Abstract

A miniature, directional fibre-optic acoustic source is presented that employs geometrical focussing to generate a nearly-collimated acoustic pencil beam. When paired with a fibre-optic acoustic detector, an all-optical ultrasound probe with an outer diameter of 2.5 mm is obtained that acquires a pulse-echo image line at each probe position without the need for image reconstruction. B-mode images can be acquired by translating the probe and concatenating the image lines, and artefacts resulting from probe positioning uncertainty are shown to be significantly lower than those observed for conventional synthetic aperture scanning of a non-directional acoustic source. The high image quality obtained for excised vascular tissue suggests that the all-optical ultrasound probe is ideally suited for in vivo, interventional applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Video-rate all-optical ultrasound imaging

Erwin J. Alles, Sacha Noimark, Efthymios Maneas, Edward Z. Zhang, Ivan P. Parkin, Paul C. Beard, and Adrien E. Desjardins
Biomed. Opt. Express 9(8) 3481-3494 (2018)

Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging

Richard J. Colchester, Edward Z. Zhang, Charles A. Mosse, Paul C. Beard, Ioannis Papakonstantinou, and Adrien E. Desjardins
Biomed. Opt. Express 6(4) 1502-1511 (2015)

Impact of device geometry on the imaging characteristics of an intravascular photoacoustic catheter

Min Wu, Krista Jansen, Geert Springeling, Antonius F. W. van der Steen, and Gijs van Soest
Appl. Opt. 53(34) 8131-8139 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Hou, J.-S. Kim, S.-W. Huang, S. J. Ashkenazi, L. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(8), 1867–1877 (2008).
    [Crossref]
  2. Y. Hou, S. Ashkenazi, S.-W. Huang, and M. O’Donnell, “An integrated optoacoustic transducer combining etalon and black PDMS structures,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(12), 2719–2725 (2008).
    [Crossref]
  3. E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” J. Sensors 2010, 917314 (2010).
    [Crossref]
  4. C. Sheaff and S. Ashkenazi, “An all-optical thin-film high-frequency ultrasound transducer,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2011), pp. 1944–1947.
  5. B.-Y. Hsieh, S.-L. Chen, T. Ling, L.J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
    [Crossref] [PubMed]
  6. C. Sheaff and S. Ashkenazi, “Polyimide-etalon all-optical ultrasound transducer for high frequency applications,” Proc. SPIE 8943, 894334M (2014).
  7. R.J. Colchester, E.Z. Zhang, C.A. Mosse, P.C. Beard, I. Papakonstantinou, and A.E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
    [Crossref] [PubMed]
  8. P.C. Beard, “Biomedical photoacoustic imaging,” Interface focus 1(4), 602–631 (2011).
    [Crossref]
  9. B. Cox, E. Zhang, J. Laufer, and P. Beard, “Fabry-Pérot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation,” in Journal of Physics: Conference Series, volume 1 (IOP Publishing, 2004), pp. 32–37.
  10. E.Z. Zhang and P.C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” Proc. SPIE 9323, 932311 (2015).
    [Crossref]
  11. S. Leinders, W. Westerveld, J. Pozo, P. van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
    [Crossref] [PubMed]
  12. H.W. Baac, J.G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A.J. Hart, Z. Xu, E. Yoon, and L.J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
    [Crossref] [PubMed]
  13. R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt, I.P. Parkin, B.E. Treeby, I. Papakonstantinou, and A.E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
    [Crossref]
  14. S. Noimark, R.J. Colchester, B.J. Blackburn, E.Z. Zhang, E.J. Alles, S. Ourselin, P.C. Beard, I. Papakonstantinou, I.P. Parkin, and A.E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Appl. Funct. Mater. (to be published).
  15. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref] [PubMed]
  16. X. Zeng and R.J. McGough, “Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach,” J. Acoust. Soc. Am. 125(5), 2967–2977 (2009).
    [Crossref] [PubMed]
  17. M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 42(3), 429–442 (1995).
    [Crossref]
  18. RJ McGough, “FOCUS: Fast Object-Oriented C++ Ultrasound Simulator,” http://www.egr.msu.edu/~fultras-web/ .
  19. J.T. Fokkema and P.M. van den Berg, Seismic Applications of Acoustic Reciprocity (Elsevier, 1993).
  20. B.J. Manning, K. Ivancev, and P.L. Harris, “In situ fenestration in the aortic arch,” J. Vasc. Surg. 52(2), 491–494 (2010).
    [Crossref]
  21. S.H. Contreras Ortiz, T. Chiu, and M.D. Fox, “Ultrasound image enhancement: A review,” Biomed. Signal Process. Contr. 7(5), 419–428 (2012).
    [Crossref]
  22. H. Gomersall, D. Hodgson, R. Prager, N. Kingsbury, G. Treece, and A. Gee, “Efficient implementation of spatially-varying 3-d ultrasound deconvolution,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 58(1), 234–238 (2011).
    [Crossref]
  23. F. Kral, E.J. Puschban, H. Riechelmann, and W. Freysinger, “Comparison of optical and electromagnetic tracking for navigated lateral skull base surgery,” Int. J. Med. Robot. 9(2), 247–252 (2013).
    [Crossref] [PubMed]
  24. E. Lugez, H. Sadjadi, D.R. Pichora, R.E. Ellis, S.G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. Comput. Assist. Radiol. Surg. 10(3), 253–262 (2015).
    [Crossref]
  25. E.J. Alles, R.J. Colchester, and A.E. Desjardins, “Adaptive light modulation for improved resolution and efficiency in all-optical pulse-echo ultrasound,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 63(1), 83–90 (2016).
    [Crossref]
  26. J.-y. Lu, T.K. Song, R.R. Kinnick, and J.F. Greenleaf, “In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams,” IEEE Trans. Med. Imag. 12(4), 819–829 (1993).
    [Crossref]
  27. A. Nikoozadeh, O. Oralkan, M. Gencel, J.W. Choe, D.N. Stephens, A. De La Rama, P. Chen, F. Lin, A. Dentinger, and D. Wildes, “Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2010), pp. 770–773.
  28. VisualSonics, “Vevo 770 System,” http://www.visualsonics.com/products/vevo-770 .

