in cardiovascular surgery,” Surg. Today 41(11), 1467–1474 (2011).
[Crossref] [PubMed]

Yang, J.

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

Yazdanfar, S.

Ye, J.

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

Yuan, L. J.

L. J. Yuan, T. Wang, M. L. Kahn, and V. A. Ferrari, “High-resolution echocardiographic assessment of infarct size and cardiac function in mice with myocardial infarction,” J. Am. Soc. Echocardiogr. 24(2), 219–226 (2011).
[Crossref] [PubMed]

Zaman, A. K. M. T.

A. K. M. T. Zaman, C. J. French, J. L. Spees, A. S. Binbrek, and B. E. Sobel, “Vascular Rhexis in Mice Subjected to Non-Sustained Myocardial Ischemia and Its Therapeutic Implications,” Exp. Biol. Med. (Maywood) 236(5), 598–603 (2011).
[Crossref] [PubMed]

C. J. French, A. K. M. T. Zaman, R. J. Kelm, J. L. Spees, and B. E. Sobel, “Vascular Rhexis: Loss of Integrity of Coronary Vasculature in Mice Subjected to Myocardial Infarction,” Exp. Biol. Med. (Maywood) 235(8), 966–973 (2010).
[Crossref] [PubMed]

Zawieja, D. C.

S. Chakraborty, S. D. Zawieja, W. Wang, Y. Lee, Y. J. Wang, P. Y. von der Weid, D. C. Zawieja, and M. Muthuchamy, “Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 309(12), H2042–H2057 (2015).
[Crossref] [PubMed]

Zawieja, S. D.

S. Chakraborty, S. D. Zawieja, W. Wang, Y. Lee, Y. J. Wang, P. Y. von der Weid, D. C. Zawieja, and M. Muthuchamy, “Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 309(12), H2042–H2057 (2015).
[Crossref] [PubMed]

Zeng, C.

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

Zeng, N.

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

Zha, D.

X. Chen, K. Cui, J. Xiu, H. Lin, Y. Lao, B. Zhou, F. Liang, D. Zha, J. Bin, and Y. Liu, “Evaluation and simplified measurement of infarct size by myocardial contrast echocardiography in a rat model of myocardial infarction,” Int. J. Cardiovasc. Imaging 25(7), 713–716 (2009).
[Crossref] [PubMed]

Zhou, B.

X. Chen, K. Cui, J. Xiu, H. Lin, Y. Lao, B. Zhou, F. Liang, D. Zha, J. Bin, and Y. Liu, “Evaluation and simplified measurement of infarct size by myocardial contrast echocardiography in a rat model of myocardial infarction,” Int. J. Cardiovasc. Imaging 25(7), 713–716 (2009).
[Crossref] [PubMed]

Zhu, N.

Zhu, W.

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

Q. Chen, C. Liang, C. Wang, and Z. Liu, “An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors,” Adv. Mater. 27(5), 903–910 (2015).
[Crossref] [PubMed]

Am. J. Physiol. (1)

N. Himori and A. Matsuura, “A simple technique for occlusion and reperfusion of coronary artery in conscious rats,” Am. J. Physiol. 256(6 Pt 2), H1719–H1725 (1989).
[PubMed]

Am. J. Physiol. Cell Physiol. (1)

A. Mayevsky and G. G. Rogatsky, “Mitochondrial Function In vivo Evaluated by NADH Fluorescence: From Animal Models to Human Studies,” Am. J. Physiol. Cell Physiol. 292(2), C615–C640 (2006).
[Crossref] [PubMed]

Am. J. Physiol. Heart Circ. Physiol. (1)

S. Chakraborty, S. D. Zawieja, W. Wang, Y. Lee, Y. J. Wang, P. Y. von der Weid, D. C. Zawieja, and M. Muthuchamy, “Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 309(12), H2042–H2057 (2015).
[Crossref] [PubMed]

Anaesth Crit Care Pain Med (1)

E. Levesque, E. Martin, D. Dudau, C. Lim, G. Dhonneur, and D. Azoulay, “Current use and perspective of indocyanine green clearance in liver diseases,” Anaesth Crit Care Pain Med 35(1), 49–57 (2016).
[Crossref] [PubMed]

Ann. Intensive Care (1)

M. L. Malbrain, D. Viaene, A. Kortgen, I. De Laet, H. Dits, N. Van Regenmortel, K. Schoonheydt, and M. Bauer, “Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension,” Ann. Intensive Care 2(2Suppl 1), S19 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Coron. Artery Dis. (1)

