Abstract

A novel straightforward, accessible and efficient approach is presented for performing hyperspectral time-domain diffuse optical spectroscopy to determine the optical properties of samples accurately using geometry specific models. To allow bulk parameter recovery from measured spectra, a set of libraries based on a numerical model of the domain being investigated is developed as opposed to the conventional approach of using an analytical semi-infinite slab approximation, which is known and shown to introduce boundary effects. Results demonstrate that the method improves the accuracy of derived spectrally varying optical properties over the use of the semi-infinite approximation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved diffuse optical spectroscopy of small tissue samples

Paola Taroni, Daniela Comelli, Andrea Farina, Antonio Pifferi, and Alwin Kienle
Opt. Express 15(6) 3301-3311 (2007)

Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements

Steen J. Madsen, Brian C. Wilson, Michael S. Patterson, Young D. Park, Steven L. Jacques, and Yaron Hefetz
Appl. Opt. 31(18) 3509-3517 (1992)

Geometrically complex 3D-printed phantoms for diffuse optical imaging

Laura A. Dempsey, Melissa Persad, Samuel Powell, Danial Chitnis, and Jeremy C. Hebden
Biomed. Opt. Express 8(3) 1754-1762 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
    [Crossref] [PubMed]
  2. L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
    [Crossref] [PubMed]
  3. R. Kitamura, T. Inagaki, and S. Tsuchikawa, “Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy,” Opt. Express 24, 569–574 (2016).
  4. A. Farina, I. Bargigia, E.-R. Janeček, Z. Walsh, C. D’Andrea, A. Nevin, M. Ramage, O. A. Scherman, and A. Pifferi, “Nondestructive optical detection of monomer uptake in wood polymer composites,” Opt. Lett. 39(2), 228–231 (2014).
    [Crossref] [PubMed]
  5. S. Tsuchikawa and M. Schwanninger, “A review of recent near infrared research for wood and paper (Part 2),” Appl. Spectrosc. Rev. 48(7), 560–587 (2013).
    [Crossref]
  6. R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, and C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650-1000 nm,” Appl. Opt. 40(4), 538–543 (2001).
    [Crossref] [PubMed]
  7. C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77(4), 1055–1059 (2005).
    [Crossref] [PubMed]
  8. C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006).
    [Crossref] [PubMed]
  9. G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 091307 (2016).
    [Crossref] [PubMed]
  10. P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007).
    [Crossref] [PubMed]
  11. P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express 15(6), 3301–3311 (2007).
    [Crossref] [PubMed]
  12. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST : Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25, 711–732 (2009).
  13. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
    [Crossref] [PubMed]
  14. A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
    [Crossref] [PubMed]
  15. E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
    [Crossref] [PubMed]
  16. A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-Time Method for Fitting Time-Resolved Reflectance and Transmittance Measurements with a Monte Carlo Model,” Appl. Opt. 37(13), 2774–2780 (1998).
    [Crossref] [PubMed]
  17. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
    [Crossref] [PubMed]
  18. W. F. Cheong, S. A. S. Prahl, and A. J. A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [Crossref]
  19. Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
    [Crossref] [PubMed]
  20. A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15(22), 14482–14487 (2007).
    [Crossref] [PubMed]
  21. I. Bargigia, A. Tosi, A. Bahgat Shehata, A. Della Frera, A. Farina, A. Bassi, P. Taroni, A. Dalla Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode,” Appl. Spectrosc. 66(8), 944–950 (2012).
    [Crossref] [PubMed]
  22. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 1988).
  23. M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18(8), 086007 (2013).
    [Crossref] [PubMed]

2016 (2)

R. Kitamura, T. Inagaki, and S. Tsuchikawa, “Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy,” Opt. Express 24, 569–574 (2016).

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 091307 (2016).
[Crossref] [PubMed]

2014 (2)

2013 (2)

S. Tsuchikawa and M. Schwanninger, “A review of recent near infrared research for wood and paper (Part 2),” Appl. Spectrosc. Rev. 48(7), 560–587 (2013).
[Crossref]

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18(8), 086007 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

2010 (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

2009 (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST : Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25, 711–732 (2009).

2008 (1)

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[Crossref] [PubMed]

2007 (4)

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[Crossref] [PubMed]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007).
[Crossref] [PubMed]

P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express 15(6), 3301–3311 (2007).
[Crossref] [PubMed]

A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15(22), 14482–14487 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (1)

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77(4), 1055–1059 (2005).
[Crossref] [PubMed]

2001 (1)

1998 (1)

1996 (1)

A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
[Crossref] [PubMed]

1990 (1)

W. F. Cheong, S. A. S. Prahl, and A. J. A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Abrahamsson, C.

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77(4), 1055–1059 (2005).
[Crossref] [PubMed]

Alerstam, E.

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[Crossref] [PubMed]

Andersson-Engels, S.

Bahgat Shehata, A.

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Bale, G.

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 091307 (2016).
[Crossref] [PubMed]

Bargigia, I.

Baribeau, F.

Bassi, A.

Bénazech-Lavoué, M.

Bérubé-Lauzière, Y.

