Abstract

A number of disease conditions in luminal organs are associated with alterations in tissue mechanical properties. Here, we report a new omni-directional viewing Laser Speckle Rheology (LSR) catheter for mapping the mechanical properties of luminal organs without the need for rotational motion. The LSR catheter incorporates multiple illumination fibers, an optical fiber bundle and a multi-faceted mirror to permit omni-directional viewing of the luminal wall. By retracting the catheter using a motor-drive assembly, cylindrical maps of tissue mechanical properties are reconstructed. Evaluation conducted in a test phantom with circumferentially-varying mechanical properties demonstrates the capability of the LSR catheter for the accurate mechanical assessment of luminal organs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Assessing blood coagulation status with laser speckle rheology

Markandey M. Tripathi, Zeinab Hajjarian, Elizabeth M. Van Cott, and Seemantini K. Nadkarni
Biomed. Opt. Express 5(3) 817-831 (2014)

Correction of optical absorption and scattering variations in laser speckle rheology measurements

Zeinab Hajjarian and Seemantini K. Nadkarni
Opt. Express 22(6) 6349-6361 (2014)

Estimation of particle size variations for laser speckle rheology of materials

Zeinab Hajjarian and Seemantini K. Nadkarni
Opt. Lett. 40(5) 764-767 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. O’Rourke, “Mechanical principles in arterial disease,” Hypertension 26(1), 2–9 (1995).
    [Crossref] [PubMed]
  2. L. H. Arroyo and R. T. Lee, “Mechanisms of plaque rupture: mechanical and biologic interactions,” Cardiovasc. Res. 41(2), 369–375 (1999).
    [Crossref] [PubMed]
  3. S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
    [Crossref] [PubMed]
  4. G. Sommer, Mechanical Properties of Healthy and Diseased Human Arteries, Monographic Series TU Graz: Computation in Engineering and Science (Verlag der Techn. Univ. Graz, 2010).
  5. P. D. Richardson, “Biomechanics of plaque rupture: progress, problems, and new frontiers,” Ann. Biomed. Eng. 30(4), 524–536 (2002).
    [Crossref] [PubMed]
  6. G. S. Soor, I. Vukin, S. W. Leong, G. Oreopoulos, and J. Butany, “Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases,” Pathology 40(4), 385–391 (2008).
    [Crossref] [PubMed]
  7. T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
    [Crossref] [PubMed]
  8. S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
    [Crossref] [PubMed]
  9. S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
    [Crossref] [PubMed]
  10. S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
    [Crossref] [PubMed]
  11. Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
    [Crossref]
  12. Z. Hajjarian and S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012).
    [Crossref] [PubMed]
  13. Z. Hajjarian and S. K. Nadkarni, “Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids,” PLoS One 8(5), e65014 (2013).
    [Crossref] [PubMed]
  14. M. M. Tripathi, Z. Hajjarian, E. M. Van Cott, and S. K. Nadkarni, “Assessing blood coagulation status with laser speckle rheology,” Biomed. Opt. Express 5(3), 817–831 (2014).
    [Crossref] [PubMed]
  15. Z. Hajjarian and S. K. Nadkarni, “Correction of optical absorption and scattering variations in Laser Speckle Rheology measurements,” Opt. Express 22(6), 6349–6361 (2014).
    [Crossref] [PubMed]
  16. Z. Hajjarian, M. M. Tripathi, and S. K. Nadkarni, “Optical Thromboelastography to evaluate whole blood coagulation,” J. Biophotonics 8(5), 372–381 (2015).
    [Crossref] [PubMed]
  17. D. Weitz and D. Pine, “Diffusing-wave spectroscopy,” in Dynamic Light Scattering., W. Brown, ed. (Oxford Univ. Press, 1993), pp.652–721.
  18. T. G. Mason, H. Gang, and D. A. Weitz, “Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids,” J. Opt. Soc. Am. A 14(1), 139–149 (1997).
    [Crossref]
  19. B. R. Dasgupta and D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 021504 (2005).
    [Crossref] [PubMed]
  20. B. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (John Wiley & Sons, 2000).
  21. S. K. Nadkarni, “Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture,” J. Biomed. Opt. 18(12), 121507 (2013).
    [Crossref] [PubMed]
  22. S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci. 24(3), 439–445 (2009).
    [Crossref] [PubMed]
  23. S. K. Nadkarni, J. D. Toussaint, G. J. Tearney, and Z. Hajjarian, “Intracoronary laser speckle imaging (ILSI) for the mechanical characterization of coronary plaques in living swine,” presented at SPIE Photonics West San Francisco, California, United States, 21–26 January 2012.
  24. S. K. Nadkarni, J. D. Toussaint, and Zeinab. Hajjarian, “Intravascular laser speckle imaging (ILSI): in vivo evaluation of the mechanical properties of coronary plaques in living swine,” presented at SPIE European Conference on Biomedical Optics, Munich, Germany, 22–26 May 2011.
  25. Z. Hajjarian and S. K. Nadkarni, “Laser speckle micro-rheology for biomechanical evaluation of breast tumors,” Proc. SPIE 9710, 9710–9717 (2016).
  26. W. W. Ong, “Laser Speckle Imaging for the characterization of cartilage,” Boston University (2010).
  27. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
    [Crossref] [PubMed]
  28. J. Wang and S. K. S. K. Nadkarni, “The influence of optical fiber bundle parameters on the transmission of laser speckle patterns,” Opt. Express 22(8), 8908–8918 (2014).
    [Crossref] [PubMed]
  29. “Dow Corning product information Dow Corning® 184 silicone elastomer,” http://www.dowcorning.com/DataFiles/090276fe80190b08.pdf .
  30. “Bio-Rad handcasting Polyacrylamide gels protocol 6201,” http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6201.pdf .
  31. A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
    [Crossref] [PubMed]
  32. C.-Y. Lee and J.-H. Han, “Integrated spatio-spectral method for efficiently suppressing honeycomb pattern artifact in imaging fiber bundle microscopy,” Opt. Commun. 306, 67–73 (2013).
    [Crossref]
  33. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
    [Crossref] [PubMed]
  34. D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51(18), 2101–2127 (1990).
    [Crossref]
  35. D. A Weitz, J. X. Zhu, D. J. Durian, and D. J. Pine, “Principles and applications of diffusing-wave spectroscopy,” in Structure Dynamics of Strongly Interacting Colloids Supramolecular Aggregates in Solution, S.-H. Chen, J. S. Huang, and P. Tartaglia, eds. (Springer, 1992) pp. 731–748.
  36. “D. A Weitz, J. X Zhu, D. J Durian, H Gang, and D. J Pine, “Diffusing-wave spectroscopy: The technique and some applications,” Phys. Scr. T 49B, 610–621 (1993).
  37. G. Maret, “Diffusing-wave spectroscopy,” Curr. Opin. Colloid Interface Sci. 2(3), 251–257 (1997).
    [Crossref]
  38. A. Banchio, G. Nägele, and J. Bergenholtz, “Viscoelasticity and generalized Stokes–Einstein relations of colloidal dispersions,” J. Chem. Phys. 111(18), 8721–8740 (1999).
    [Crossref]
  39. T. G. Mason, “Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta 39(4), 371–378 (2000).
    [Crossref]
  40. J. L. Harden and V. Viasnoff, “Recent advances in DWS-based micro-rheology,” Curr. Opin. Colloid Interface Sci. 6(5-6), 438–445 (2001).
    [Crossref]
  41. S. K. Kumar, G. Szamel, and J. F. Douglas, “Nature of the breakdown in the Stokes-Einstein relationship in a hard sphere fluid,” J. Chem. Phys. 124(21), 214501 (2006).
    [Crossref] [PubMed]
  42. Z. Hajjarian and S. K. Nadkarni, “Estimation of particle size variations for laser speckle rheology of materials,” Opt. Lett. 40(5), 764–767 (2015).
    [Crossref] [PubMed]
  43. J. Lauger and H. Stettin, “Effects of instrument and fluid inertia in oscillatory shear in rotational rheometers,” J. Rheo. 60(3), 393–406 (2016).
    [Crossref]
  44. B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
    [Crossref] [PubMed]
  45. C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
    [Crossref] [PubMed]
  46. S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
    [Crossref] [PubMed]
  47. L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051403 (2002).
    [Crossref] [PubMed]
  48. J. X. Zhu, D. J. Durian, J. Müller, D. A. Weitz, and D. J. Pine, “Scaling of transient hydrodynamic interactions in concentrated suspensions,” Phys. Rev. Lett. 68(16), 2559–2562 (1992).
    [Crossref] [PubMed]
  49. D. A. Weitz, D. J. Pine, P. N. Pusey, and R. J. Tough, “Nondiffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63(16), 1747–1750 (1989).
    [Crossref] [PubMed]
  50. W. van Megen and P. N. Pusey, “Dynamic light-scattering study of the glass transition in a colloidal suspension,” Phys. Rev. A 43(10), 5429–5441 (1991).
    [Crossref] [PubMed]
  51. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [Crossref] [PubMed]
  52. M. H. Kao, A. G. Yodh, and D. J. Pine, “Observation of Brownian motion on the time scale of hydrodynamic interactions,” Phys. Rev. Lett. 70(2), 242–245 (1993).
    [Crossref] [PubMed]
  53. R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 040903 (2011).
    [Crossref] [PubMed]
  54. H. Ullah, A. Mariampillai, M. Ikram, and I. A. Vitkin, “Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood?” Laser Phys. 21(11), 1962–1971 (2011).
    [Crossref]
  55. S. Haavisto, A. I. Koponen, and J. Salmela, “New insight into rheology and flow properties of complex fluids with Doppler optical coherence tomography,” Front Chem. 2, 27 (2014).
    [Crossref] [PubMed]
  56. H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys. 22(4), 797–804 (2012).
    [Crossref]
  57. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).
    [Crossref] [PubMed]
  58. M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
    [Crossref] [PubMed]

