Abstract

The non-invasive, in vivo measurement of microvascular blood flow has the potential to enhance breast cancer therapy monitoring. Here, longitudinal blood flow of 4T1 murine breast cancer (N=125) under chemotherapy was quantified with diffuse correlation spectroscopy based on layer models. Six different treatment regimens involving doxorubicin, cyclophosphamide, and paclitaxel at clinically relevant doses were investigated. Treatments with cyclophosphamide increased blood flow as early as 3 days after administration, whereas paclitaxel induced a transient blood flow decrease at 1 day after administration. Early blood flow changes correlated strongly with the treatment outcome and distinguished treated from untreated mice individually for effective treatments.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pre-clinical longitudinal monitoring of hemodynamic response to anti-vascular chemotherapy by hybrid diffuse optics

Parisa Farzam, Johannes Johansson, Miguel Mireles, Gabriela Jiménez-Valerio, Mar Martínez-Lozano, Regine Choe, Oriol Casanovas, and Turgut Durduran
Biomed. Opt. Express 8(5) 2563-2582 (2017)

Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model

Syeda Tabassum, Yanyu Zhao, Raeef Istfan, Junjie Wu, David J. Waxman, and Darren Roblyer
Biomed. Opt. Express 7(10) 4154-4170 (2016)

Non-invasive diffuse correlation tomography reveals spatial and temporal blood flow differences in murine bone grafting approaches

Songfeng Han, Ashley R. Proctor, Joseph B. Vella, Danielle S. W. Benoit, and Regine Choe
Biomed. Opt. Express 7(9) 3262-3279 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
    [Crossref]
  2. A. S. Caudle, A. M. Gonzalez-Angulo, K. K. Hunt, P. Liu, L. Pusztai, W. F. Symmans, H. M. Kuerer, E. A. Mittendorf, G. N. Hortobagyi, and F. Meric-Bernstam, “Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer,” J. Clin. Onc. 28, 1821–1828 (2010).
    [Crossref]
  3. E. Yeh, P. Slanetz, D. B. Kopans, E. Rafferty, D. Georgian-Smith, L. Moy, E. Halpern, R. Moore, I. Kuter, and A. Taghian, “Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer,” Am. J. Roentgenol. 184, 868–877 (2005).
    [Crossref]
  4. R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron. 18, 1367–1386 (2012).
    [Crossref] [PubMed]
  5. M. Beresford, A. R. Padhani, V. Goh, and A. Makris, “Imaging breast cancer response during neoadjuvant systemic therapy,” Expert Rev. Anticancer Ther. 5, 893–905 (2005).
    [Crossref] [PubMed]
  6. L. C. Enfield, A. P. Gibson, J. C. Hebden, and M. Douek, “Optical tomography of breast cancer - monitoring response to primary medical therapy,” Targ. Oncol. 4, 219–233 (2009).
    [Crossref]
  7. D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
    [Crossref] [PubMed]
  8. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
    [Crossref] [PubMed]
  9. N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, “Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study,” J. Biomed. Opt. 10, 051503 (2005).
    [Crossref] [PubMed]
  10. B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279–285 (2005).
    [Crossref]
  11. Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
    [Crossref] [PubMed]
  12. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 104, 4014–4019 (2007).
    [Crossref] [PubMed]
  13. C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007).
    [Crossref] [PubMed]
  14. Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization,” Neoplasia 10, 1028–1040 (2008).
    [Crossref] [PubMed]
  15. S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: Case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
    [Crossref] [PubMed]
  16. H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. J. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res. 16, 2605–2614 (2010).
    [Crossref] [PubMed]
  17. A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17, 1031–1039 (2010).
    [Crossref] [PubMed]
  18. M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: Demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259, 365–374 (2011).
    [Crossref] [PubMed]
  19. D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U. S. A. 108, 14626–14631 (2011).
    [Crossref] [PubMed]
  20. A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Phil. Trans. R. Soc. A 369, 4512–4530 (2011).
    [Crossref] [PubMed]
  21. Y. Santoro, A. Leproux, A. Cerussi, B. Tromberg, and E. Gratton, “Breast cancer spatial heterogeneity in near-infrared spectra and the prediction of neoadjuvant chemotherapy response,” J. Biomed. Opt. 16, 097007 (2011).
    [Crossref] [PubMed]
  22. L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography,” Technol. Cancer Res. Treat. 10, 533–547 (2011).
    [Crossref] [PubMed]
  23. Q. Zhu, P. A. DeFusco, A. J. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266, 433–442 (2012).
    [Crossref] [PubMed]
  24. S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72, 4318–4328 (2012).
    [Crossref] [PubMed]
  25. H. J. Feldmann, M. Molls, and P. Vaupel, “Blood flow and oxygenation status of human tumors,” Strhlentherapie und Onkologie 175, 1–9 (1999).
    [Crossref]
  26. P. Vaupel and M. Hockel, “Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance,” Int. J. Oncol. 17, 869–879 (2000).
    [PubMed]
  27. M. Hockel and P. Vaupel, “Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects,” J. Natl. Cancer Inst. 93, 266–276 (2001).
    [Crossref] [PubMed]
  28. L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, J. M. Specht, R. K. Doot, T. J. Lawton, W. E. Barlow, B. F. Kurland, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow changes by Positron Emission Tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer,” J. Clin. Oncol. 26, 4449–4457 (2008).
    [Crossref] [PubMed]
  29. U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
    [Crossref]
  30. F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
    [Crossref]
  31. L. S. Hansen, J. E. Coggle, J. Wells, and M. W. Charles, “The influence of the hair cycle on the thickness of mouse skin,” Anat. Rec. 210, 569–573 (1984).
    [Crossref] [PubMed]
  32. B. A. Pulaski and S. Ostrand-Rosenberg, “Mouse 4T1 breast tumor model,” Curr. Protoc. Immunol. 20, Unit 202 (2001).
    [Crossref]
  33. A. S. Betof, C. D. Lascola, D. Weitzel, C. Landon, P. M. Scarbrough, G. R. Devi, G. Palmer, L. W. Jones, and M. W. Dewhirst, “Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise,” J. Natl. Cancer Inst. 107, djv040 (2015).
    [Crossref] [PubMed]
  34. S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part i: anesthetic considerations in preclinical research,” ILAR J. 53, 55–69 (2012).
    [Crossref]
  35. S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part ii: anesthetic considerations in preclinical imaging studies,” ILAR J. 53, 70–81 (2012).
    [Crossref]
  36. S. Gargiulo, M. Gramanzini, R. Liuzzi, A. Greco, A. Brunetti, and G. Vesce, “Effects of some anesthetic agents on skin microcirculation evaluated by laser doppler perfusion imaging in mice,” BMC Vet. Res. 9, 255 (2013).
    [Crossref] [PubMed]
  37. M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
    [Crossref] [PubMed]
  38. C. A. Hudis, “Current status and future directions in breast cancer therapy,” Clin. Breast Cancer 4, Suppl. 2, S70–S75 (2003).
    [Crossref] [PubMed]
  39. J. A. Sparano, M. Wang, S. Martino, V. Jones, E. A. Perez, T. Saphner, A. C. Wolff, G. W. J. Sledge, W. C. Wood, and N. E. Davidson, “Weekly paclitaxel in the adjuvant treatment of breast cancer,” N. Engl. J. Med. 358, 1663–1671 (2008).
    [Crossref] [PubMed]
  40. C. F. Thorn, C. Oshiro, S. Marsh, T. Hernandez-Boussard, H. McLeod, T. E. Klein, and R. B. Altman, “Doxorubicin pathways: pharmacodynamics and adverse effects,” Pharmacogenet. Genomics 21, 440–446 (2011).
    [Crossref]
  41. A. Emadi, R. J. Jones, and R. A. Brodsky, “Cyclophosphamide and cancer: golden anniversary,” Nat. Rev. Clin.Oncol. 6, 638–647 (2009).
    [Crossref]
  42. V. A. de Weger, J. H. Beijnen, and J. H. M. Schellens, “Cellular and clinical pharmacology of the taxanes docetaxel and paclitaxel - a review,” Anticancer Drugs 25, 488–494 (2014).
    [Crossref] [PubMed]
  43. S. Reagan-Shaw, M. Nihal, and N. Ahmad, “Dose translation from animal to human studies revisited,” FASEB J. 22, 659–661 (2007).
    [Crossref] [PubMed]
  44. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
    [Crossref] [PubMed]
  45. P. A. Lemieux and D. J. Durian, “Investigating non-gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16, 1651–1664 (1999).
    [Crossref]
  46. L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Opt. Express 16, 15514–15530 (2008).
    [Crossref] [PubMed]
  47. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998).
    [Crossref]
  48. A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44, 2689–2702 (1999).
    [Crossref] [PubMed]
  49. G. H. Golub and J. H. Welsh, “Calculation of gauss quadrature rules,” Math. Comput. 23, 221–230 (1969).
    [Crossref]
  50. P. Farzam and T. Durduran, “Multidistance diffuse correlation spectroscopy for simultaneous estimation of blood flow index and optical properties,” J. Biomed. Opt. 20, 55001 (2015).
    [Crossref] [PubMed]
  51. K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11, 889–900 (2009).
    [Crossref] [PubMed]
  52. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37–R61 (2013).
    [Crossref] [PubMed]
  53. J. D. Johansson, M. Mireles, J. Morales-Dalmau, P. Farzam, M. Martínez-Lozano, O. Casanovas, and T. Durduran, “Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system,” Biomed. Opt. Express 7, 481–498 (2016).
    [Crossref] [PubMed]
  54. J. C. Pinheiro and D. M. Bates, Mixed-Effects Models in S and S-PLUS (Springer, 2000).
    [Crossref]
  55. G. M. Fitzmaurice, N. M. Laird, and J. H. Ware, Applied Longitudinal Analysis (John Wiley & Sons, Inc.1962).
  56. G. Cocconi, B. Di Blasio, G. Alberti, G. Bisagni, E. Botti, and G. Peracchia, “Problems in evaluating response of primary breast cancer to systemic therapy,” Breast Cancer Res. Treat. 4, 309–313 (1984).
    [Crossref] [PubMed]
  57. M. C. Segel, D. D. Paulus, and G. N. Hortobagyi, “Advanced primary breast cancer: assessment at mammography of response to induction chemotherapy,” Radiology 169, 49–54 (1988).
    [Crossref] [PubMed]
  58. S. J. Vinnicombe, A. D. MacVica, R. L. Guy, J. P. Sloane, T. J. Powles, G. Knee, and J. E. Husband, “Primary breast cancer: mammographic changes after neoadjuvant chemotherapy, with pathologic correlation,” Radiology 198, 333–340 (1996).
    [Crossref] [PubMed]
  59. J. L. Evelhoch, R. J. Gillies, G. S. Karczmar, J. A. Koutcher, R. J. Maxwell, O. Nalcioglu, N. Raghunand, S. M. Ronen, B. D. Ross, and H. M. Swartz, “Applications of magnetic resonance in model systems: cancer therapeutics,” Neoplasia 2, 152–165 (2000).
    [Crossref] [PubMed]
  60. K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14, 054051 (2009).
    [Crossref] [PubMed]
  61. G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11, 3543–3552 (2005).
    [Crossref] [PubMed]
  62. U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H. W. Wang, W. M. F. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15, 15507–15516 (2007).
    [Crossref] [PubMed]
  63. J. E. Talmadge, R. K. Singh, I. J. Fidler, and A. Raz, “Murine models to evaluate novel and conventional therapeutic strategies for cancer,” Am. J. Pathol. 170, 793–804 (2007).
    [Crossref] [PubMed]
  64. Y. Shang and G. Yu, “A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues,” Appl. Phys. Lett. 105, 133702 (2014).
    [Crossref]
  65. T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).
    [Crossref] [PubMed]
  66. R. K. Jain, J. D. Martin, and T. Stylianopoulos, “The role of mechanical forces in tumor growth and therapy,” Annu. Rev. Biomed. Eng. 16, 321–346 (2014).
    [Crossref] [PubMed]
  67. R. K. Jain, “Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy,” Science 307, 58–62 (2005).
    [Crossref] [PubMed]
  68. M. Mark, R. Walter, D. O. Meredith, and W. H. Reinhart, “Commercial taxane formulations induce stomatocytosis and increase blood viscosity,” Br. J. Pharmacol. 134, 1207–1214 (2001).
    [Crossref] [PubMed]
  69. E. Pasquier, M. Carré, B. Pourroy, L. Camoin, O. Rebaï, C. Briand, and D. Braguer, “Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway,” Mol. Cancer Ther. 3, 1301–1310 (2004).
    [PubMed]
  70. J. Alexandre, Y. Hu, W. Lu, H. Pelicano, and P. Huang, “Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species,” Cancer Res. 67, 3512–3517 (2007).
    [Crossref] [PubMed]
  71. T. Durduran, (Personal communication, August11, 2016).
  72. S. Han, J. Johansson, M. Mireles, A. R. Proctor, M. D. Hoffman, J. B. Vella, D. S. W. Benoit, T. Durduran, and R. Choe, “Non-contact scanning diffuse correlation tomography system for three-dimensional blood flow imaging in a murine bone graft model,” Biomed. Opt. Express 6, 2695–2712 (2015).
    [Crossref] [PubMed]
  73. S. Han, A. R. Proctor, J. B. Vella, D. S. W. Benoit, and R. Choe, “Non-invasive diffuse correlation tomography reveals spatial and temporal blood flow differences in murine bone grafting approaches,” Biomed. Opt. Express 7, 3262–3279 (2016).
    [Crossref]