A. K. Tarikuz Zaman, J. L. Spees, and B. E. Sobel, “Attenuation of cardiac vascular rhexis: a promising therapeutic target,” Coron. Artery Dis. 24(3), 245–252 (2013).
[Crossref] [PubMed]

Cytokine (1)

M. B. Aldrich and E. M. Sevick-Muraca, “Cytokines are systemic effectors of lymphatic function in acute inflammation,” Cytokine 64(1), 362–369 (2013).
[Crossref] [PubMed]

Exp. Biol. Med. (Maywood) (2)

C. J. French, A. K. M. T. Zaman, R. J. Kelm, J. L. Spees, and B. E. Sobel, “Vascular Rhexis: Loss of Integrity of Coronary Vasculature in Mice Subjected to Myocardial Infarction,” Exp. Biol. Med. (Maywood) 235(8), 966–973 (2010).
[Crossref] [PubMed]

A. K. M. T. Zaman, C. J. French, J. L. Spees, A. S. Binbrek, and B. E. Sobel, “Vascular Rhexis in Mice Subjected to Non-Sustained Myocardial Ischemia and Its Therapeutic Implications,” Exp. Biol. Med. (Maywood) 236(5), 598–603 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Jung, V. I. Vullev, and B. Anvari, “Revisiting indocyanine green: effects of serum and physiological temperature on absorption and fluorescence characteristics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 149–157 (2014).
[Crossref]

IEEE J. Transl. Eng. Health Med. (1)

M. Ranji, M. M. Motlagh, F. Salehpour, R. Sepehr, J. S. Heisner, R. K. Dash, and A. K. S. Camara, “Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion,” IEEE J. Transl. Eng. Health Med. 4, 1800210 (2016).
[PubMed]

Int. J. Biomed. Imaging (1)

J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, “A Review of Indocyanine Green Fluorescent Imaging in Surgery,” Int. J. Biomed. Imaging 2012, 940585 (2012).
[Crossref] [PubMed]

Int. J. Cardiovasc. Imaging (1)

X. Chen, K. Cui, J. Xiu, H. Lin, Y. Lao, B. Zhou, F. Liang, D. Zha, J. Bin, and Y. Liu, “Evaluation and simplified measurement of infarct size by myocardial contrast echocardiography in a rat model of myocardial infarction,” Int. J. Cardiovasc. Imaging 25(7), 713–716 (2009).
[Crossref] [PubMed]

J. Am. Heart Assoc. (1)

S. M. Grieve, J. Mazhar, F. Callaghan, C. Y. Kok, S. Tandy, R. Bhindi, and G. A. Figtree, “Automated quantification of myocardial salvage in a rat model of ischemia-reperfusion injury using 3D high-resolution magnetic resonance imaging (MRI),” J. Am. Heart Assoc. 3(4), e000956 (2014).
[Crossref] [PubMed]

J. Am. Soc. Echocardiogr. (1)

L. J. Yuan, T. Wang, M. L. Kahn, and V. A. Ferrari, “High-resolution echocardiographic assessment of infarct size and cardiac function in mice with myocardial infarction,” J. Am. Soc. Echocardiogr. 24(2), 219–226 (2011).
[Crossref] [PubMed]

J. Card. Fail. (1)

S. Goldman and T. E. Raya, “Rat infarct model of myocardial infarction and heart failure,” J. Card. Fail. 1(2), 169–177 (1995).
[Crossref] [PubMed]

J. Mol. Cell. Cardiol. (1)

W. D. Ito, S. Schaarschmidt, R. Klask, S. Hansen, H. J. Schäfer, D. Mathey, and S. Bhakdi, “Infarct size measurement by triphenyltetrazolium chloride staining versus in vivo injection of propidium iodide,” J. Mol. Cell. Cardiol. 29(8), 2169–2175 (1997).
[Crossref] [PubMed]

J. Opt. Technol. (1)

G. V. Papayan and A. L. Akopov, “Near-infrared fluorescence diagnostics: Devices, Applications,” J. Opt. Technol. 83(9), 586–596 (2016).