2016 (2)

Z. Hajjarian and S. K. Nadkarni, “Laser speckle micro-rheology for biomechanical evaluation of breast tumors,” Proc. SPIE 9710, 9710–9717 (2016).

J. Lauger and H. Stettin, “Effects of instrument and fluid inertia in oscillatory shear in rotational rheometers,” J. Rheo. 60(3), 393–406 (2016).
[Crossref]

2015 (3)

Z. Hajjarian, M. M. Tripathi, and S. K. Nadkarni, “Optical Thromboelastography to evaluate whole blood coagulation,” J. Biophotonics 8(5), 372–381 (2015).
[Crossref] [PubMed]

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref] [PubMed]

Z. Hajjarian and S. K. Nadkarni, “Estimation of particle size variations for laser speckle rheology of materials,” Opt. Lett. 40(5), 764–767 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (4)

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

S. K. Nadkarni, “Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture,” J. Biomed. Opt. 18(12), 121507 (2013).
[Crossref] [PubMed]

Z. Hajjarian and S. K. Nadkarni, “Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids,” PLoS One 8(5), e65014 (2013).
[Crossref] [PubMed]

C.-Y. Lee and J.-H. Han, “Integrated spatio-spectral method for efficiently suppressing honeycomb pattern artifact in imaging fiber bundle microscopy,” Opt. Commun. 306, 67–73 (2013).
[Crossref]

2012 (2)

Z. Hajjarian and S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012).
[Crossref] [PubMed]

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys. 22(4), 797–804 (2012).
[Crossref]