2016 (3)

2015 (3)

S. Han, J. Johansson, M. Mireles, A. R. Proctor, M. D. Hoffman, J. B. Vella, D. S. W. Benoit, T. Durduran, and R. Choe, “Non-contact scanning diffuse correlation tomography system for three-dimensional blood flow imaging in a murine bone graft model,” Biomed. Opt. Express 6, 2695–2712 (2015).
[Crossref] [PubMed]

P. Farzam and T. Durduran, “Multidistance diffuse correlation spectroscopy for simultaneous estimation of blood flow index and optical properties,” J. Biomed. Opt. 20, 55001 (2015).
[Crossref] [PubMed]

A. S. Betof, C. D. Lascola, D. Weitzel, C. Landon, P. M. Scarbrough, G. R. Devi, G. Palmer, L. W. Jones, and M. W. Dewhirst, “Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise,” J. Natl. Cancer Inst. 107, djv040 (2015).
[Crossref] [PubMed]

2014 (3)

V. A. de Weger, J. H. Beijnen, and J. H. M. Schellens, “Cellular and clinical pharmacology of the taxanes docetaxel and paclitaxel - a review,” Anticancer Drugs 25, 488–494 (2014).
[Crossref] [PubMed]

Y. Shang and G. Yu, “A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues,” Appl. Phys. Lett. 105, 133702 (2014).
[Crossref]

R. K. Jain, J. D. Martin, and T. Stylianopoulos, “The role of mechanical forces in tumor growth and therapy,” Annu. Rev. Biomed. Eng. 16, 321–346 (2014).
[Crossref] [PubMed]

2013 (2)

S. Gargiulo, M. Gramanzini, R. Liuzzi, A. Greco, A. Brunetti, and G. Vesce, “Effects of some anesthetic agents on skin microcirculation evaluated by laser doppler perfusion imaging in mice,” BMC Vet. Res. 9, 255 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37–R61 (2013).
[Crossref] [PubMed]

2012 (6)

T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).
[Crossref] [PubMed]

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part i: anesthetic considerations in preclinical research,” ILAR J. 53, 55–69 (2012).
[Crossref]

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part ii: anesthetic considerations in preclinical imaging studies,” ILAR J. 53, 70–81 (2012).
[Crossref]

Q. Zhu, P. A. DeFusco, A. J. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266, 433–442 (2012).
[Crossref] [PubMed]

S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72, 4318–4328 (2012).
[Crossref] [PubMed]

R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron. 18, 1367–1386 (2012).
[Crossref] [PubMed]

2011 (6)

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: Demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259, 365–374 (2011).
[Crossref] [PubMed]

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U. S. A. 108, 14626–14631 (2011).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Phil. Trans. R. Soc. A 369, 4512–4530 (2011).
[Crossref] [PubMed]