2016 (1)

E.J. Alles, R.J. Colchester, and A.E. Desjardins, “Adaptive light modulation for improved resolution and efficiency in all-optical pulse-echo ultrasound,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 63(1), 83–90 (2016).
[Crossref]

2015 (4)

E. Lugez, H. Sadjadi, D.R. Pichora, R.E. Ellis, S.G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. Comput. Assist. Radiol. Surg. 10(3), 253–262 (2015).
[Crossref]

R.J. Colchester, E.Z. Zhang, C.A. Mosse, P.C. Beard, I. Papakonstantinou, and A.E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[Crossref] [PubMed]

E.Z. Zhang and P.C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” Proc. SPIE 9323, 932311 (2015).
[Crossref]

S. Leinders, W. Westerveld, J. Pozo, P. van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

2014 (3)

B.-Y. Hsieh, S.-L. Chen, T. Ling, L.J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[Crossref] [PubMed]

C. Sheaff and S. Ashkenazi, “Polyimide-etalon all-optical ultrasound transducer for high frequency applications,” Proc. SPIE 8943, 894334M (2014).

R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt, I.P. Parkin, B.E. Treeby, I. Papakonstantinou, and A.E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

2013 (1)

F. Kral, E.J. Puschban, H. Riechelmann, and W. Freysinger, “Comparison of optical and electromagnetic tracking for navigated lateral skull base surgery,” Int. J. Med. Robot. 9(2), 247–252 (2013).
[Crossref] [PubMed]

2012 (2)

S.H. Contreras Ortiz, T. Chiu, and M.D. Fox, “Ultrasound image enhancement: A review,” Biomed. Signal Process. Contr. 7(5), 419–428 (2012).
[Crossref]

H.W. Baac, J.G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A.J. Hart, Z. Xu, E. Yoon, and L.J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

2011 (2)

P.C. Beard, “Biomedical photoacoustic imaging,” Interface focus 1(4), 602–631 (2011).
[Crossref]

H. Gomersall, D. Hodgson, R. Prager, N. Kingsbury, G. Treece, and A. Gee, “Efficient implementation of spatially-varying 3-d ultrasound deconvolution,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 58(1), 234–238 (2011).
[Crossref]

2010 (2)

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” J. Sensors 2010, 917314 (2010).
[Crossref]

B.J. Manning, K. Ivancev, and P.L. Harris, “In situ fenestration in the aortic arch,” J. Vasc. Surg. 52(2), 491–494 (2010).
[Crossref]

2009 (1)

X. Zeng and R.J. McGough, “Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach,” J. Acoust. Soc. Am. 125(5), 2967–2977 (2009).
[Crossref] [PubMed]

2008 (3)

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

Y. Hou, J.-S. Kim, S.-W. Huang, S. J. Ashkenazi, L. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(8), 1867–1877 (2008).
[Crossref]

Y. Hou, S. Ashkenazi, S.-W. Huang, and M. O’Donnell, “An integrated optoacoustic transducer combining etalon and black PDMS structures,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(12), 2719–2725 (2008).
[Crossref]

1995 (1)

M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 42(3), 429–442 (1995).
[Crossref]

1993 (1)

J.-y. Lu, T.K. Song, R.R. Kinnick, and J.F. Greenleaf, “In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams,” IEEE Trans. Med. Imag. 12(4), 819–829 (1993).
[Crossref]

Akl, S.G.

E. Lugez, H. Sadjadi, D.R. Pichora, R.E. Ellis, S.G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. Comput. Assist. Radiol. Surg. 10(3), 253–262 (2015).
[Crossref]

Alles, E.J.