2011 (4)

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 040903 (2011).
[Crossref] [PubMed]

H. Ullah, A. Mariampillai, M. Ikram, and I. A. Vitkin, “Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood?” Laser Phys. 21(11), 1962–1971 (2011).
[Crossref]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[Crossref]

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[Crossref] [PubMed]

2009 (1)

S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci. 24(3), 439–445 (2009).
[Crossref] [PubMed]

2008 (3)

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[Crossref] [PubMed]

G. S. Soor, I. Vukin, S. W. Leong, G. Oreopoulos, and J. Butany, “Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases,” Pathology 40(4), 385–391 (2008).
[Crossref] [PubMed]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).
[Crossref] [PubMed]

2006 (2)

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[Crossref] [PubMed]

S. K. Kumar, G. Szamel, and J. F. Douglas, “Nature of the breakdown in the Stokes-Einstein relationship in a hard sphere fluid,” J. Chem. Phys. 124(21), 214501 (2006).
[Crossref] [PubMed]

2005 (3)

B. R. Dasgupta and D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 021504 (2005).
[Crossref] [PubMed]

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[Crossref] [PubMed]

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

2002 (2)

P. D. Richardson, “Biomechanics of plaque rupture: progress, problems, and new frontiers,” Ann. Biomed. Eng. 30(4), 524–536 (2002).
[Crossref] [PubMed]

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051403 (2002).
[Crossref] [PubMed]

2001 (2)

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

J. L. Harden and V. Viasnoff, “Recent advances in DWS-based micro-rheology,” Curr. Opin. Colloid Interface Sci. 6(5-6), 438–445 (2001).
[Crossref]

2000 (1)

T. G. Mason, “Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta 39(4), 371–378 (2000).
[Crossref]

1999 (2)

A. Banchio, G. Nägele, and J. Bergenholtz, “Viscoelasticity and generalized Stokes–Einstein relations of colloidal dispersions,” J. Chem. Phys. 111(18), 8721–8740 (1999).
[Crossref]

L. H. Arroyo and R. T. Lee, “Mechanisms of plaque rupture: mechanical and biologic interactions,” Cardiovasc. Res. 41(2), 369–375 (1999).
[Crossref] [PubMed]

1997 (2)

1996 (1)

1995 (2)

M. O’Rourke, “Mechanical principles in arterial disease,” Hypertension 26(1), 2–9 (1995).
[Crossref] [PubMed]

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[Crossref] [PubMed]

1993 (2)

“D. A Weitz, J. X Zhu, D. J Durian, H Gang, and D. J Pine, “Diffusing-wave spectroscopy: The technique and some applications,” Phys. Scr. T 49B, 610–621 (1993).

M. H. Kao, A. G. Yodh, and D. J. Pine, “Observation of Brownian motion on the time scale of hydrodynamic interactions,” Phys. Rev. Lett. 70(2), 242–245 (1993).
[Crossref] [PubMed]

1992 (1)

J. X. Zhu, D. J. Durian, J. Müller, D. A. Weitz, and D. J. Pine, “Scaling of transient hydrodynamic interactions in concentrated suspensions,” Phys. Rev. Lett. 68(16), 2559–2562 (1992).
[Crossref] [PubMed]

1991 (2)

1990 (1)

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51(18), 2101–2127 (1990).
[Crossref]

1989 (1)

D. A. Weitz, D. J. Pine, P. N. Pusey, and R. J. Tough, “Nondiffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63(16), 1747–1750 (1989).
[Crossref] [PubMed]

1988 (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Arroyo, L. H.

L. H. Arroyo and R. T. Lee, “Mechanisms of plaque rupture: mechanical and biologic interactions,” Cardiovasc. Res. 41(2), 369–375 (1999).
[Crossref] [PubMed]

Banchio, A.

A. Banchio, G. Nägele, and J. Bergenholtz, “Viscoelasticity and generalized Stokes–Einstein relations of colloidal dispersions,” J. Chem. Phys. 111(18), 8721–8740 (1999).
[Crossref]

Beil, M.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

Bergenholtz, J.

A. Banchio, G. Nägele, and J. Bergenholtz, “Viscoelasticity and generalized Stokes–Einstein relations of colloidal dispersions,” J. Chem. Phys. 111(18), 8721–8740 (1999).
[Crossref]

Bilenca, A.

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[Crossref] [PubMed]

Boppart, S. A.

Bouma, B. E.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci. 24(3), 439–445 (2009).
[Crossref] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[Crossref] [PubMed]

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[Crossref] [PubMed]

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[Crossref] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[Crossref] [PubMed]

Brezinski, M. E.

Butany, J.

G. S. Soor, I. Vukin, S. W. Leong, G. Oreopoulos, and J. Butany, “Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases,” Pathology 40(4), 385–391 (2008).
[Crossref] [PubMed]

Carruth, R. W.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Chan, R.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[Crossref] [PubMed]

Chaney, E. J.

Chau, A.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[Crossref] [PubMed]

Chhetri, R. K.

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 040903 (2011).
[Crossref] [PubMed]

Chin, L.

Crecea, V.

Curatolo, A.

Dao, M.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

Dasgupta, B. R.

B. R. Dasgupta and D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 021504 (2005).
[Crossref] [PubMed]

Davoudi, B.

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys. 22(4), 797–804 (2012).
[Crossref]

de Boer, J.

S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci. 24(3), 439–445 (2009).
[Crossref] [PubMed]

Deister, C.

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Douglas, J. F.

S. K. Kumar, G. Szamel, and J. F. Douglas, “Nature of the breakdown in the Stokes-Einstein relationship in a hard sphere fluid,” J. Chem. Phys. 124(21), 214501 (2006).
[Crossref] [PubMed]

Durian, D. J

“D. A Weitz, J. X Zhu, D. J Durian, H Gang, and D. J Pine, “Diffusing-wave spectroscopy: The technique and some applications,” Phys. Scr. T 49B, 610–621 (1993).