Y. Santoro, A. Leproux, A. Cerussi, B. Tromberg, and E. Gratton, “Breast cancer spatial heterogeneity in near-infrared spectra and the prediction of neoadjuvant chemotherapy response,” J. Biomed. Opt. 16, 097007 (2011).
[Crossref] [PubMed]

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography,” Technol. Cancer Res. Treat. 10, 533–547 (2011).
[Crossref] [PubMed]

C. F. Thorn, C. Oshiro, S. Marsh, T. Hernandez-Boussard, H. McLeod, T. E. Klein, and R. B. Altman, “Doxorubicin pathways: pharmacodynamics and adverse effects,” Pharmacogenet. Genomics 21, 440–446 (2011).
[Crossref]

2010 (4)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

A. S. Caudle, A. M. Gonzalez-Angulo, K. K. Hunt, P. Liu, L. Pusztai, W. F. Symmans, H. M. Kuerer, E. A. Mittendorf, G. N. Hortobagyi, and F. Meric-Bernstam, “Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer,” J. Clin. Onc. 28, 1821–1828 (2010).
[Crossref]

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. J. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res. 16, 2605–2614 (2010).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17, 1031–1039 (2010).
[Crossref] [PubMed]

2009 (5)

L. C. Enfield, A. P. Gibson, J. C. Hebden, and M. Douek, “Optical tomography of breast cancer - monitoring response to primary medical therapy,” Targ. Oncol. 4, 219–233 (2009).
[Crossref]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: Case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[Crossref] [PubMed]

A. Emadi, R. J. Jones, and R. A. Brodsky, “Cyclophosphamide and cancer: golden anniversary,” Nat. Rev. Clin.Oncol. 6, 638–647 (2009).
[Crossref]

K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11, 889–900 (2009).
[Crossref] [PubMed]

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14, 054051 (2009).
[Crossref] [PubMed]

2008 (5)

J. A. Sparano, M. Wang, S. Martino, V. Jones, E. A. Perez, T. Saphner, A. C. Wolff, G. W. J. Sledge, W. C. Wood, and N. E. Davidson, “Weekly paclitaxel in the adjuvant treatment of breast cancer,” N. Engl. J. Med. 358, 1663–1671 (2008).
[Crossref] [PubMed]

L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Opt. Express 16, 15514–15530 (2008).
[Crossref] [PubMed]

L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, J. M. Specht, R. K. Doot, T. J. Lawton, W. E. Barlow, B. F. Kurland, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow changes by Positron Emission Tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer,” J. Clin. Oncol. 26, 4449–4457 (2008).
[Crossref] [PubMed]

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization,” Neoplasia 10, 1028–1040 (2008).
[Crossref] [PubMed]

2007 (6)

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 104, 4014–4019 (2007).
[Crossref] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007).
[Crossref] [PubMed]

S. Reagan-Shaw, M. Nihal, and N. Ahmad, “Dose translation from animal to human studies revisited,” FASEB J. 22, 659–661 (2007).
[Crossref] [PubMed]

U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H. W. Wang, W. M. F. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15, 15507–15516 (2007).
[Crossref] [PubMed]

J. E. Talmadge, R. K. Singh, I. J. Fidler, and A. Raz, “Murine models to evaluate novel and conventional therapeutic strategies for cancer,” Am. J. Pathol. 170, 793–804 (2007).
[Crossref] [PubMed]

J. Alexandre, Y. Hu, W. Lu, H. Pelicano, and P. Huang, “Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species,” Cancer Res. 67, 3512–3517 (2007).
[Crossref] [PubMed]

2006 (1)

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

2005 (8)

E. Yeh, P. Slanetz, D. B. Kopans, E. Rafferty, D. Georgian-Smith, L. Moy, E. Halpern, R. Moore, I. Kuter, and A. Taghian, “Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer,” Am. J. Roentgenol. 184, 868–877 (2005).
[Crossref]

M. Beresford, A. R. Padhani, V. Goh, and A. Makris, “Imaging breast cancer response during neoadjuvant systemic therapy,” Expert Rev. Anticancer Ther. 5, 893–905 (2005).
[Crossref] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, “Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study,” J. Biomed. Opt. 10, 051503 (2005).
[Crossref] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279–285 (2005).
[Crossref]

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

R. K. Jain, “Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy,” Science 307, 58–62 (2005).
[Crossref] [PubMed]

G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11, 3543–3552 (2005).
[Crossref] [PubMed]

2004 (2)

E. Pasquier, M. Carré, B. Pourroy, L. Camoin, O. Rebaï, C. Briand, and D. Braguer, “Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway,” Mol. Cancer Ther. 3, 1301–1310 (2004).
[PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

2003 (2)

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

C. A. Hudis, “Current status and future directions in breast cancer therapy,” Clin. Breast Cancer 4, Suppl. 2, S70–S75 (2003).
[Crossref] [PubMed]

2001 (3)

M. Mark, R. Walter, D. O. Meredith, and W. H. Reinhart, “Commercial taxane formulations induce stomatocytosis and increase blood viscosity,” Br. J. Pharmacol. 134, 1207–1214 (2001).
[Crossref] [PubMed]

M. Hockel and P. Vaupel, “Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects,” J. Natl. Cancer Inst. 93, 266–276 (2001).
[Crossref] [PubMed]

B. A. Pulaski and S. Ostrand-Rosenberg, “Mouse 4T1 breast tumor model,” Curr. Protoc. Immunol. 20, Unit 202 (2001).
[Crossref]

2000 (2)

P. Vaupel and M. Hockel, “Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance,” Int. J. Oncol. 17, 869–879 (2000).
[PubMed]

J. L. Evelhoch, R. J. Gillies, G. S. Karczmar, J. A. Koutcher, R. J. Maxwell, O. Nalcioglu, N. Raghunand, S. M. Ronen, B. D. Ross, and H. M. Swartz, “Applications of magnetic resonance in model systems: cancer therapeutics,” Neoplasia 2, 152–165 (2000).
[Crossref] [PubMed]

1999 (3)

P. A. Lemieux and D. J. Durian, “Investigating non-gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16, 1651–1664 (1999).
[Crossref]

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44, 2689–2702 (1999).
[Crossref] [PubMed]

H. J. Feldmann, M. Molls, and P. Vaupel, “Blood flow and oxygenation status of human tumors,” Strhlentherapie und Onkologie 175, 1–9 (1999).
[Crossref]

1998 (1)

1996 (1)

S. J. Vinnicombe, A. D. MacVica, R. L. Guy, J. P. Sloane, T. J. Powles, G. Knee, and J. E. Husband, “Primary breast cancer: mammographic changes after neoadjuvant chemotherapy, with pathologic correlation,” Radiology 198, 333–340 (1996).
[Crossref] [PubMed]

1988 (1)

M. C. Segel, D. D. Paulus, and G. N. Hortobagyi, “Advanced primary breast cancer: assessment at mammography of response to induction chemotherapy,” Radiology 169, 49–54 (1988).
[Crossref] [PubMed]

1984 (2)

G. Cocconi, B. Di Blasio, G. Alberti, G. Bisagni, E. Botti, and G. Peracchia, “Problems in evaluating response of primary breast cancer to systemic therapy,” Breast Cancer Res. Treat. 4, 309–313 (1984).
[Crossref] [PubMed]

L. S. Hansen, J. E. Coggle, J. Wells, and M. W. Charles, “The influence of the hair cycle on the thickness of mouse skin,” Anat. Rec. 210, 569–573 (1984).
[Crossref] [PubMed]

1969 (1)

G. H. Golub and J. H. Welsh, “Calculation of gauss quadrature rules,” Math. Comput. 23, 221–230 (1969).
[Crossref]

Abrams, J.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Affuso, A.

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part i: anesthetic considerations in preclinical research,” ILAR J. 53, 55–69 (2012).
[Crossref]

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part ii: anesthetic considerations in preclinical imaging studies,” ILAR J. 53, 70–81 (2012).
[Crossref]

Ahmad, N.

S. Reagan-Shaw, M. Nihal, and N. Ahmad, “Dose translation from animal to human studies revisited,” FASEB J. 22, 659–661 (2007).
[Crossref] [PubMed]

Alberti, G.