Bodnar, O.

Botwicz, M.

Bouchard, J.-P.

Carpenter, C. M.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST : Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25, 711–732 (2009).

Cheong, W. F.

W. F. Cheong, S. A. S. Prahl, and A. J. A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Comelli, D.

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007).
[Crossref] [PubMed]

P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express 15(6), 3301–3311 (2007).
[Crossref] [PubMed]

Contini, D.

Coquoz, O.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[Crossref] [PubMed]

Cubeddu, R.

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

I. Bargigia, A. Tosi, A. Bahgat Shehata, A. Della Frera, A. Farina, A. Bassi, P. Taroni, A. Dalla Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode,” Appl. Spectrosc. 66(8), 944–950 (2012).
[Crossref] [PubMed]

A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15(22), 14482–14487 (2007).
[Crossref] [PubMed]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007).
[Crossref] [PubMed]

C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006).
[Crossref] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, and C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650-1000 nm,” Appl. Opt. 40(4), 538–543 (2001).
[Crossref] [PubMed]

D’Andrea, C.

Dalla Mora, A.

Davis, S. C.

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18(8), 086007 (2013).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST : Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25, 711–732 (2009).

Dehghani, H.

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18(8), 086007 (2013).
[Crossref] [PubMed]

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST : Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25, 711–732 (2009).

Della Frera, A.

Di Ninni, P.

Dover, C.

Durduran, T.

Eames, M. E.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST : Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25, 711–732 (2009).

Elster, C.

Elwell, C. E.

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 091307 (2016).
[Crossref] [PubMed]

Farina, A.

A. Farina, I. Bargigia, E.-R. Janeček, Z. Walsh, C. D’Andrea, A. Nevin, M. Ramage, O. A. Scherman, and A. Pifferi, “Nondestructive optical detection of monomer uptake in wood polymer composites,” Opt. Lett. 39(2), 228–231 (2014).
[Crossref] [PubMed]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

I. Bargigia, A. Tosi, A. Bahgat Shehata, A. Della Frera, A. Farina, A. Bassi, P. Taroni, A. Dalla Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode,” Appl. Spectrosc. 66(8), 944–950 (2012).
[Crossref] [PubMed]

A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15(22), 14482–14487 (2007).
[Crossref] [PubMed]

P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express 15(6), 3301–3311 (2007).
[Crossref] [PubMed]

Folestad, S.

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77(4), 1055–1059 (2005).
[Crossref] [PubMed]

Foschum, F.

Gallant, P.

Ghadyani, H.

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18(8), 086007 (2013).
[Crossref] [PubMed]

Giusto, A.

Ho, H.-C.

Holt, R. W.

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

Inagaki, T.

R. Kitamura, T. Inagaki, and S. Tsuchikawa, “Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy,” Opt. Express 24, 569–574 (2016).

Janecek, E.-R.

Jermyn, M.

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18(8), 086007 (2013).
[Crossref] [PubMed]

Johansson, J.

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77(4), 1055–1059 (2005).
[Crossref] [PubMed]

Johnson, D.

Kacprzak, M.

Khoptyar, D.

Kienle, A.

Kitamura, R.

R. Kitamura, T. Inagaki, and S. Tsuchikawa, “Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy,” Opt. Express 24, 569–574 (2016).

Klauenberg, K.

Kuo, C.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[Crossref] [PubMed]

Leblond, F.

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

Leclair, S.

Lesage, F.

Liebert, A.

Martelli, F.

Mastanduno, M. A.

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18(8), 086007 (2013).
[Crossref] [PubMed]

Mazurenka, M.

Mermut, O.

Milej, D.

Nevin, A.

Noiseux, I.

Palmer, G. M.

Patterson, M. S.

A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
[Crossref] [PubMed]

Paulsen, K. D.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST : Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25, 711–732 (2009).

Pifferi, A.

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

A. Farina, I. Bargigia, E.-R. Janeček, Z. Walsh, C. D’Andrea, A. Nevin, M. Ramage, O. A. Scherman, and A. Pifferi, “Nondestructive optical detection of monomer uptake in wood polymer composites,” Opt. Lett. 39(2), 228–231 (2014).
[Crossref] [PubMed]

I. Bargigia, A. Tosi, A. Bahgat Shehata, A. Della Frera, A. Farina, A. Bassi, P. Taroni, A. Dalla Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode,” Appl. Spectrosc. 66(8), 944–950 (2012).
[Crossref] [PubMed]

A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15(22), 14482–14487 (2007).
[Crossref] [PubMed]

P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express 15(6), 3301–3311 (2007).
[Crossref] [PubMed]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007).
[Crossref] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, and C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650-1000 nm,” Appl. Opt. 40(4), 538–543 (2001).
[Crossref] [PubMed]

A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-Time Method for Fitting Time-Resolved Reflectance and Transmittance Measurements with a Monte Carlo Model,” Appl. Opt. 37(13), 2774–2780 (1998).
[Crossref] [PubMed]

Pogue, B. W.

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18(8), 086007 (2013).
[Crossref] [PubMed]

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST : Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25, 711–732 (2009).