Durian, D. J.

J. X. Zhu, D. J. Durian, J. Müller, D. A. Weitz, and D. J. Pine, “Scaling of transient hydrodynamic interactions in concentrated suspensions,” Phys. Rev. Lett. 68(16), 2559–2562 (1992).
[Crossref] [PubMed]

Fujimoto, J. G.

Gallagher, K. A.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Gang, H

“D. A Weitz, J. X Zhu, D. J Durian, H Gang, and D. J Pine, “Diffusing-wave spectroscopy: The technique and some applications,” Phys. Scr. T 49B, 610–621 (1993).

Gang, H.

Gora, M. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Gulati, A.

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[Crossref] [PubMed]

Haavisto, S.

S. Haavisto, A. I. Koponen, and J. Salmela, “New insight into rheology and flow properties of complex fluids with Doppler optical coherence tomography,” Front Chem. 2, 27 (2014).
[Crossref] [PubMed]

Hajjarian, Z.

Z. Hajjarian and S. K. Nadkarni, “Laser speckle micro-rheology for biomechanical evaluation of breast tumors,” Proc. SPIE 9710, 9710–9717 (2016).

Z. Hajjarian and S. K. Nadkarni, “Estimation of particle size variations for laser speckle rheology of materials,” Opt. Lett. 40(5), 764–767 (2015).
[Crossref] [PubMed]

Z. Hajjarian, M. M. Tripathi, and S. K. Nadkarni, “Optical Thromboelastography to evaluate whole blood coagulation,” J. Biophotonics 8(5), 372–381 (2015).
[Crossref] [PubMed]

M. M. Tripathi, Z. Hajjarian, E. M. Van Cott, and S. K. Nadkarni, “Assessing blood coagulation status with laser speckle rheology,” Biomed. Opt. Express 5(3), 817–831 (2014).
[Crossref] [PubMed]

Z. Hajjarian and S. K. Nadkarni, “Correction of optical absorption and scattering variations in Laser Speckle Rheology measurements,” Opt. Express 22(6), 6349–6361 (2014).
[Crossref] [PubMed]

Z. Hajjarian and S. K. Nadkarni, “Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids,” PLoS One 8(5), e65014 (2013).
[Crossref] [PubMed]

Z. Hajjarian and S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012).
[Crossref] [PubMed]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[Crossref]

Halpern, E.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[Crossref] [PubMed]

Han, J.-H.

C.-Y. Lee and J.-H. Han, “Integrated spatio-spectral method for efficiently suppressing honeycomb pattern artifact in imaging fiber bundle microscopy,” Opt. Commun. 306, 67–73 (2013).
[Crossref]

Harden, J. L.

J. L. Harden and V. Viasnoff, “Recent advances in DWS-based micro-rheology,” Curr. Opin. Colloid Interface Sci. 6(5-6), 438–445 (2001).
[Crossref]

Helg, T.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[Crossref] [PubMed]

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51(18), 2101–2127 (1990).
[Crossref]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Hile, D. D.

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Houser, S. L.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[Crossref] [PubMed]

Hussain, G.

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys. 22(4), 797–804 (2012).
[Crossref]

Ikram, M.

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys. 22(4), 797–804 (2012).
[Crossref]

H. Ullah, A. Mariampillai, M. Ikram, and I. A. Vitkin, “Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood?” Laser Phys. 21(11), 1962–1971 (2011).
[Crossref]

Jaffer, F. A.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[Crossref]

Johnston-Peck, A. C.

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 040903 (2011).
[Crossref] [PubMed]

Kao, M. H.

M. H. Kao, A. G. Yodh, and D. J. Pine, “Observation of Brownian motion on the time scale of hydrodynamic interactions,” Phys. Rev. Lett. 70(2), 242–245 (1993).
[Crossref] [PubMed]

Kava, L. E.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Kennedy, B. F.

Kennedy, K. M.

Koh, W.-G.

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Koponen, A. I.

S. Haavisto, A. I. Koponen, and J. Salmela, “New insight into rheology and flow properties of complex fluids with Doppler optical coherence tomography,” Front Chem. 2, 27 (2014).
[Crossref] [PubMed]

Kozek, K. A.

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 040903 (2011).
[Crossref] [PubMed]

Kumar, S. K.

S. K. Kumar, G. Szamel, and J. F. Douglas, “Nature of the breakdown in the Stokes-Einstein relationship in a hard sphere fluid,” J. Chem. Phys. 124(21), 214501 (2006).
[Crossref] [PubMed]

Larin, K. V.

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref] [PubMed]

Latham, B.

Lauger, J.

J. Lauger and H. Stettin, “Effects of instrument and fluid inertia in oscillatory shear in rotational rheometers,” J. Rheo. 60(3), 393–406 (2016).
[Crossref]

Lee, C.-Y.

C.-Y. Lee and J.-H. Han, “Integrated spatio-spectral method for efficiently suppressing honeycomb pattern artifact in imaging fiber bundle microscopy,” Opt. Commun. 306, 67–73 (2013).
[Crossref]

Lee, R. T.

L. H. Arroyo and R. T. Lee, “Mechanisms of plaque rupture: mechanical and biologic interactions,” Cardiovasc. Res. 41(2), 369–375 (1999).
[Crossref] [PubMed]

Leong, S. W.

G. S. Soor, I. Vukin, S. W. Leong, G. Oreopoulos, and J. Butany, “Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases,” Pathology 40(4), 385–391 (2008).
[Crossref] [PubMed]

Liang, X.

Lim, C. T.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

Maret, G.