G. Cocconi, B. Di Blasio, G. Alberti, G. Bisagni, E. Botti, and G. Peracchia, “Problems in evaluating response of primary breast cancer to systemic therapy,” Breast Cancer Res. Treat. 4, 309–313 (1984).
[Crossref] [PubMed]

Alexandre, J.

J. Alexandre, Y. Hu, W. Lu, H. Pelicano, and P. Huang, “Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species,” Cancer Res. 67, 3512–3517 (2007).
[Crossref] [PubMed]

Altman, R. B.

C. F. Thorn, C. Oshiro, S. Marsh, T. Hernandez-Boussard, H. McLeod, T. E. Klein, and R. B. Altman, “Doxorubicin pathways: pharmacodynamics and adverse effects,” Pharmacogenet. Genomics 21, 440–446 (2011).
[Crossref]

Anderson, S. J.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Arridge, S. R.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

Bardeesy, N.

T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).
[Crossref] [PubMed]

Barlow, W. E.

L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, J. M. Specht, R. K. Doot, T. J. Lawton, W. E. Barlow, B. F. Kurland, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow changes by Positron Emission Tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer,” J. Clin. Oncol. 26, 4449–4457 (2008).
[Crossref] [PubMed]

Barry, W. T.

K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11, 889–900 (2009).
[Crossref] [PubMed]

Bates, D. M.

J. C. Pinheiro and D. M. Bates, Mixed-Effects Models in S and S-PLUS (Springer, 2000).
[Crossref]

Bays, R.

Bear, H. D.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Beijnen, J. H.

V. A. de Weger, J. H. Beijnen, and J. H. M. Schellens, “Cellular and clinical pharmacology of the taxanes docetaxel and paclitaxel - a review,” Anticancer Drugs 25, 488–494 (2014).
[Crossref] [PubMed]

Benoit, D. S. W.

Beresford, M.

M. Beresford, A. R. Padhani, V. Goh, and A. Makris, “Imaging breast cancer response during neoadjuvant systemic therapy,” Expert Rev. Anticancer Ther. 5, 893–905 (2005).
[Crossref] [PubMed]

Berry, D. A.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Betof, A. S.

A. S. Betof, C. D. Lascola, D. Weitzel, C. Landon, P. M. Scarbrough, G. R. Devi, G. Palmer, L. W. Jones, and M. W. Dewhirst, “Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise,” J. Natl. Cancer Inst. 107, djv040 (2015).
[Crossref] [PubMed]

Bevilacqua, F.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

Bherer, L.

Binzoni, T.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
[Crossref]

Bisagni, G.

G. Cocconi, B. Di Blasio, G. Alberti, G. Bisagni, E. Botti, and G. Peracchia, “Problems in evaluating response of primary breast cancer to systemic therapy,” Breast Cancer Res. Treat. 4, 309–313 (1984).
[Crossref] [PubMed]

Botti, E.

G. Cocconi, B. Di Blasio, G. Alberti, G. Bisagni, E. Botti, and G. Peracchia, “Problems in evaluating response of primary breast cancer to systemic therapy,” Breast Cancer Res. Treat. 4, 309–313 (1984).
[Crossref] [PubMed]

Boucher, Y.

T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).
[Crossref] [PubMed]

Braguer, D.

E. Pasquier, M. Carré, B. Pourroy, L. Camoin, O. Rebaï, C. Briand, and D. Braguer, “Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway,” Mol. Cancer Ther. 3, 1301–1310 (2004).
[PubMed]

Briand, C.

E. Pasquier, M. Carré, B. Pourroy, L. Camoin, O. Rebaï, C. Briand, and D. Braguer, “Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway,” Mol. Cancer Ther. 3, 1301–1310 (2004).
[PubMed]

Brodsky, R. A.

A. Emadi, R. J. Jones, and R. A. Brodsky, “Cyclophosphamide and cancer: golden anniversary,” Nat. Rev. Clin.Oncol. 6, 638–647 (2009).
[Crossref]

Brunetti, A.

S. Gargiulo, M. Gramanzini, R. Liuzzi, A. Greco, A. Brunetti, and G. Vesce, “Effects of some anesthetic agents on skin microcirculation evaluated by laser doppler perfusion imaging in mice,” BMC Vet. Res. 9, 255 (2013).
[Crossref] [PubMed]

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part ii: anesthetic considerations in preclinical imaging studies,” ILAR J. 53, 70–81 (2012).
[Crossref]

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part i: anesthetic considerations in preclinical research,” ILAR J. 53, 55–69 (2012).
[Crossref]

Busch, T. M.

G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11, 3543–3552 (2005).
[Crossref] [PubMed]

Butler, J.

S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72, 4318–4328 (2012).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Phil. Trans. R. Soc. A 369, 4512–4530 (2011).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17, 1031–1039 (2010).
[Crossref] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 104, 4014–4019 (2007).
[Crossref] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007).
[Crossref] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279–285 (2005).
[Crossref]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

Butler, J. A.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U. S. A. 108, 14626–14631 (2011).
[Crossref] [PubMed]

Camoin, L.

E. Pasquier, M. Carré, B. Pourroy, L. Camoin, O. Rebaï, C. Briand, and D. Braguer, “Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway,” Mol. Cancer Ther. 3, 1301–1310 (2004).
[PubMed]

Cantanhede, G.

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography,” Technol. Cancer Res. Treat. 10, 533–547 (2011).
[Crossref] [PubMed]

Carpenter, C. M.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: Case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[Crossref] [PubMed]

Carpenter, J.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Carré, M.

E. Pasquier, M. Carré, B. Pourroy, L. Camoin, O. Rebaï, C. Briand, and D. Braguer, “Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway,” Mol. Cancer Ther. 3, 1301–1310 (2004).
[PubMed]

Casanovas, O.

Caudle, A. S.

A. S. Caudle, A. M. Gonzalez-Angulo, K. K. Hunt, P. Liu, L. Pusztai, W. F. Symmans, H. M. Kuerer, E. A. Mittendorf, G. N. Hortobagyi, and F. Meric-Bernstam, “Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer,” J. Clin. Onc. 28, 1821–1828 (2010).
[Crossref]

Cerussi, A.

S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72, 4318–4328 (2012).
[Crossref] [PubMed]

Y. Santoro, A. Leproux, A. Cerussi, B. Tromberg, and E. Gratton, “Breast cancer spatial heterogeneity in near-infrared spectra and the prediction of neoadjuvant chemotherapy response,” J. Biomed. Opt. 16, 097007 (2011).
[Crossref] [PubMed]

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U. S. A. 108, 14626–14631 (2011).
[Crossref] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 104, 4014–4019 (2007).
[Crossref] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007).
[Crossref] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279–285 (2005).
[Crossref]

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, “Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study,” J. Biomed. Opt. 10, 051503 (2005).
[Crossref] [PubMed]

Cerussi, A. E.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Phil. Trans. R. Soc. A 369, 4512–4530 (2011).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17, 1031–1039 (2010).
[Crossref] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

Chance, B.

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Chang, K.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14, 054051 (2009).
[Crossref] [PubMed]

Charles, M. W.

L. S. Hansen, J. E. Coggle, J. Wells, and M. W. Charles, “The influence of the hair cycle on the thickness of mouse skin,” Anat. Rec. 210, 569–573 (1984).
[Crossref] [PubMed]

Chauhan, V. P.

T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).
[Crossref] [PubMed]

Chen, N. G.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Chen, W. P.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U. S. A. 108, 14626–14631 (2011).
[Crossref] [PubMed]

Choe, R.

S. Han, A. R. Proctor, J. B. Vella, D. S. W. Benoit, and R. Choe, “Non-invasive diffuse correlation tomography reveals spatial and temporal blood flow differences in murine bone grafting approaches,” Biomed. Opt. Express 7, 3262–3279 (2016).
[Crossref]

S. Han, J. Johansson, M. Mireles, A. R. Proctor, M. D. Hoffman, J. B. Vella, D. S. W. Benoit, T. Durduran, and R. Choe, “Non-contact scanning diffuse correlation tomography system for three-dimensional blood flow imaging in a murine bone graft model,” Biomed. Opt. Express 6, 2695–2712 (2015).
[Crossref] [PubMed]

R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron. 18, 1367–1386 (2012).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007).
[Crossref] [PubMed]

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Cirrincione, C.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Citron, M. L.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Cocconi, G.