E.J. Alles, R.J. Colchester, and A.E. Desjardins, “Adaptive light modulation for improved resolution and efficiency in all-optical pulse-echo ultrasound,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 63(1), 83–90 (2016).
[Crossref]

S. Noimark, R.J. Colchester, B.J. Blackburn, E.Z. Zhang, E.J. Alles, S. Ourselin, P.C. Beard, I. Papakonstantinou, I.P. Parkin, and A.E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Appl. Funct. Mater. (to be published).

Ashkenazi, S.

C. Sheaff and S. Ashkenazi, “Polyimide-etalon all-optical ultrasound transducer for high frequency applications,” Proc. SPIE 8943, 894334M (2014).

Y. Hou, S. Ashkenazi, S.-W. Huang, and M. O’Donnell, “An integrated optoacoustic transducer combining etalon and black PDMS structures,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(12), 2719–2725 (2008).
[Crossref]

C. Sheaff and S. Ashkenazi, “An all-optical thin-film high-frequency ultrasound transducer,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2011), pp. 1944–1947.

Ashkenazi, S. J.

Y. Hou, J.-S. Kim, S.-W. Huang, S. J. Ashkenazi, L. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(8), 1867–1877 (2008).
[Crossref]

Baac, H.W.

H.W. Baac, J.G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A.J. Hart, Z. Xu, E. Yoon, and L.J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Bear, J.C.

R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt, I.P. Parkin, B.E. Treeby, I. Papakonstantinou, and A.E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Beard, P.

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

B. Cox, E. Zhang, J. Laufer, and P. Beard, “Fabry-Pérot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation,” in Journal of Physics: Conference Series, volume 1 (IOP Publishing, 2004), pp. 32–37.

Beard, P.C.

E.Z. Zhang and P.C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” Proc. SPIE 9323, 932311 (2015).
[Crossref]

R.J. Colchester, E.Z. Zhang, C.A. Mosse, P.C. Beard, I. Papakonstantinou, and A.E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[Crossref] [PubMed]

P.C. Beard, “Biomedical photoacoustic imaging,” Interface focus 1(4), 602–631 (2011).
[Crossref]

S. Noimark, R.J. Colchester, B.J. Blackburn, E.Z. Zhang, E.J. Alles, S. Ourselin, P.C. Beard, I. Papakonstantinou, I.P. Parkin, and A.E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Appl. Funct. Mater. (to be published).

Belsito, L.

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” J. Sensors 2010, 917314 (2010).
[Crossref]

Bhachu, D.S.

R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt, I.P. Parkin, B.E. Treeby, I. Papakonstantinou, and A.E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Biagi, E.

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” J. Sensors 2010, 917314 (2010).
[Crossref]

Blackburn, B.J.

S. Noimark, R.J. Colchester, B.J. Blackburn, E.Z. Zhang, E.J. Alles, S. Ourselin, P.C. Beard, I. Papakonstantinou, I.P. Parkin, and A.E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Appl. Funct. Mater. (to be published).

Carmalt, C.J.

R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt, I.P. Parkin, B.E. Treeby, I. Papakonstantinou, and A.E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Cerbai, S.

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” J. Sensors 2010, 917314 (2010).
[Crossref]

Chen, P.

A. Nikoozadeh, O. Oralkan, M. Gencel, J.W. Choe, D.N. Stephens, A. De La Rama, P. Chen, F. Lin, A. Dentinger, and D. Wildes, “Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2010), pp. 770–773.

Chen, S.-L.

B.-Y. Hsieh, S.-L. Chen, T. Ling, L.J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[Crossref] [PubMed]

Chen, Y.-C.

H.W. Baac, J.G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A.J. Hart, Z. Xu, E. Yoon, and L.J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Chiu, T.

S.H. Contreras Ortiz, T. Chiu, and M.D. Fox, “Ultrasound image enhancement: A review,” Biomed. Signal Process. Contr. 7(5), 419–428 (2012).
[Crossref]

Choe, J.W.

A. Nikoozadeh, O. Oralkan, M. Gencel, J.W. Choe, D.N. Stephens, A. De La Rama, P. Chen, F. Lin, A. Dentinger, and D. Wildes, “Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2010), pp. 770–773.

Colchester, R.J.

E.J. Alles, R.J. Colchester, and A.E. Desjardins, “Adaptive light modulation for improved resolution and efficiency in all-optical pulse-echo ultrasound,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 63(1), 83–90 (2016).
[Crossref]

R.J. Colchester, E.Z. Zhang, C.A. Mosse, P.C. Beard, I. Papakonstantinou, and A.E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[Crossref] [PubMed]

R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt, I.P. Parkin, B.E. Treeby, I. Papakonstantinou, and A.E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

S. Noimark, R.J. Colchester, B.J. Blackburn, E.Z. Zhang, E.J. Alles, S. Ourselin, P.C. Beard, I. Papakonstantinou, I.P. Parkin, and A.E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Appl. Funct. Mater. (to be published).

Contreras Ortiz, S.H.

S.H. Contreras Ortiz, T. Chiu, and M.D. Fox, “Ultrasound image enhancement: A review,” Biomed. Signal Process. Contr. 7(5), 419–428 (2012).
[Crossref]

Cox, B.