G. Maret, “Diffusing-wave spectroscopy,” Curr. Opin. Colloid Interface Sci. 2(3), 251–257 (1997).
[Crossref]

Mariampillai, A.

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys. 22(4), 797–804 (2012).
[Crossref]

H. Ullah, A. Mariampillai, M. Ikram, and I. A. Vitkin, “Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood?” Laser Phys. 21(11), 1962–1971 (2011).
[Crossref]

Mason, T. G.

T. G. Mason, “Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta 39(4), 371–378 (2000).
[Crossref]

T. G. Mason, H. Gang, and D. A. Weitz, “Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids,” J. Opt. Soc. Am. A 14(1), 139–149 (1997).
[Crossref]

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[Crossref] [PubMed]

McLaughlin, R. A.

Mellott, M. B.

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Micoulet, A.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

Mills, J. P.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

Minsky, M. S.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[Crossref] [PubMed]

Moes, C. J. M.

Motz, J. T.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[Crossref] [PubMed]

Müller, J.

J. X. Zhu, D. J. Durian, J. Müller, D. A. Weitz, and D. J. Pine, “Scaling of transient hydrodynamic interactions in concentrated suspensions,” Phys. Rev. Lett. 68(16), 2559–2562 (1992).
[Crossref] [PubMed]

Nadkarni, S. K.

Z. Hajjarian and S. K. Nadkarni, “Laser speckle micro-rheology for biomechanical evaluation of breast tumors,” Proc. SPIE 9710, 9710–9717 (2016).

Z. Hajjarian, M. M. Tripathi, and S. K. Nadkarni, “Optical Thromboelastography to evaluate whole blood coagulation,” J. Biophotonics 8(5), 372–381 (2015).
[Crossref] [PubMed]

Z. Hajjarian and S. K. Nadkarni, “Estimation of particle size variations for laser speckle rheology of materials,” Opt. Lett. 40(5), 764–767 (2015).
[Crossref] [PubMed]

M. M. Tripathi, Z. Hajjarian, E. M. Van Cott, and S. K. Nadkarni, “Assessing blood coagulation status with laser speckle rheology,” Biomed. Opt. Express 5(3), 817–831 (2014).
[Crossref] [PubMed]

Z. Hajjarian and S. K. Nadkarni, “Correction of optical absorption and scattering variations in Laser Speckle Rheology measurements,” Opt. Express 22(6), 6349–6361 (2014).
[Crossref] [PubMed]

Z. Hajjarian and S. K. Nadkarni, “Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids,” PLoS One 8(5), e65014 (2013).
[Crossref] [PubMed]

S. K. Nadkarni, “Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture,” J. Biomed. Opt. 18(12), 121507 (2013).
[Crossref] [PubMed]

Z. Hajjarian and S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012).
[Crossref] [PubMed]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[Crossref]

S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci. 24(3), 439–445 (2009).
[Crossref] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[Crossref] [PubMed]

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[Crossref] [PubMed]

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[Crossref] [PubMed]

Nadkarni, S. K. S. K.

Nägele, G.

A. Banchio, G. Nägele, and J. Bergenholtz, “Viscoelasticity and generalized Stokes–Einstein relations of colloidal dispersions,” J. Chem. Phys. 111(18), 8721–8740 (1999).
[Crossref]

Nishioka, N. S.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

O’Rourke, M.

M. O’Rourke, “Mechanical principles in arterial disease,” Hypertension 26(1), 2–9 (1995).
[Crossref] [PubMed]

Oldenburg, A. L.

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 040903 (2011).
[Crossref] [PubMed]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).
[Crossref] [PubMed]

Oreopoulos, G.

G. S. Soor, I. Vukin, S. W. Leong, G. Oreopoulos, and J. Butany, “Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases,” Pathology 40(4), 385–391 (2008).
[Crossref] [PubMed]

Pine, D. J

“D. A Weitz, J. X Zhu, D. J Durian, H Gang, and D. J Pine, “Diffusing-wave spectroscopy: The technique and some applications,” Phys. Scr. T 49B, 610–621 (1993).

Pine, D. J.

M. H. Kao, A. G. Yodh, and D. J. Pine, “Observation of Brownian motion on the time scale of hydrodynamic interactions,” Phys. Rev. Lett. 70(2), 242–245 (1993).
[Crossref] [PubMed]

J. X. Zhu, D. J. Durian, J. Müller, D. A. Weitz, and D. J. Pine, “Scaling of transient hydrodynamic interactions in concentrated suspensions,” Phys. Rev. Lett. 68(16), 2559–2562 (1992).
[Crossref] [PubMed]

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51(18), 2101–2127 (1990).
[Crossref]

D. A. Weitz, D. J. Pine, P. N. Pusey, and R. J. Tough, “Nondiffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63(16), 1747–1750 (1989).
[Crossref] [PubMed]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Pishko, M. V.

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Prahl, S. A.

Pusey, P. N.

W. van Megen and P. N. Pusey, “Dynamic light-scattering study of the glass transition in a colloidal suspension,” Phys. Rev. A 43(10), 5429–5441 (1991).
[Crossref] [PubMed]

D. A. Weitz, D. J. Pine, P. N. Pusey, and R. J. Tough, “Nondiffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63(16), 1747–1750 (1989).
[Crossref] [PubMed]

Revzin, A.

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Richardson, P. D.

P. D. Richardson, “Biomechanics of plaque rupture: progress, problems, and new frontiers,” Ann. Biomed. Eng. 30(4), 524–536 (2002).
[Crossref] [PubMed]

Rojas-Ochoa, L. F.

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051403 (2002).
[Crossref] [PubMed]

Romer, S.

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051403 (2002).
[Crossref] [PubMed]

Rosenberg, M.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Russell, R. J.