G. Cocconi, B. Di Blasio, G. Alberti, G. Bisagni, E. Botti, and G. Peracchia, “Problems in evaluating response of primary breast cancer to systemic therapy,” Breast Cancer Res. Treat. 4, 309–313 (1984).
[Crossref] [PubMed]

Coggle, J. E.

L. S. Hansen, J. E. Coggle, J. Wells, and M. W. Charles, “The influence of the hair cycle on the thickness of mouse skin,” Anat. Rec. 210, 569–573 (1984).
[Crossref] [PubMed]

Compton, M.

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279–285 (2005).
[Crossref]

Corlu, A.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Cronin, E. B.

Q. Zhu, P. A. DeFusco, A. J. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266, 433–442 (2012).
[Crossref] [PubMed]

Czarnota, G. J.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. J. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res. 16, 2605–2614 (2010).
[Crossref] [PubMed]

Czerniecki, B. J.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Dakhil, S. R.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Davidson, N. E.

J. A. Sparano, M. Wang, S. Martino, V. Jones, E. A. Perez, T. Saphner, A. C. Wolff, G. W. J. Sledge, W. C. Wood, and N. E. Davidson, “Weekly paclitaxel in the adjuvant treatment of breast cancer,” N. Engl. J. Med. 358, 1663–1671 (2008).
[Crossref] [PubMed]

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

de Weger, V. A.

V. A. de Weger, J. H. Beijnen, and J. H. M. Schellens, “Cellular and clinical pharmacology of the taxanes docetaxel and paclitaxel - a review,” Anticancer Drugs 25, 488–494 (2014).
[Crossref] [PubMed]

DeFusco, P. A.

Q. Zhu, P. A. DeFusco, A. J. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266, 433–442 (2012).
[Crossref] [PubMed]

DeMichele, A.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Dent, R.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. J. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res. 16, 2605–2614 (2010).
[Crossref] [PubMed]

Desjardins, M.

Devi, G. R.

A. S. Betof, C. D. Lascola, D. Weitzel, C. Landon, P. M. Scarbrough, G. R. Devi, G. Palmer, L. W. Jones, and M. W. Dewhirst, “Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise,” J. Natl. Cancer Inst. 107, djv040 (2015).
[Crossref] [PubMed]

Dewhirst, M. W.

A. S. Betof, C. D. Lascola, D. Weitzel, C. Landon, P. M. Scarbrough, G. R. Devi, G. Palmer, L. W. Jones, and M. W. Dewhirst, “Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise,” J. Natl. Cancer Inst. 107, djv040 (2015).
[Crossref] [PubMed]

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14, 054051 (2009).
[Crossref] [PubMed]

K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11, 889–900 (2009).
[Crossref] [PubMed]

Di Blasio, B.

G. Cocconi, B. Di Blasio, G. Alberti, G. Bisagni, E. Botti, and G. Peracchia, “Problems in evaluating response of primary breast cancer to systemic therapy,” Breast Cancer Res. Treat. 4, 309–313 (1984).
[Crossref] [PubMed]

Diop-Frimpong, B.

T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).
[Crossref] [PubMed]

Dögnitz, N.

Doot, R. K.

L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, J. M. Specht, R. K. Doot, T. J. Lawton, W. E. Barlow, B. F. Kurland, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow changes by Positron Emission Tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer,” J. Clin. Oncol. 26, 4449–4457 (2008).
[Crossref] [PubMed]

Douek, M.

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography,” Technol. Cancer Res. Treat. 10, 533–547 (2011).
[Crossref] [PubMed]

L. C. Enfield, A. P. Gibson, J. C. Hebden, and M. Douek, “Optical tomography of breast cancer - monitoring response to primary medical therapy,” Targ. Oncol. 4, 219–233 (2009).
[Crossref]

Du, J.

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

Dunnwald, L. K.

L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, J. M. Specht, R. K. Doot, T. J. Lawton, W. E. Barlow, B. F. Kurland, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow changes by Positron Emission Tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer,” J. Clin. Oncol. 26, 4449–4457 (2008).
[Crossref] [PubMed]

Durduran, T.

J. D. Johansson, M. Mireles, J. Morales-Dalmau, P. Farzam, M. Martínez-Lozano, O. Casanovas, and T. Durduran, “Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system,” Biomed. Opt. Express 7, 481–498 (2016).
[Crossref] [PubMed]

S. Han, J. Johansson, M. Mireles, A. R. Proctor, M. D. Hoffman, J. B. Vella, D. S. W. Benoit, T. Durduran, and R. Choe, “Non-contact scanning diffuse correlation tomography system for three-dimensional blood flow imaging in a murine bone graft model,” Biomed. Opt. Express 6, 2695–2712 (2015).
[Crossref] [PubMed]

P. Farzam and T. Durduran, “Multidistance diffuse correlation spectroscopy for simultaneous estimation of blood flow index and optical properties,” J. Biomed. Opt. 20, 55001 (2015).
[Crossref] [PubMed]

R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron. 18, 1367–1386 (2012).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H. W. Wang, W. M. F. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15, 15507–15516 (2007).
[Crossref] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007).
[Crossref] [PubMed]

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11, 3543–3552 (2005).
[Crossref] [PubMed]

T. Durduran, (Personal communication, August11, 2016).

Durian, D. J.

Durkin, A.

S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72, 4318–4328 (2012).
[Crossref] [PubMed]

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U. S. A. 108, 14626–14631 (2011).
[Crossref] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007).
[Crossref] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 104, 4014–4019 (2007).
[Crossref] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279–285 (2005).
[Crossref]

Ellis, G. K.

L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, J. M. Specht, R. K. Doot, T. J. Lawton, W. E. Barlow, B. F. Kurland, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow changes by Positron Emission Tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer,” J. Clin. Oncol. 26, 4449–4457 (2008).
[Crossref] [PubMed]

Emadi, A.

A. Emadi, R. J. Jones, and R. A. Brodsky, “Cyclophosphamide and cancer: golden anniversary,” Nat. Rev. Clin.Oncol. 6, 638–647 (2009).
[Crossref]

Enfield, L. C.

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography,” Technol. Cancer Res. Treat. 10, 533–547 (2011).
[Crossref] [PubMed]

L. C. Enfield, A. P. Gibson, J. C. Hebden, and M. Douek, “Optical tomography of breast cancer - monitoring response to primary medical therapy,” Targ. Oncol. 4, 219–233 (2009).
[Crossref]

Esposito, S.

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part i: anesthetic considerations in preclinical research,” ILAR J. 53, 55–69 (2012).
[Crossref]

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part ii: anesthetic considerations in preclinical imaging studies,” ILAR J. 53, 70–81 (2012).
[Crossref]

Evelhoch, J. L.

J. L. Evelhoch, R. J. Gillies, G. S. Karczmar, J. A. Koutcher, R. J. Maxwell, O. Nalcioglu, N. Raghunand, S. M. Ronen, B. D. Ross, and H. M. Swartz, “Applications of magnetic resonance in model systems: cancer therapeutics,” Neoplasia 2, 152–165 (2000).
[Crossref] [PubMed]

Farina, A.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
[Crossref]

Farzam, P.

Feldmann, H. J.

H. J. Feldmann, M. Molls, and P. Vaupel, “Blood flow and oxygenation status of human tumors,” Strhlentherapie und Onkologie 175, 1–9 (1999).
[Crossref]

Ferrone, C. R.

T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).
[Crossref] [PubMed]

Fidler, I. J.

J. E. Talmadge, R. K. Singh, I. J. Fidler, and A. Raz, “Murine models to evaluate novel and conventional therapeutic strategies for cancer,” Am. J. Pathol. 170, 793–804 (2007).
[Crossref] [PubMed]

Fitzmaurice, G. M.

G. M. Fitzmaurice, N. M. Laird, and J. H. Ware, Applied Longitudinal Analysis (John Wiley & Sons, Inc.1962).

Forero, J. A.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: Case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[Crossref] [PubMed]

Fraker, D. L.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Froehlich, H. M.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: Demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259, 365–374 (2011).
[Crossref] [PubMed]

Gagnon, L.

Gargiulo, S.