B. Cox, E. Zhang, J. Laufer, and P. Beard, “Fabry-Pérot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation,” in Journal of Physics: Conference Series, volume 1 (IOP Publishing, 2004), pp. 32–37.

de Jong, N.

S. Leinders, W. Westerveld, J. Pozo, P. van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

De La Rama, A.

A. Nikoozadeh, O. Oralkan, M. Gencel, J.W. Choe, D.N. Stephens, A. De La Rama, P. Chen, F. Lin, A. Dentinger, and D. Wildes, “Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2010), pp. 770–773.

Dentinger, A.

A. Nikoozadeh, O. Oralkan, M. Gencel, J.W. Choe, D.N. Stephens, A. De La Rama, P. Chen, F. Lin, A. Dentinger, and D. Wildes, “Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2010), pp. 770–773.

Desjardins, A.E.

E.J. Alles, R.J. Colchester, and A.E. Desjardins, “Adaptive light modulation for improved resolution and efficiency in all-optical pulse-echo ultrasound,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 63(1), 83–90 (2016).
[Crossref]

R.J. Colchester, E.Z. Zhang, C.A. Mosse, P.C. Beard, I. Papakonstantinou, and A.E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[Crossref] [PubMed]

R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt, I.P. Parkin, B.E. Treeby, I. Papakonstantinou, and A.E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

S. Noimark, R.J. Colchester, B.J. Blackburn, E.Z. Zhang, E.J. Alles, S. Ourselin, P.C. Beard, I. Papakonstantinou, I.P. Parkin, and A.E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Appl. Funct. Mater. (to be published).

Ellis, R.E.

E. Lugez, H. Sadjadi, D.R. Pichora, R.E. Ellis, S.G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. Comput. Assist. Radiol. Surg. 10(3), 253–262 (2015).
[Crossref]

Fichtinger, G.

E. Lugez, H. Sadjadi, D.R. Pichora, R.E. Ellis, S.G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. Comput. Assist. Radiol. Surg. 10(3), 253–262 (2015).
[Crossref]

Fokkema, J.T.

J.T. Fokkema and P.M. van den Berg, Seismic Applications of Acoustic Reciprocity (Elsevier, 1993).

Fox, M.D.

S.H. Contreras Ortiz, T. Chiu, and M.D. Fox, “Ultrasound image enhancement: A review,” Biomed. Signal Process. Contr. 7(5), 419–428 (2012).
[Crossref]

Freysinger, W.

F. Kral, E.J. Puschban, H. Riechelmann, and W. Freysinger, “Comparison of optical and electromagnetic tracking for navigated lateral skull base surgery,” Int. J. Med. Robot. 9(2), 247–252 (2013).
[Crossref] [PubMed]

Gee, A.

H. Gomersall, D. Hodgson, R. Prager, N. Kingsbury, G. Treece, and A. Gee, “Efficient implementation of spatially-varying 3-d ultrasound deconvolution,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 58(1), 234–238 (2011).
[Crossref]

Gencel, M.

A. Nikoozadeh, O. Oralkan, M. Gencel, J.W. Choe, D.N. Stephens, A. De La Rama, P. Chen, F. Lin, A. Dentinger, and D. Wildes, “Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2010), pp. 770–773.

Gomersall, H.

H. Gomersall, D. Hodgson, R. Prager, N. Kingsbury, G. Treece, and A. Gee, “Efficient implementation of spatially-varying 3-d ultrasound deconvolution,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 58(1), 234–238 (2011).
[Crossref]

Greenleaf, J.F.

J.-y. Lu, T.K. Song, R.R. Kinnick, and J.F. Greenleaf, “In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams,” IEEE Trans. Med. Imag. 12(4), 819–829 (1993).
[Crossref]

Guo, L.

Y. Hou, J.-S. Kim, S.-W. Huang, S. J. Ashkenazi, L. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(8), 1867–1877 (2008).
[Crossref]

Guo, L.J.

B.-Y. Hsieh, S.-L. Chen, T. Ling, L.J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[Crossref] [PubMed]

H.W. Baac, J.G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A.J. Hart, Z. Xu, E. Yoon, and L.J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Harris, P.L.

B.J. Manning, K. Ivancev, and P.L. Harris, “In situ fenestration in the aortic arch,” J. Vasc. Surg. 52(2), 491–494 (2010).
[Crossref]

Hart, A.J.

H.W. Baac, J.G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A.J. Hart, Z. Xu, E. Yoon, and L.J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Hodgson, D.

H. Gomersall, D. Hodgson, R. Prager, N. Kingsbury, G. Treece, and A. Gee, “Efficient implementation of spatially-varying 3-d ultrasound deconvolution,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 58(1), 234–238 (2011).
[Crossref]

Hou, Y.