J. Photochem. Photobiol. Chem. (1)

R. Philip, A. Penzkofer, W. Biiumler, R. M. Szeimies, and C. Abels, “Absorption and Fluorescence Spectroscopic Investigation of Indocyanine Green,” J. Photochem. Photobiol. Chem. 96(1-3), 137–148 (1996).
[Crossref]

J. Thorac. Cardiovasc. Surg. (1)

T. B. Ferguson, C. Chen, J. D. Babb, J. T. Efird, R. Daggubati, and J. M. Cahill, “Fractional Flow Reserve-Guided Coronary Artery Bypass Grafting: Can Intraoperative Physiologic Imaging Guide Decision Making?” J. Thorac. Cardiovasc. Surg. 146(4), 824–835 (2013).
[Crossref] [PubMed]

J. Thromb. Thrombolysis (1)

E. R. Schwarz, Y. Somoano, S. L. Hale, and R. A. Kloner, “What is the required reperfusion period for assessment of myocardial infarct size using triphenyltetrazolium chloride staining in the rat?” J. Thromb. Thrombolysis 10(2), 181–187 (2000).
[Crossref] [PubMed]

Korean J. Ophthalmol. (1)

J. W. Jung, D. Y. Lee, and D. H. Nam, “Choroidal ischemia and serous macular detachment associated with severe postoperative pain,” Korean J. Ophthalmol. 22(2), 133–136 (2008).
[Crossref] [PubMed]

Photodiagn. Photodyn. Ther. (1)

G. Papayan, N. Petrishchev, and M. Galagudza, “Autofluorescence Spectroscopy for NADH and Flavoproteins Redox State Monitoring in the Isolated Rat Heart Subjected to Ischemia-Reperfusion,” Photodiagn. Photodyn. Ther. 11(3), 400–408 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Fang, K. Wang, C. Zeng, C. Chi, W. Shang, J. Ye, Y. Mao, Y. Fan, J. Yang, N. Xiang, N. Zeng, W. Zhu, C. Fang, and J. Tian, “Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green,” Sci. Rep. 6(6), 21013 (2016).
[Crossref] [PubMed]

Surg. Innov. (1)

M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green: Historical Context, Current Applications, and Future Considerations,” Surg. Innov. 23(2), 166–175 (2016).
[Crossref] [PubMed]

Surg. Today (1)

M. Yamamoto, S. Sasaguri, and T. Sato, “Assessing intraoperative blood flow in cardiovascular surgery,” Surg. Today 41(11), 1467–1474 (2011).
[Crossref] [PubMed]

Vestn. Khir. Im. I I Grek. (1)

A. L. Akopov, G. V. Papayan, I. V. Chistyakov, A. Karlson, A. V. Gerasin, and A. S. Agishev, “Intraoperative detection of sentinel lymph nodes using infrared imaging system in local non-small cell lung carcinoma of the lung,” Vestn. Khir. Im. I I Grek. 174(4), 13–17 (2015).
[PubMed]

Other (1)

Uk. Kang and G. V. Papayan, “Fluorescent endoscope system having improved image detection module,” US Patent No US7635330. 22.12.2009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental protocol. I – ischemia, R – reperfusion, ICG - indocyanine green, TTC - triphenyltetrazolium chloride, ▲ – time points of imaging.

Fig. 2
Fig. 2

The research complex, infrared imaging system ICG-Scope, which was used for intraoperative visualization of ischemia-reperfusion myocardial injury in an experimental model in vivo. a) – Image of the setup: 1 – television camera, 2 – semiconductor laser, 3 – heart, 4 – fiber illuminator, 5 – PC., b) – Schematic image of the complex.

Fig. 3
Fig. 3

– Intravital and post-mortem visualization of the ischemic-reperfused area of the heart with ICG. (a), (b) – Perfusion defect immediately after ICG administration; (c), (d) – Intravital epicardial ICG fluorescence; (e), (f) - Epicardial ICG fluorescence in the excised heart; (g), (h) – Transverse heart slices stained with Evans Blue and ICG obtained after 30 min of reperfusion.

Fig. 4
Fig. 4

Comparison of images of infarction areas obtained by the new method of visualization using ICG and using the traditional method of staining with Evans blue and TTC. There was no difference in infarct size determined by two methods of staining. (a), (b) - Transverse heart slices stained with Evans blue and TTC after 120 min of reperfusion; (c), (d) – The images of the same slices obtained using ICG-scope television camera: (c) - in the visible light, (d) - in the NIR light; (e) – Comparing infarct size evaluated by ICG fluorescence and TTC staining. Medians are not different; (f) – Correlation of infarct sizes obtained by ICG fluorescence and TTC staining is significant.

Fig. 5
Fig. 5

Phases of distribution of fluorescent dye (ICG) in the heart with regional IRI. (a) - initially, before administration of ICG, red oval denotes the area of IRI. (b) - the first, arterial phase - distribution of ICG on large coronary vessels. (c) - Capillary phase - distribution of ICG on small vessels. (d) – the venous phase of ICG with delay of ICG in the area of IRI and complete clearance from undamaged myocardium, (e) - the final washout of ICG.

Metrics