S. Gargiulo, M. Gramanzini, R. Liuzzi, A. Greco, A. Brunetti, and G. Vesce, “Effects of some anesthetic agents on skin microcirculation evaluated by laser doppler perfusion imaging in mice,” BMC Vet. Res. 9, 255 (2013).
[Crossref] [PubMed]

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part i: anesthetic considerations in preclinical research,” ILAR J. 53, 55–69 (2012).
[Crossref]

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part ii: anesthetic considerations in preclinical imaging studies,” ILAR J. 53, 70–81 (2012).
[Crossref]

Georgian-Smith, D.

E. Yeh, P. Slanetz, D. B. Kopans, E. Rafferty, D. Georgian-Smith, L. Moy, E. Halpern, R. Moore, I. Kuter, and A. Taghian, “Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer,” Am. J. Roentgenol. 184, 868–877 (2005).
[Crossref]

Geyer, C. E.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Gibbs, J.

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, “Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study,” J. Biomed. Opt. 10, 051503 (2005).
[Crossref] [PubMed]

Gibson, A. P.

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography,” Technol. Cancer Res. Treat. 10, 533–547 (2011).
[Crossref] [PubMed]

L. C. Enfield, A. P. Gibson, J. C. Hebden, and M. Douek, “Optical tomography of breast cancer - monitoring response to primary medical therapy,” Targ. Oncol. 4, 219–233 (2009).
[Crossref]

Gillies, R. J.

J. L. Evelhoch, R. J. Gillies, G. S. Karczmar, J. A. Koutcher, R. J. Maxwell, O. Nalcioglu, N. Raghunand, S. M. Ronen, B. D. Ross, and H. M. Swartz, “Applications of magnetic resonance in model systems: cancer therapeutics,” Neoplasia 2, 152–165 (2000).
[Crossref] [PubMed]

Glanzmann, T.

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44, 2689–2702 (1999).
[Crossref] [PubMed]

Glatstein, E.

G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11, 3543–3552 (2005).
[Crossref] [PubMed]

Goh, V.

M. Beresford, A. R. Padhani, V. Goh, and A. Makris, “Imaging breast cancer response during neoadjuvant systemic therapy,” Expert Rev. Anticancer Ther. 5, 893–905 (2005).
[Crossref] [PubMed]

Golub, G. H.

G. H. Golub and J. H. Welsh, “Calculation of gauss quadrature rules,” Math. Comput. 23, 221–230 (1969).
[Crossref]

Gonzalez-Angulo, A. M.

A. S. Caudle, A. M. Gonzalez-Angulo, K. K. Hunt, P. Liu, L. Pusztai, W. F. Symmans, H. M. Kuerer, E. A. Mittendorf, G. N. Hortobagyi, and F. Meric-Bernstam, “Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer,” J. Clin. Onc. 28, 1821–1828 (2010).
[Crossref]

Gradishar, W. J.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Gralow, J. R.

L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, J. M. Specht, R. K. Doot, T. J. Lawton, W. E. Barlow, B. F. Kurland, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow changes by Positron Emission Tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer,” J. Clin. Oncol. 26, 4449–4457 (2008).
[Crossref] [PubMed]

Gramanzini, M.

S. Gargiulo, M. Gramanzini, R. Liuzzi, A. Greco, A. Brunetti, and G. Vesce, “Effects of some anesthetic agents on skin microcirculation evaluated by laser doppler perfusion imaging in mice,” BMC Vet. Res. 9, 255 (2013).
[Crossref] [PubMed]

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part ii: anesthetic considerations in preclinical imaging studies,” ILAR J. 53, 70–81 (2012).
[Crossref]

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part i: anesthetic considerations in preclinical research,” ILAR J. 53, 55–69 (2012).
[Crossref]

Gratton, E.

Y. Santoro, A. Leproux, A. Cerussi, B. Tromberg, and E. Gratton, “Breast cancer spatial heterogeneity in near-infrared spectra and the prediction of neoadjuvant chemotherapy response,” J. Biomed. Opt. 16, 097007 (2011).
[Crossref] [PubMed]

Greco, A.

S. Gargiulo, M. Gramanzini, R. Liuzzi, A. Greco, A. Brunetti, and G. Vesce, “Effects of some anesthetic agents on skin microcirculation evaluated by laser doppler perfusion imaging in mice,” BMC Vet. Res. 9, 255 (2013).
[Crossref] [PubMed]

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part i: anesthetic considerations in preclinical research,” ILAR J. 53, 55–69 (2012).
[Crossref]

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part ii: anesthetic considerations in preclinical imaging studies,” ILAR J. 53, 70–81 (2012).
[Crossref]

Grosicka-Koptyra, M.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Gunasekara, A.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. J. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res. 16, 2605–2614 (2010).
[Crossref] [PubMed]

Guy, R. L.

S. J. Vinnicombe, A. D. MacVica, R. L. Guy, J. P. Sloane, T. J. Powles, G. Knee, and J. E. Husband, “Primary breast cancer: mammographic changes after neoadjuvant chemotherapy, with pathologic correlation,” Radiology 198, 333–340 (1996).
[Crossref] [PubMed]

Halpern, E.

E. Yeh, P. Slanetz, D. B. Kopans, E. Rafferty, D. Georgian-Smith, L. Moy, E. Halpern, R. Moore, I. Kuter, and A. Taghian, “Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer,” Am. J. Roentgenol. 184, 868–877 (2005).
[Crossref]

Han, S.

Hansen, L. S.

L. S. Hansen, J. E. Coggle, J. Wells, and M. W. Charles, “The influence of the hair cycle on the thickness of mouse skin,” Anat. Rec. 210, 569–573 (1984).
[Crossref] [PubMed]

Hart, J.

Q. Zhu, P. A. DeFusco, A. J. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266, 433–442 (2012).
[Crossref] [PubMed]

Hebden, J. C.

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography,” Technol. Cancer Res. Treat. 10, 533–547 (2011).
[Crossref] [PubMed]

L. C. Enfield, A. P. Gibson, J. C. Hebden, and M. Douek, “Optical tomography of breast cancer - monitoring response to primary medical therapy,” Targ. Oncol. 4, 219–233 (2009).
[Crossref]

Hegde, P.

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization,” Neoplasia 10, 1028–1040 (2008).
[Crossref] [PubMed]

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Hegde, P. U.

Q. Zhu, P. A. DeFusco, A. J. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266, 433–442 (2012).
[Crossref] [PubMed]

Hernandez-Boussard, T.

C. F. Thorn, C. Oshiro, S. Marsh, T. Hernandez-Boussard, H. McLeod, T. E. Klein, and R. B. Altman, “Doxorubicin pathways: pharmacodynamics and adverse effects,” Pharmacogenet. Genomics 21, 440–446 (2011).
[Crossref]

Hockel, M.

M. Hockel and P. Vaupel, “Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects,” J. Natl. Cancer Inst. 93, 266–276 (2001).
[Crossref] [PubMed]

P. Vaupel and M. Hockel, “Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance,” Int. J. Oncol. 17, 869–879 (2000).
[PubMed]

Hoehn, J. L.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Hoffman, M. D.

Holland, J. F.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Hornicek, F. J.

T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).
[Crossref] [PubMed]

Hortobagyi, G. N.

A. S. Caudle, A. M. Gonzalez-Angulo, K. K. Hunt, P. Liu, L. Pusztai, W. F. Symmans, H. M. Kuerer, E. A. Mittendorf, G. N. Hortobagyi, and F. Meric-Bernstam, “Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer,” J. Clin. Onc. 28, 1821–1828 (2010).
[Crossref]

M. C. Segel, D. D. Paulus, and G. N. Hortobagyi, “Advanced primary breast cancer: assessment at mammography of response to induction chemotherapy,” Radiology 169, 49–54 (1988).
[Crossref] [PubMed]

Hsiang, D.

S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72, 4318–4328 (2012).
[Crossref] [PubMed]

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U. S. A. 108, 14626–14631 (2011).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Phil. Trans. R. Soc. A 369, 4512–4530 (2011).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17, 1031–1039 (2010).
[Crossref] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 104, 4014–4019 (2007).
[Crossref] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007).
[Crossref] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279–285 (2005).
[Crossref]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

Hu, Y.