Y. Hou, J.-S. Kim, S.-W. Huang, S. J. Ashkenazi, L. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(8), 1867–1877 (2008).
[Crossref]

Y. Hou, S. Ashkenazi, S.-W. Huang, and M. O’Donnell, “An integrated optoacoustic transducer combining etalon and black PDMS structures,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(12), 2719–2725 (2008).
[Crossref]

Hsieh, B.-Y.

B.-Y. Hsieh, S.-L. Chen, T. Ling, L.J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[Crossref] [PubMed]

Huang, S.-W.

Y. Hou, J.-S. Kim, S.-W. Huang, S. J. Ashkenazi, L. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(8), 1867–1877 (2008).
[Crossref]

Y. Hou, S. Ashkenazi, S.-W. Huang, and M. O’Donnell, “An integrated optoacoustic transducer combining etalon and black PDMS structures,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(12), 2719–2725 (2008).
[Crossref]

Ivancev, K.

B.J. Manning, K. Ivancev, and P.L. Harris, “In situ fenestration in the aortic arch,” J. Vasc. Surg. 52(2), 491–494 (2010).
[Crossref]

Karaman, M.

M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 42(3), 429–442 (1995).
[Crossref]

Kim, J.-S.

Y. Hou, J.-S. Kim, S.-W. Huang, S. J. Ashkenazi, L. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(8), 1867–1877 (2008).
[Crossref]

Kingsbury, N.

H. Gomersall, D. Hodgson, R. Prager, N. Kingsbury, G. Treece, and A. Gee, “Efficient implementation of spatially-varying 3-d ultrasound deconvolution,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 58(1), 234–238 (2011).
[Crossref]

Kinnick, R.R.

J.-y. Lu, T.K. Song, R.R. Kinnick, and J.F. Greenleaf, “In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams,” IEEE Trans. Med. Imag. 12(4), 819–829 (1993).
[Crossref]

Kral, F.

F. Kral, E.J. Puschban, H. Riechelmann, and W. Freysinger, “Comparison of optical and electromagnetic tracking for navigated lateral skull base surgery,” Int. J. Med. Robot. 9(2), 247–252 (2013).
[Crossref] [PubMed]

Laufer, J.

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

B. Cox, E. Zhang, J. Laufer, and P. Beard, “Fabry-Pérot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation,” in Journal of Physics: Conference Series, volume 1 (IOP Publishing, 2004), pp. 32–37.

Lee, K.-T.

H.W. Baac, J.G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A.J. Hart, Z. Xu, E. Yoon, and L.J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Leinders, S.

S. Leinders, W. Westerveld, J. Pozo, P. van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Li, P.-C.

B.-Y. Hsieh, S.-L. Chen, T. Ling, L.J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[Crossref] [PubMed]

M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 42(3), 429–442 (1995).
[Crossref]

Lin, F.

A. Nikoozadeh, O. Oralkan, M. Gencel, J.W. Choe, D.N. Stephens, A. De La Rama, P. Chen, F. Lin, A. Dentinger, and D. Wildes, “Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2010), pp. 770–773.

Ling, T.

B.-Y. Hsieh, S.-L. Chen, T. Ling, L.J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[Crossref] [PubMed]

Lu, J.-y.

J.-y. Lu, T.K. Song, R.R. Kinnick, and J.F. Greenleaf, “In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams,” IEEE Trans. Med. Imag. 12(4), 819–829 (1993).
[Crossref]

Lugez, E.

E. Lugez, H. Sadjadi, D.R. Pichora, R.E. Ellis, S.G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. Comput. Assist. Radiol. Surg. 10(3), 253–262 (2015).
[Crossref]

Manning, B.J.

B.J. Manning, K. Ivancev, and P.L. Harris, “In situ fenestration in the aortic arch,” J. Vasc. Surg. 52(2), 491–494 (2010).
[Crossref]

Masetti, G.

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” J. Sensors 2010, 917314 (2010).
[Crossref]

Masotti, L.

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” J. Sensors 2010, 917314 (2010).
[Crossref]

Maxwell, A.

H.W. Baac, J.G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A.J. Hart, Z. Xu, E. Yoon, and L.J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

McGough, R.J.

X. Zeng and R.J. McGough, “Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach,” J. Acoust. Soc. Am. 125(5), 2967–2977 (2009).
[Crossref] [PubMed]

Mosse, C.A.

R.J. Colchester, E.Z. Zhang, C.A. Mosse, P.C. Beard, I. Papakonstantinou, and A.E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[Crossref] [PubMed]

R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt, I.P. Parkin, B.E. Treeby, I. Papakonstantinou, and A.E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Nikoozadeh, A.

A. Nikoozadeh, O. Oralkan, M. Gencel, J.W. Choe, D.N. Stephens, A. De La Rama, P. Chen, F. Lin, A. Dentinger, and D. Wildes, “Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2010), pp. 770–773.

Noimark, S.

S. Noimark, R.J. Colchester, B.J. Blackburn, E.Z. Zhang, E.J. Alles, S. Ourselin, P.C. Beard, I. Papakonstantinou, I.P. Parkin, and A.E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Appl. Funct. Mater. (to be published).