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Salmela, J.

S. Haavisto, A. I. Koponen, and J. Salmela, “New insight into rheology and flow properties of complex fluids with Doppler optical coherence tomography,” Front Chem. 2, 27 (2014).
[Crossref] [PubMed]

Sampson, D. D.

Sauk, J. S.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Saunders, C. M.

Scheffold, F.

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051403 (2002).
[Crossref] [PubMed]

Schurtenberger, P.

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051403 (2002).
[Crossref] [PubMed]

Seufferlein, T.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

Soor, G. S.

G. S. Soor, I. Vukin, S. W. Leong, G. Oreopoulos, and J. Butany, “Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases,” Pathology 40(4), 385–391 (2008).
[Crossref] [PubMed]

Southern, J. F.

Spatz, J.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

Standish, B.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[Crossref] [PubMed]

Stettin, H.

J. Lauger and H. Stettin, “Effects of instrument and fluid inertia in oscillatory shear in rotational rheometers,” J. Rheo. 60(3), 393–406 (2016).
[Crossref]

Sun, C.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[Crossref] [PubMed]

Suresh, S.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

Suter, M. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Szamel, G.

S. K. Kumar, G. Szamel, and J. F. Douglas, “Nature of the breakdown in the Stokes-Einstein relationship in a hard sphere fluid,” J. Chem. Phys. 124(21), 214501 (2006).
[Crossref] [PubMed]

Tearney, G. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[Crossref]

S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci. 24(3), 439–445 (2009).
[Crossref] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[Crossref] [PubMed]

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[Crossref] [PubMed]

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[Crossref] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[Crossref] [PubMed]

Tien, A.

Tough, R. J.

D. A. Weitz, D. J. Pine, P. N. Pusey, and R. J. Tough, “Nondiffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63(16), 1747–1750 (1989).
[Crossref] [PubMed]

Tracy, J. B.

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 040903 (2011).
[Crossref] [PubMed]

Tripathi, M. M.

Z. Hajjarian, M. M. Tripathi, and S. K. Nadkarni, “Optical Thromboelastography to evaluate whole blood coagulation,” J. Biophotonics 8(5), 372–381 (2015).
[Crossref] [PubMed]

M. M. Tripathi, Z. Hajjarian, E. M. Van Cott, and S. K. Nadkarni, “Assessing blood coagulation status with laser speckle rheology,” Biomed. Opt. Express 5(3), 817–831 (2014).
[Crossref] [PubMed]

Ullah, H.

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys. 22(4), 797–804 (2012).
[Crossref]

H. Ullah, A. Mariampillai, M. Ikram, and I. A. Vitkin, “Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood?” Laser Phys. 21(11), 1962–1971 (2011).
[Crossref]

Van Cott, E. M.

van Gemert, M. J. C.

van Marie, J.

van Megen, W.

W. van Megen and P. N. Pusey, “Dynamic light-scattering study of the glass transition in a colloidal suspension,” Phys. Rev. A 43(10), 5429–5441 (1991).
[Crossref] [PubMed]

van Staveren, H. J.

Viasnoff, V.

J. L. Harden and V. Viasnoff, “Recent advances in DWS-based micro-rheology,” Curr. Opin. Colloid Interface Sci. 6(5-6), 438–445 (2001).
[Crossref]

Vitkin, I. A.

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys. 22(4), 797–804 (2012).
[Crossref]

H. Ullah, A. Mariampillai, M. Ikram, and I. A. Vitkin, “Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood?” Laser Phys. 21(11), 1962–1971 (2011).
[Crossref]

Vukin, I.

G. S. Soor, I. Vukin, S. W. Leong, G. Oreopoulos, and J. Butany, “Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases,” Pathology 40(4), 385–391 (2008).
[Crossref] [PubMed]

Wang, J.

Wang, S.

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref] [PubMed]

Weissman, N. J.

Weitz, D. A

“D. A Weitz, J. X Zhu, D. J Durian, H Gang, and D. J Pine, “Diffusing-wave spectroscopy: The technique and some applications,” Phys. Scr. T 49B, 610–621 (1993).

Weitz, D. A.

B. R. Dasgupta and D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 021504 (2005).
[Crossref] [PubMed]

T. G. Mason, H. Gang, and D. A. Weitz, “Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids,” J. Opt. Soc. Am. A 14(1), 139–149 (1997).
[Crossref]

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[Crossref] [PubMed]

J. X. Zhu, D. J. Durian, J. Müller, D. A. Weitz, and D. J. Pine, “Scaling of transient hydrodynamic interactions in concentrated suspensions,” Phys. Rev. Lett. 68(16), 2559–2562 (1992).
[Crossref] [PubMed]

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51(18), 2101–2127 (1990).
[Crossref]

D. A. Weitz, D. J. Pine, P. N. Pusey, and R. J. Tough, “Nondiffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63(16), 1747–1750 (1989).
[Crossref] [PubMed]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Xi, J.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[Crossref]

Yadavalli, V. K.

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Yang, V. X. D.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[Crossref] [PubMed]

Yelin, D.

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[Crossref] [PubMed]

Yodh, A. G.

M. H. Kao, A. G. Yodh, and D. J. Pine, “Observation of Brownian motion on the time scale of hydrodynamic interactions,” Phys. Rev. Lett. 70(2), 242–245 (1993).
[Crossref] [PubMed]

Zhu, J. X

“D. A Weitz, J. X Zhu, D. J Durian, H Gang, and D. J Pine, “Diffusing-wave spectroscopy: The technique and some applications,” Phys. Scr. T 49B, 610–621 (1993).

Zhu, J. X.