J. Alexandre, Y. Hu, W. Lu, H. Pelicano, and P. Huang, “Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species,” Cancer Res. 67, 3512–3517 (2007).
[Crossref] [PubMed]

Huang, M.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Huang, P.

J. Alexandre, Y. Hu, W. Lu, H. Pelicano, and P. Huang, “Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species,” Cancer Res. 67, 3512–3517 (2007).
[Crossref] [PubMed]

Hudis, C.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Hudis, C. A.

C. A. Hudis, “Current status and future directions in breast cancer therapy,” Clin. Breast Cancer 4, Suppl. 2, S70–S75 (2003).
[Crossref] [PubMed]

Hunt, K. K.

A. S. Caudle, A. M. Gonzalez-Angulo, K. K. Hunt, P. Liu, L. Pusztai, W. F. Symmans, H. M. Kuerer, E. A. Mittendorf, G. N. Hortobagyi, and F. Meric-Bernstam, “Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer,” J. Clin. Onc. 28, 1821–1828 (2010).
[Crossref]

Hurd, D.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Husband, J. E.

S. J. Vinnicombe, A. D. MacVica, R. L. Guy, J. P. Sloane, T. J. Powles, G. Knee, and J. E. Husband, “Primary breast cancer: mammographic changes after neoadjuvant chemotherapy, with pathologic correlation,” Radiology 198, 333–340 (1996).
[Crossref] [PubMed]

Hylton, N.

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, “Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study,” J. Biomed. Opt. 10, 051503 (2005).
[Crossref] [PubMed]

Ingle, J. N.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37–R61 (2013).
[Crossref] [PubMed]

Jagjivan, B.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Jain, R. K.

R. K. Jain, J. D. Martin, and T. Stylianopoulos, “The role of mechanical forces in tumor growth and therapy,” Annu. Rev. Biomed. Eng. 16, 321–346 (2014).
[Crossref] [PubMed]

T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).
[Crossref] [PubMed]

R. K. Jain, “Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy,” Science 307, 58–62 (2005).
[Crossref] [PubMed]

Jain, S. R.

T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).
[Crossref] [PubMed]

Jakubowski, D. B.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

Jehanne-Lacasse, J.

Jiang, S.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: Demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259, 365–374 (2011).
[Crossref] [PubMed]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: Case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[Crossref] [PubMed]

Johansson, J.

Johansson, J. D.

Jones, L. W.

A. S. Betof, C. D. Lascola, D. Weitzel, C. Landon, P. M. Scarbrough, G. R. Devi, G. Palmer, L. W. Jones, and M. W. Dewhirst, “Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise,” J. Natl. Cancer Inst. 107, djv040 (2015).
[Crossref] [PubMed]

Jones, R. J.

A. Emadi, R. J. Jones, and R. A. Brodsky, “Cyclophosphamide and cancer: golden anniversary,” Nat. Rev. Clin.Oncol. 6, 638–647 (2009).
[Crossref]

Jones, V.

J. A. Sparano, M. Wang, S. Martino, V. Jones, E. A. Perez, T. Saphner, A. C. Wolff, G. W. J. Sledge, W. C. Wood, and N. E. Davidson, “Weekly paclitaxel in the adjuvant treatment of breast cancer,” N. Engl. J. Med. 358, 1663–1671 (2008).
[Crossref] [PubMed]

Kahlenberg, M. S.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Kane, M.

Q. Zhu, P. A. DeFusco, A. J. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266, 433–442 (2012).
[Crossref] [PubMed]

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization,” Neoplasia 10, 1028–1040 (2008).
[Crossref] [PubMed]

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Karczmar, G. S.

J. L. Evelhoch, R. J. Gillies, G. S. Karczmar, J. A. Koutcher, R. J. Maxwell, O. Nalcioglu, N. Raghunand, S. M. Ronen, B. D. Ross, and H. M. Swartz, “Applications of magnetic resonance in model systems: cancer therapeutics,” Neoplasia 2, 152–165 (2000).
[Crossref] [PubMed]

Kaufman, P. A.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: Demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259, 365–374 (2011).
[Crossref] [PubMed]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: Case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[Crossref] [PubMed]

Kienle, A.

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44, 2689–2702 (1999).
[Crossref] [PubMed]

A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998).
[Crossref]

Kilger, A.

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

King, K. M.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Klein, D.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14, 054051 (2009).
[Crossref] [PubMed]

Klein, T. E.

C. F. Thorn, C. Oshiro, S. Marsh, T. Hernandez-Boussard, H. McLeod, T. E. Klein, and R. B. Altman, “Doxorubicin pathways: pharmacodynamics and adverse effects,” Pharmacogenet. Genomics 21, 440–446 (2011).
[Crossref]

Knee, G.

S. J. Vinnicombe, A. D. MacVica, R. L. Guy, J. P. Sloane, T. J. Powles, G. Knee, and J. E. Husband, “Primary breast cancer: mammographic changes after neoadjuvant chemotherapy, with pathologic correlation,” Radiology 198, 333–340 (1996).
[Crossref] [PubMed]

Kogel, C. A.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: Case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[Crossref] [PubMed]

Konecky, S. D.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Kopans, D. B.

E. Yeh, P. Slanetz, D. B. Kopans, E. Rafferty, D. Georgian-Smith, L. Moy, E. Halpern, R. Moore, I. Kuter, and A. Taghian, “Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer,” Am. J. Roentgenol. 184, 868–877 (2005).
[Crossref]

Koutcher, J. A.

J. L. Evelhoch, R. J. Gillies, G. S. Karczmar, J. A. Koutcher, R. J. Maxwell, O. Nalcioglu, N. Raghunand, S. M. Ronen, B. D. Ross, and H. M. Swartz, “Applications of magnetic resonance in model systems: cancer therapeutics,” Neoplasia 2, 152–165 (2000).
[Crossref] [PubMed]

Kuerer, H. M.

A. S. Caudle, A. M. Gonzalez-Angulo, K. K. Hunt, P. Liu, L. Pusztai, W. F. Symmans, H. M. Kuerer, E. A. Mittendorf, G. N. Hortobagyi, and F. Meric-Bernstam, “Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer,” J. Clin. Onc. 28, 1821–1828 (2010).
[Crossref]

Kurland, B. F.

L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, J. M. Specht, R. K. Doot, T. J. Lawton, W. E. Barlow, B. F. Kurland, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow changes by Positron Emission Tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer,” J. Clin. Oncol. 26, 4449–4457 (2008).
[Crossref] [PubMed]

Kurtzma, S. H.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Kurtzman, S. H.

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization,” Neoplasia 10, 1028–1040 (2008).
[Crossref] [PubMed]

Kuter, I.

E. Yeh, P. Slanetz, D. B. Kopans, E. Rafferty, D. Georgian-Smith, L. Moy, E. Halpern, R. Moore, I. Kuter, and A. Taghian, “Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer,” Am. J. Roentgenol. 184, 868–877 (2005).
[Crossref]

Laird, N. M.

G. M. Fitzmaurice, N. M. Laird, and J. H. Ware, Applied Longitudinal Analysis (John Wiley & Sons, Inc.1962).

Landon, C.

A. S. Betof, C. D. Lascola, D. Weitzel, C. Landon, P. M. Scarbrough, G. R. Devi, G. Palmer, L. W. Jones, and M. W. Dewhirst, “Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise,” J. Natl. Cancer Inst. 107, djv040 (2015).
[Crossref] [PubMed]

Lascola, C. D.

A. S. Betof, C. D. Lascola, D. Weitzel, C. Landon, P. M. Scarbrough, G. R. Devi, G. Palmer, L. W. Jones, and M. W. Dewhirst, “Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise,” J. Natl. Cancer Inst. 107, djv040 (2015).
[Crossref] [PubMed]

Lawton, T. J.

L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, J. M. Specht, R. K. Doot, T. J. Lawton, W. E. Barlow, B. F. Kurland, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow changes by Positron Emission Tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer,” J. Clin. Oncol. 26, 4449–4457 (2008).
[Crossref] [PubMed]

Lee, K.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Lee, W. M. F.

Lemieux, P. A.

Leproux, A.

S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72, 4318–4328 (2012).
[Crossref] [PubMed]

Y. Santoro, A. Leproux, A. Cerussi, B. Tromberg, and E. Gratton, “Breast cancer spatial heterogeneity in near-infrared spectra and the prediction of neoadjuvant chemotherapy response,” J. Biomed. Opt. 16, 097007 (2011).
[Crossref] [PubMed]

Lesage, F.