O’Brien, P.

S. Leinders, W. Westerveld, J. Pozo, P. van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

O’Donnell, M.

Y. Hou, J.-S. Kim, S.-W. Huang, S. J. Ashkenazi, L. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(8), 1867–1877 (2008).
[Crossref]

Y. Hou, S. Ashkenazi, S.-W. Huang, and M. O’Donnell, “An integrated optoacoustic transducer combining etalon and black PDMS structures,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(12), 2719–2725 (2008).
[Crossref]

M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 42(3), 429–442 (1995).
[Crossref]

Ok, J.G.

H.W. Baac, J.G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A.J. Hart, Z. Xu, E. Yoon, and L.J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Oralkan, O.

A. Nikoozadeh, O. Oralkan, M. Gencel, J.W. Choe, D.N. Stephens, A. De La Rama, P. Chen, F. Lin, A. Dentinger, and D. Wildes, “Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2010), pp. 770–773.

Ourselin, S.

S. Noimark, R.J. Colchester, B.J. Blackburn, E.Z. Zhang, E.J. Alles, S. Ourselin, P.C. Beard, I. Papakonstantinou, I.P. Parkin, and A.E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Appl. Funct. Mater. (to be published).

Papakonstantinou, I.

R.J. Colchester, E.Z. Zhang, C.A. Mosse, P.C. Beard, I. Papakonstantinou, and A.E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[Crossref] [PubMed]

R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt, I.P. Parkin, B.E. Treeby, I. Papakonstantinou, and A.E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

S. Noimark, R.J. Colchester, B.J. Blackburn, E.Z. Zhang, E.J. Alles, S. Ourselin, P.C. Beard, I. Papakonstantinou, I.P. Parkin, and A.E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Appl. Funct. Mater. (to be published).

Parkin, I.P.

R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt, I.P. Parkin, B.E. Treeby, I. Papakonstantinou, and A.E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

S. Noimark, R.J. Colchester, B.J. Blackburn, E.Z. Zhang, E.J. Alles, S. Ourselin, P.C. Beard, I. Papakonstantinou, I.P. Parkin, and A.E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Appl. Funct. Mater. (to be published).

Pichora, D.R.

E. Lugez, H. Sadjadi, D.R. Pichora, R.E. Ellis, S.G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. Comput. Assist. Radiol. Surg. 10(3), 253–262 (2015).
[Crossref]

Pozo, J.

S. Leinders, W. Westerveld, J. Pozo, P. van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Prager, R.

H. Gomersall, D. Hodgson, R. Prager, N. Kingsbury, G. Treece, and A. Gee, “Efficient implementation of spatially-varying 3-d ultrasound deconvolution,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 58(1), 234–238 (2011).
[Crossref]

Puschban, E.J.

F. Kral, E.J. Puschban, H. Riechelmann, and W. Freysinger, “Comparison of optical and electromagnetic tracking for navigated lateral skull base surgery,” Int. J. Med. Robot. 9(2), 247–252 (2013).
[Crossref] [PubMed]

Riechelmann, H.

F. Kral, E.J. Puschban, H. Riechelmann, and W. Freysinger, “Comparison of optical and electromagnetic tracking for navigated lateral skull base surgery,” Int. J. Med. Robot. 9(2), 247–252 (2013).
[Crossref] [PubMed]

Roncaglia, A.

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” J. Sensors 2010, 917314 (2010).
[Crossref]

Sadjadi, H.

E. Lugez, H. Sadjadi, D.R. Pichora, R.E. Ellis, S.G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. Comput. Assist. Radiol. Surg. 10(3), 253–262 (2015).
[Crossref]

Sheaff, C.

C. Sheaff and S. Ashkenazi, “Polyimide-etalon all-optical ultrasound transducer for high frequency applications,” Proc. SPIE 8943, 894334M (2014).

C. Sheaff and S. Ashkenazi, “An all-optical thin-film high-frequency ultrasound transducer,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2011), pp. 1944–1947.

Snyder, B.

S. Leinders, W. Westerveld, J. Pozo, P. van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Song, T.K.

J.-y. Lu, T.K. Song, R.R. Kinnick, and J.F. Greenleaf, “In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams,” IEEE Trans. Med. Imag. 12(4), 819–829 (1993).
[Crossref]

Speciale, N.

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” J. Sensors 2010, 917314 (2010).
[Crossref]

Stephens, D.N.

A. Nikoozadeh, O. Oralkan, M. Gencel, J.W. Choe, D.N. Stephens, A. De La Rama, P. Chen, F. Lin, A. Dentinger, and D. Wildes, “Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2010), pp. 770–773.

Treeby, B.E.

R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt, I.P. Parkin, B.E. Treeby, I. Papakonstantinou, and A.E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Treece, G.

H. Gomersall, D. Hodgson, R. Prager, N. Kingsbury, G. Treece, and A. Gee, “Efficient implementation of spatially-varying 3-d ultrasound deconvolution,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 58(1), 234–238 (2011).
[Crossref]

Urbach, H.