J. X. Zhu, D. J. Durian, J. Müller, D. A. Weitz, and D. J. Pine, “Scaling of transient hydrodynamic interactions in concentrated suspensions,” Phys. Rev. Lett. 68(16), 2559–2562 (1992).
[Crossref] [PubMed]

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51(18), 2101–2127 (1990).
[Crossref]

Acta Biomater. (1)

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

P. D. Richardson, “Biomechanics of plaque rupture: progress, problems, and new frontiers,” Ann. Biomed. Eng. 30(4), 524–536 (2002).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Cardiovasc. Res. (1)

L. H. Arroyo and R. T. Lee, “Mechanisms of plaque rupture: mechanical and biologic interactions,” Cardiovasc. Res. 41(2), 369–375 (1999).
[Crossref] [PubMed]

Circulation (1)

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[Crossref] [PubMed]

Curr. Opin. Colloid Interface Sci. (2)

G. Maret, “Diffusing-wave spectroscopy,” Curr. Opin. Colloid Interface Sci. 2(3), 251–257 (1997).
[Crossref]

J. L. Harden and V. Viasnoff, “Recent advances in DWS-based micro-rheology,” Curr. Opin. Colloid Interface Sci. 6(5-6), 438–445 (2001).
[Crossref]

Front Chem. (1)

S. Haavisto, A. I. Koponen, and J. Salmela, “New insight into rheology and flow properties of complex fluids with Doppler optical coherence tomography,” Front Chem. 2, 27 (2014).
[Crossref] [PubMed]

Hypertension (1)

M. O’Rourke, “Mechanical principles in arterial disease,” Hypertension 26(1), 2–9 (1995).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt. 11(2), 021006 (2006).
[Crossref] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[Crossref] [PubMed]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[Crossref]

S. K. Nadkarni, “Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture,” J. Biomed. Opt. 18(12), 121507 (2013).
[Crossref] [PubMed]

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[Crossref] [PubMed]

J. Biophotonics (2)

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref] [PubMed]

Z. Hajjarian, M. M. Tripathi, and S. K. Nadkarni, “Optical Thromboelastography to evaluate whole blood coagulation,” J. Biophotonics 8(5), 372–381 (2015).
[Crossref] [PubMed]

J. Chem. Phys. (2)

S. K. Kumar, G. Szamel, and J. F. Douglas, “Nature of the breakdown in the Stokes-Einstein relationship in a hard sphere fluid,” J. Chem. Phys. 124(21), 214501 (2006).
[Crossref] [PubMed]

A. Banchio, G. Nägele, and J. Bergenholtz, “Viscoelasticity and generalized Stokes–Einstein relations of colloidal dispersions,” J. Chem. Phys. 111(18), 8721–8740 (1999).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. (1)

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51(18), 2101–2127 (1990).
[Crossref]

J. Rheo. (1)

J. Lauger and H. Stettin, “Effects of instrument and fluid inertia in oscillatory shear in rotational rheometers,” J. Rheo. 60(3), 393–406 (2016).
[Crossref]

Langmuir (1)

A. Revzin, R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko, “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir 17(18), 5440–5447 (2001).
[Crossref] [PubMed]

Laser Phys. (2)

H. Ullah, A. Mariampillai, M. Ikram, and I. A. Vitkin, “Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood?” Laser Phys. 21(11), 1962–1971 (2011).
[Crossref]

H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys. 22(4), 797–804 (2012).
[Crossref]

Lasers Med. Sci. (1)

S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci. 24(3), 439–445 (2009).
[Crossref] [PubMed]

Nat. Med. (1)

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

C.-Y. Lee and J.-H. Han, “Integrated spatio-spectral method for efficiently suppressing honeycomb pattern artifact in imaging fiber bundle microscopy,” Opt. Commun. 306, 67–73 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Pathology (1)

G. S. Soor, I. Vukin, S. W. Leong, G. Oreopoulos, and J. Butany, “Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases,” Pathology 40(4), 385–391 (2008).
[Crossref] [PubMed]

Phys. Rev. A (1)

W. van Megen and P. N. Pusey, “Dynamic light-scattering study of the glass transition in a colloidal suspension,” Phys. Rev. A 43(10), 5429–5441 (1991).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 040903 (2011).
[Crossref] [PubMed]

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051403 (2002).
[Crossref] [PubMed]

B. R. Dasgupta and D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 021504 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[Crossref] [PubMed]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

J. X. Zhu, D. J. Durian, J. Müller, D. A. Weitz, and D. J. Pine, “Scaling of transient hydrodynamic interactions in concentrated suspensions,” Phys. Rev. Lett. 68(16), 2559–2562 (1992).
[Crossref] [PubMed]

D. A. Weitz, D. J. Pine, P. N. Pusey, and R. J. Tough, “Nondiffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63(16), 1747–1750 (1989).
[Crossref] [PubMed]

M. H. Kao, A. G. Yodh, and D. J. Pine, “Observation of Brownian motion on the time scale of hydrodynamic interactions,” Phys. Rev. Lett. 70(2), 242–245 (1993).
[Crossref] [PubMed]

Phys. Scr. T (1)

“D. A Weitz, J. X Zhu, D. J Durian, H Gang, and D. J Pine, “Diffusing-wave spectroscopy: The technique and some applications,” Phys. Scr. T 49B, 610–621 (1993).

PLoS One (1)

Z. Hajjarian and S. K. Nadkarni, “Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids,” PLoS One 8(5), e65014 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

Z. Hajjarian and S. K. Nadkarni, “Laser speckle micro-rheology for biomechanical evaluation of breast tumors,” Proc. SPIE 9710, 9710–9717 (2016).

Rheol. Acta (1)

T. G. Mason, “Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta 39(4), 371–378 (2000).
[Crossref]

Sci. Rep. (1)

Z. Hajjarian and S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012).
[Crossref] [PubMed]

Other (9)

G. Sommer, Mechanical Properties of Healthy and Diseased Human Arteries, Monographic Series TU Graz: Computation in Engineering and Science (Verlag der Techn. Univ. Graz, 2010).

B. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (John Wiley & Sons, 2000).

S. K. Nadkarni, J. D. Toussaint, G. J. Tearney, and Z. Hajjarian, “Intracoronary laser speckle imaging (ILSI) for the mechanical characterization of coronary plaques in living swine,” presented at SPIE Photonics West San Francisco, California, United States, 21–26 January 2012.

S. K. Nadkarni, J. D. Toussaint, and Zeinab. Hajjarian, “Intravascular laser speckle imaging (ILSI): in vivo evaluation of the mechanical properties of coronary plaques in living swine,” presented at SPIE European Conference on Biomedical Optics, Munich, Germany, 22–26 May 2011.

D. Weitz and D. Pine, “Diffusing-wave spectroscopy,” in Dynamic Light Scattering., W. Brown, ed. (Oxford Univ. Press, 1993), pp.652–721.

W. W. Ong, “Laser Speckle Imaging for the characterization of cartilage,” Boston University (2010).

“Dow Corning product information Dow Corning® 184 silicone elastomer,” http://www.dowcorning.com/DataFiles/090276fe80190b08.pdf .

“Bio-Rad handcasting Polyacrylamide gels protocol 6201,” http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6201.pdf .

D. A Weitz, J. X. Zhu, D. J. Durian, and D. J. Pine, “Principles and applications of diffusing-wave spectroscopy,” in Structure Dynamics of Strongly Interacting Colloids Supramolecular Aggregates in Solution, S.-H. Chen, J. S. Huang, and P. Tartaglia, eds. (Springer, 1992) pp. 731–748.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Omni-directional LSR catheter assembly. The design of the distal optics is optimized for a lumen of 3 mm diameter (size of a human coronary artery). (a) The top view of the 4-faceted and 6-faceted MFPMs. (b) The schematic diagram of the omni-directional LSR catheter, pull-back assembly and console hardware. Laser light (633 nm, 22.5mW), coupled into a single mode fiber (SMF) passes through a MEMS switch, and is split to 4 illumination fibers. The speckle patterns obtained from the lumen wall are transmitted through an optical fiber bundle (OFB) and are imaged on the CMOS camera. (c) The computer aided drawing shows the catheter distal optics assembly which incorporates single mode fibers (SMFs) for illumination, a circular polarizer (CP), a multi-faceted pyramidal mirror (MFPM), a gradient-index (GRIN) lens, and an optical fiber bundle (OFB). The distal assembly is housed within a protective polycarbonate (PC) tube and a customized drive shaft (DS). (d) The photograph of the distal optic assembly. The catheter diameter is 1.2mm. (e) Representative speckle images obtained from 4 catheter channels (mirror facets), with two opposite channels acquired simultaneously.

Fig. 2
Fig. 2

(a) CAD design and (b) photograph of 8-cell phantom with varying mechanical properties and identical optical properties. The dimension of each cell is 14x7x7mm (Width × Length × Depth). The blue, green and red blocks represent the PEG gel (|G*|~18 Pa), PA gel (|G*|~77 Pa) and PDMS gel (|G*|~9.5 kPa), respectively. G* values are reported at a rheometer oscillation frequency of 1Hz.

Fig. 3
Fig. 3

(a) Speckle intensity autocorrelation curves of the PEG gel, the PA gel and the PDMS gel, obtained using the intraluminal LSR catheter. The softest PEG gel undergoes the most rapid speckle decorrelation compared to the stiffer PA and PDMS gels. The calculated MSDs of the PEG, PA and PDMS gel are plotted in the inset. The MSD of the PEG gel grows rapidly and to a much larger extent than the PA and PDMS gels. (b) Frequency-dependent viscoelastic moduli, |G*(ω)|, extracted from g2(t) curves and MSD curves in (a). The viscoelastic moduli for the 3 gel materials measured using a conventional rheometer are shown as dashed curves. Good agreement rheometer can be find between |G*(ω)| measured via LSR and those measured via conventional mechanical over a frequency range of 0.1 – 10Hz, with the best correspondence at ~1 Hz.

Fig. 4
Fig. 4

(a) The four reconstructed 2D maps of |G*| at 1 Hz for the 4 channels that image the top (CH1), bottom (CH3), left (CH2) and right (CH4) gel compartments of phantom. The arrow shows the catheter pull-back direction over a ~30 mm length of the phantom lumen. The color from black to red indicates |G*| values measured via LSR ranging from 1 Pa to 10 kPa. Even minute inhomogeneities in mechanical properties within each gel compartment can be detected, demonstrating the sensitivity of LSR for micromechanical mapping using the omni-directional catheter. (b) The longitudinal and (c) the cross-sectional OCT images (grayscale) fused with LSR |G*| maps (colored). The green and blue arrow lines indicate the longitudinal positions of the cross-sectional images in (c). The LSR |G*| maps co-registered with the OCT image sections show distinct differences in mechanical properties in accordance with the placement of the different gel compartments. (d) The cutaway views of the 3D volume rendered OCT data with corresponding |G*| maps overlaid on the luminal surface. The OCT images for the gels in different cells are indistinguishable given similarities in optical properties, while strong mechanical contrast between the |G*| maps for different gels are observed, demonstrating the capability of LSR for mechanical characterization.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g 2 (t)= <I( t 0 )I( t 0 +t) > pixel <I ( t 0 ) 2 > pixel <I ( t 0 +t) 2 > pixel t 0
g 2 (t)=exp( 2γ k 0 2 n 2 Δ r 2 (t) + 3 μ a μ s )
G * ( ω )= K b T πa Δ r 2 (1/ω) Γ(1+α( ω ))

Metrics