Prahl, S. A. S.

W. F. Cheong, S. A. S. Prahl, and A. J. A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Ramage, M.

Ramanujam, N.

Rice, B. W.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[Crossref] [PubMed]

Ruiz-Altisent, M.

Sawosz, P.

Scherman, O. A.

Schwanninger, M.

S. Tsuchikawa and M. Schwanninger, “A review of recent near infrared research for wood and paper (Part 2),” Appl. Spectrosc. Rev. 48(7), 560–587 (2013).
[Crossref]

Spinelli, L.

Srinivasan, S.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST : Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25, 711–732 (2009).

Subash, A. A.

Svanberg, S.

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77(4), 1055–1059 (2005).
[Crossref] [PubMed]

Svensson, T.

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[Crossref] [PubMed]

Swartling, J.

Tachtsidis, I.

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 091307 (2016).
[Crossref] [PubMed]

Taroni, P.

Tichauer, K. M.

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

Torricelli, A.

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007).
[Crossref] [PubMed]

C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006).
[Crossref] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, and C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650-1000 nm,” Appl. Opt. 40(4), 538–543 (2001).
[Crossref] [PubMed]

Tosi, A.

Troy, T. L.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[Crossref] [PubMed]

Tsuchikawa, S.

R. Kitamura, T. Inagaki, and S. Tsuchikawa, “Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy,” Opt. Express 24, 569–574 (2016).

S. Tsuchikawa and M. Schwanninger, “A review of recent near infrared research for wood and paper (Part 2),” Appl. Spectrosc. Rev. 48(7), 560–587 (2013).
[Crossref]

Turner, W.

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18(8), 086007 (2013).
[Crossref] [PubMed]

Valentini, G.

Valero, C.

Vishwanath, K.

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

Wabnitz, H.

Walsh, Z.

Weigel, U.

Welch, A. J. A.

W. F. Cheong, S. A. S. Prahl, and A. J. A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Xu, H.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[Crossref] [PubMed]

Yalavarthy, P. K.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST : Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25, 711–732 (2009).

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Zaccanti, G.

Zappa, F.

Zhu, Q.

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

Zolek, N.

Anal. Chem. (1)

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77(4), 1055–1059 (2005).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

S. Tsuchikawa and M. Schwanninger, “A review of recent near infrared research for wood and paper (Part 2),” Appl. Spectrosc. Rev. 48(7), 560–587 (2013).
[Crossref]

Biomed. Opt. Express (1)

Commun. Numer. Meth. Engng. (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST : Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25, 711–732 (2009).

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. S. Prahl, and A. J. A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

J. Biomed. Opt. (5)

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[Crossref] [PubMed]

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 091307 (2016).
[Crossref] [PubMed]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007).
[Crossref] [PubMed]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[Crossref] [PubMed]

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18(8), 086007 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Med. Biol. (2)

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56(23), 7419–7434 (2011).
[Crossref] [PubMed]

A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Other (1)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Illustration of boundary effects for a circular 2D model, when modelled as a semi-infinite slab.
Fig. 2
Fig. 2 Quantitative example of the impact of boundary effects on continuous wave measurements between a circular and semi-infinite model (a) as a function of μa and (b) as a function of μs', for a baseline value of μs' = 2mm−1 and μa = 0.01mm−1.
Fig. 3
Fig. 3 Diagrams of tissue phantoms. (a) block phantom, (b) cylindrical phantom, (c) mouse-shaped phantom. The single studied transmittance-mode source-detector configuration is shown in each case along with the reflectance-mode configuration investigated for the mouse phantom only (marked “R”).
Fig. 4
Fig. 4 TR-DOS system schematic. Supercontinuum light is spectrally dispersed by a Pellin-Broca prism and then focused with an achromatic lens (f = 150 mm) on the tip of a graded-index optical fiber (50 μm core diameter). The fiber core acts as a spatial filter selecting a bandwidth of less than 10 nm. Transmitted light from the sample is collected by a step-index fiber (1 mm core diameter) and coupled to a Hybrid PMT connected to a Time-Correlated Single Photon Counting (TCSPC) board.
Fig. 5
Fig. 5 Simulation results. (a-c), fitted absorption coefficient. (d-f), fitted reduced scattering coefficient. Results are shown for each phantom studied, for the geometry-specific and the semi-infinite slab based fitting approaches, along with the true values used to generate the forward data.
Fig. 6
Fig. 6 Fitted absorption and scattering for the physical block and cylinder phantoms. Plots show nominal values and those obtained using the standard semi-infinite approximation and presented geometry-specific method as indicated in the legends.
Fig. 7
Fig. 7 Fitted absorption and scattering for the physical mouse-shaped phantom in transmittance and reflectance configurations (R = reflectance mode, source-detector distance of 10mm). Plots show nominal values and those obtained using the standard semi-infinite approximation and presented geometry-specific method, with three additional validation data sets, as indicated in the legends. The validation data sets are three repeats of standard semi-infinite approximation based reflectance-mode measurements with a very short (5mm) source-detector separation (i.e. with minimal boundary effects).

Metrics