S. Leinders, W. Westerveld, J. Pozo, P. van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

van den Berg, P.M.

J.T. Fokkema and P.M. van den Berg, Seismic Applications of Acoustic Reciprocity (Elsevier, 1993).

van Neer, P.

S. Leinders, W. Westerveld, J. Pozo, P. van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Verweij, M.

S. Leinders, W. Westerveld, J. Pozo, P. van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Westerveld, W.

S. Leinders, W. Westerveld, J. Pozo, P. van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Wildes, D.

A. Nikoozadeh, O. Oralkan, M. Gencel, J.W. Choe, D.N. Stephens, A. De La Rama, P. Chen, F. Lin, A. Dentinger, and D. Wildes, “Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2010), pp. 770–773.

Xu, Z.

H.W. Baac, J.G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A.J. Hart, Z. Xu, E. Yoon, and L.J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Yoon, E.

H.W. Baac, J.G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A.J. Hart, Z. Xu, E. Yoon, and L.J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Zeng, X.

X. Zeng and R.J. McGough, “Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach,” J. Acoust. Soc. Am. 125(5), 2967–2977 (2009).
[Crossref] [PubMed]

Zhang, E.

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

B. Cox, E. Zhang, J. Laufer, and P. Beard, “Fabry-Pérot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation,” in Journal of Physics: Conference Series, volume 1 (IOP Publishing, 2004), pp. 32–37.

Zhang, E.Z.

E.Z. Zhang and P.C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” Proc. SPIE 9323, 932311 (2015).
[Crossref]

R.J. Colchester, E.Z. Zhang, C.A. Mosse, P.C. Beard, I. Papakonstantinou, and A.E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[Crossref] [PubMed]

S. Noimark, R.J. Colchester, B.J. Blackburn, E.Z. Zhang, E.J. Alles, S. Ourselin, P.C. Beard, I. Papakonstantinou, I.P. Parkin, and A.E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Appl. Funct. Mater. (to be published).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt, I.P. Parkin, B.E. Treeby, I. Papakonstantinou, and A.E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Biomed. Opt. Express (1)

Biomed. Signal Process. Contr. (1)

S.H. Contreras Ortiz, T. Chiu, and M.D. Fox, “Ultrasound image enhancement: A review,” Biomed. Signal Process. Contr. 7(5), 419–428 (2012).
[Crossref]

IEEE Trans. Med. Imag. (1)

J.-y. Lu, T.K. Song, R.R. Kinnick, and J.F. Greenleaf, “In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams,” IEEE Trans. Med. Imag. 12(4), 819–829 (1993).
[Crossref]

IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. (5)

E.J. Alles, R.J. Colchester, and A.E. Desjardins, “Adaptive light modulation for improved resolution and efficiency in all-optical pulse-echo ultrasound,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 63(1), 83–90 (2016).
[Crossref]

H. Gomersall, D. Hodgson, R. Prager, N. Kingsbury, G. Treece, and A. Gee, “Efficient implementation of spatially-varying 3-d ultrasound deconvolution,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 58(1), 234–238 (2011).
[Crossref]

Y. Hou, J.-S. Kim, S.-W. Huang, S. J. Ashkenazi, L. Guo, and M. O’Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(8), 1867–1877 (2008).
[Crossref]

Y. Hou, S. Ashkenazi, S.-W. Huang, and M. O’Donnell, “An integrated optoacoustic transducer combining etalon and black PDMS structures,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 55(12), 2719–2725 (2008).
[Crossref]

M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 42(3), 429–442 (1995).
[Crossref]

Int. J. Comput. Assist. Radiol. Surg. (1)

E. Lugez, H. Sadjadi, D.R. Pichora, R.E. Ellis, S.G. Akl, and G. Fichtinger, “Electromagnetic tracking in surgical and interventional environments: usability study,” Int. J. Comput. Assist. Radiol. Surg. 10(3), 253–262 (2015).
[Crossref]

Int. J. Med. Robot. (1)

F. Kral, E.J. Puschban, H. Riechelmann, and W. Freysinger, “Comparison of optical and electromagnetic tracking for navigated lateral skull base surgery,” Int. J. Med. Robot. 9(2), 247–252 (2013).
[Crossref] [PubMed]

Interface focus (1)

P.C. Beard, “Biomedical photoacoustic imaging,” Interface focus 1(4), 602–631 (2011).
[Crossref]

J. Acoust. Soc. Am. (1)

X. Zeng and R.J. McGough, “Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach,” J. Acoust. Soc. Am. 125(5), 2967–2977 (2009).
[Crossref] [PubMed]

J. Sensors (1)

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” J. Sensors 2010, 917314 (2010).
[Crossref]

J. Vasc. Surg. (1)

B.J. Manning, K. Ivancev, and P.L. Harris, “In situ fenestration in the aortic arch,” J. Vasc. Surg. 52(2), 491–494 (2010).
[Crossref]

Photoacoustics (1)

B.-Y. Hsieh, S.-L. Chen, T. Ling, L.J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[Crossref] [PubMed]

Proc. SPIE (2)

C. Sheaff and S. Ashkenazi, “Polyimide-etalon all-optical ultrasound transducer for high frequency applications,” Proc. SPIE 8943, 894334M (2014).

E.Z. Zhang and P.C. Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” Proc. SPIE 9323, 932311 (2015).
[Crossref]

Sci. Rep. (2)

S. Leinders, W. Westerveld, J. Pozo, P. van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

H.W. Baac, J.G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A.J. Hart, Z. Xu, E. Yoon, and L.J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Other (7)

S. Noimark, R.J. Colchester, B.J. Blackburn, E.Z. Zhang, E.J. Alles, S. Ourselin, P.C. Beard, I. Papakonstantinou, I.P. Parkin, and A.E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Appl. Funct. Mater. (to be published).

RJ McGough, “FOCUS: Fast Object-Oriented C++ Ultrasound Simulator,” http://www.egr.msu.edu/~fultras-web/ .

J.T. Fokkema and P.M. van den Berg, Seismic Applications of Acoustic Reciprocity (Elsevier, 1993).

B. Cox, E. Zhang, J. Laufer, and P. Beard, “Fabry-Pérot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation,” in Journal of Physics: Conference Series, volume 1 (IOP Publishing, 2004), pp. 32–37.

C. Sheaff and S. Ashkenazi, “An all-optical thin-film high-frequency ultrasound transducer,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2011), pp. 1944–1947.

A. Nikoozadeh, O. Oralkan, M. Gencel, J.W. Choe, D.N. Stephens, A. De La Rama, P. Chen, F. Lin, A. Dentinger, and D. Wildes, “Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2010), pp. 770–773.

VisualSonics, “Vevo 770 System,” http://www.visualsonics.com/products/vevo-770 .

Supplementary Material (4)

NameDescription
» Visualization 1: MP4 (1286 KB)      Simuated and experimental images of a phantom in the presence of axial and lateral probe positioning uncertainty. Probe positioning errors were picked from uniform random distributions that ranged between 0 and ±50 µm in increments of 10 µm.
» Visualization 2: MP4 (3758 KB)      Simuated and experimental images of a phantom in the presence of axial and lateral probe positioning uncertainty. Probe positioning errors were picked from uniform random distributions that ranged between ±100 and ±2000 µm in increments of 100 µm.
» Visualization 3: MP4 (1371 KB)      Fly-through through the 3D image of an aortic side-branch. The approximate location of each frame is indicated in the top right figure.
» Visualization 4: MP4 (1067 KB)      Volumetric render of the 3D image of an aortic side-branch.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic (top) and photograph (bottom) of the focussed optical ultrasound source. The inset (top right) shows a photograph of the probe after applying an optically absorbing coating.
Fig. 2
Fig. 2 Left: maximum intensity of the transmitted acoustic field measured at an axial distance of 3 mm with the full-width half maximum contour indicated by the dotted blue curve. Middle: spatial extent of the acoustic beam in the elevational (black solid curve) and lateral direction (black dashed curve), together with the peak acoustic amplitude (red dash-dotted curve), as a function of axial depth. The acoustic data were measured at a distance of 3 mm and numerically propagated to the remaining depths. Right: power spectrum of the A-scan (shown in the inset) corresponding to the peak acoustic intensity measured at a distance of 3 mm. The dashed red line indicates the −6 dB level relative to peak power used to measure the bandwidth of the transmitted signal.
Fig. 3
Fig. 3 Top row: simulated (first two columns) and measured (middle two columns) all-optical ultrasound images obtained of a phantom using an unfocussed acoustic source. The phantom consisted of the tip of a single rod placed at different depths (right column); the resulting images are compounded into a single synthetic image. Simulations and experiments were performed both in the absence (“0 μm”) and presence (“30 μm”) of deliberate probe positioning errors. Positioning errors were applied to both the axial and the lateral axis and sampled from a uniform random distribution with a range of ±30 μm. Bottom row: the same panels are shown for the case where all-optical pulse-echo ultrasound data were acquired using the focussed acoustic source.
Fig. 4
Fig. 4 A. Photograph of the focussed probe positioned above an ex vivo aortic section containing two side-branches (SB1 and SB2). The probe was translated along the dotted line to scan a synthetic aperture. B. Schematic cross-section of the aorta wall and side-branches. C. All-optical ultrasound image acquired using the focussed acoustic source. The image, displayed on a logarithmic scale, was obtained without image reconstruction.
Fig. 5
Fig. 5 Cross-sections through a volumetric all-optical ultrasound image of an aorta section containing a side-branch (SB1 in Fig. 4). The geometry of the aorta wall and side-branch veering off to the left are indicated in purple and blue, respectively. All cross-sections are shown on the same logarithmic scale (40 dB dynamic range), and no image reconstruction was applied. The lateral axis was scaled to improve the visibility of the cross-sections.

Metrics