Leung, E. H.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Li, Z.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: Demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259, 365–374 (2011).
[Crossref] [PubMed]

Linden, H. M.

L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, J. M. Specht, R. K. Doot, T. J. Lawton, W. E. Barlow, B. F. Kurland, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow changes by Positron Emission Tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer,” J. Clin. Oncol. 26, 4449–4457 (2008).
[Crossref] [PubMed]

Liu, P.

A. S. Caudle, A. M. Gonzalez-Angulo, K. K. Hunt, P. Liu, L. Pusztai, W. F. Symmans, H. M. Kuerer, E. A. Mittendorf, G. N. Hortobagyi, and F. Meric-Bernstam, “Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer,” J. Clin. Onc. 28, 1821–1828 (2010).
[Crossref]

Liuzzi, R.

S. Gargiulo, M. Gramanzini, R. Liuzzi, A. Greco, A. Brunetti, and G. Vesce, “Effects of some anesthetic agents on skin microcirculation evaluated by laser doppler perfusion imaging in mice,” BMC Vet. Res. 9, 255 (2013).
[Crossref] [PubMed]

Livingston, R.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Livingston, R. B.

L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, J. M. Specht, R. K. Doot, T. J. Lawton, W. E. Barlow, B. F. Kurland, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow changes by Positron Emission Tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer,” J. Clin. Oncol. 26, 4449–4457 (2008).
[Crossref] [PubMed]

Loevner, L.

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

Lu, W.

J. Alexandre, Y. Hu, W. Lu, H. Pelicano, and P. Huang, “Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species,” Cancer Res. 67, 3512–3517 (2007).
[Crossref] [PubMed]

Lustig, R.

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

MacVica, A. D.

S. J. Vinnicombe, A. D. MacVica, R. L. Guy, J. P. Sloane, T. J. Powles, G. Knee, and J. E. Husband, “Primary breast cancer: mammographic changes after neoadjuvant chemotherapy, with pathologic correlation,” Radiology 198, 333–340 (1996).
[Crossref] [PubMed]

Makonnen, S.

Makris, A.

M. Beresford, A. R. Padhani, V. Goh, and A. Makris, “Imaging breast cancer response during neoadjuvant systemic therapy,” Expert Rev. Anticancer Ther. 5, 893–905 (2005).
[Crossref] [PubMed]

Mamounas, E. P.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Mankoff, D. A.

L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, J. M. Specht, R. K. Doot, T. J. Lawton, W. E. Barlow, B. F. Kurland, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow changes by Positron Emission Tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer,” J. Clin. Oncol. 26, 4449–4457 (2008).
[Crossref] [PubMed]

Margolese, R. G.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Mark, M.

M. Mark, R. Walter, D. O. Meredith, and W. H. Reinhart, “Commercial taxane formulations induce stomatocytosis and increase blood viscosity,” Br. J. Pharmacol. 134, 1207–1214 (2001).
[Crossref] [PubMed]

Marsh, S.

C. F. Thorn, C. Oshiro, S. Marsh, T. Hernandez-Boussard, H. McLeod, T. E. Klein, and R. B. Altman, “Doxorubicin pathways: pharmacodynamics and adverse effects,” Pharmacogenet. Genomics 21, 440–446 (2011).
[Crossref]

Martelli, F.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
[Crossref]

Martin, J. D.

R. K. Jain, J. D. Martin, and T. Stylianopoulos, “The role of mechanical forces in tumor growth and therapy,” Annu. Rev. Biomed. Eng. 16, 321–346 (2014).
[Crossref] [PubMed]

T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).
[Crossref] [PubMed]

Martínez-Lozano, M.

Martino, S.

J. A. Sparano, M. Wang, S. Martino, V. Jones, E. A. Perez, T. Saphner, A. C. Wolff, G. W. J. Sledge, W. C. Wood, and N. E. Davidson, “Weekly paclitaxel in the adjuvant treatment of breast cancer,” N. Engl. J. Med. 358, 1663–1671 (2008).
[Crossref] [PubMed]

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Maxwell, R. J.

J. L. Evelhoch, R. J. Gillies, G. S. Karczmar, J. A. Koutcher, R. J. Maxwell, O. Nalcioglu, N. Raghunand, S. M. Ronen, B. D. Ross, and H. M. Swartz, “Applications of magnetic resonance in model systems: cancer therapeutics,” Neoplasia 2, 152–165 (2000).
[Crossref] [PubMed]

McLaren, C.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U. S. A. 108, 14626–14631 (2011).
[Crossref] [PubMed]

McLeod, H.

C. F. Thorn, C. Oshiro, S. Marsh, T. Hernandez-Boussard, H. McLeod, T. E. Klein, and R. B. Altman, “Doxorubicin pathways: pharmacodynamics and adverse effects,” Pharmacogenet. Genomics 21, 440–446 (2011).
[Crossref]

Mehta, R.

S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72, 4318–4328 (2012).
[Crossref] [PubMed]

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U. S. A. 108, 14626–14631 (2011).
[Crossref] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 104, 4014–4019 (2007).
[Crossref] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007).
[Crossref] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279–285 (2005).
[Crossref]

Mehta, R. S.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Phil. Trans. R. Soc. A 369, 4512–4530 (2011).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17, 1031–1039 (2010).
[Crossref] [PubMed]

Meredith, D. O.

M. Mark, R. Walter, D. O. Meredith, and W. H. Reinhart, “Commercial taxane formulations induce stomatocytosis and increase blood viscosity,” Br. J. Pharmacol. 134, 1207–1214 (2001).
[Crossref] [PubMed]

Meric-Bernstam, F.

A. S. Caudle, A. M. Gonzalez-Angulo, K. K. Hunt, P. Liu, L. Pusztai, W. F. Symmans, H. M. Kuerer, E. A. Mittendorf, G. N. Hortobagyi, and F. Meric-Bernstam, “Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer,” J. Clin. Onc. 28, 1821–1828 (2010).
[Crossref]

Mireles, M.

Mittendorf, E. A.

A. S. Caudle, A. M. Gonzalez-Angulo, K. K. Hunt, P. Liu, L. Pusztai, W. F. Symmans, H. M. Kuerer, E. A. Mittendorf, G. N. Hortobagyi, and F. Meric-Bernstam, “Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer,” J. Clin. Onc. 28, 1821–1828 (2010).
[Crossref]

Molls, M.

H. J. Feldmann, M. Molls, and P. Vaupel, “Blood flow and oxygenation status of human tumors,” Strhlentherapie und Onkologie 175, 1–9 (1999).
[Crossref]

Moore, R.

E. Yeh, P. Slanetz, D. B. Kopans, E. Rafferty, D. Georgian-Smith, L. Moy, E. Halpern, R. Moore, I. Kuter, and A. Taghian, “Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer,” Am. J. Roentgenol. 184, 868–877 (2005).
[Crossref]

Morales-Dalmau, J.

Moy, L.

E. Yeh, P. Slanetz, D. B. Kopans, E. Rafferty, D. Georgian-Smith, L. Moy, E. Halpern, R. Moore, I. Kuter, and A. Taghian, “Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer,” Am. J. Roentgenol. 184, 868–877 (2005).
[Crossref]

Muffly, L. S.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: Case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[Crossref] [PubMed]

Munn, L. L.

T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).
[Crossref] [PubMed]

Muss, H. B.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Nalcioglu, O.

J. L. Evelhoch, R. J. Gillies, G. S. Karczmar, J. A. Koutcher, R. J. Maxwell, O. Nalcioglu, N. Raghunand, S. M. Ronen, B. D. Ross, and H. M. Swartz, “Applications of magnetic resonance in model systems: cancer therapeutics,” Neoplasia 2, 152–165 (2000).
[Crossref] [PubMed]

Nihal, M.

S. Reagan-Shaw, M. Nihal, and N. Ahmad, “Dose translation from animal to human studies revisited,” FASEB J. 22, 659–661 (2007).
[Crossref] [PubMed]

Nioka, S.

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

Norton, L.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

O’Sullivan, T. D.

S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72, 4318–4328 (2012).
[Crossref] [PubMed]

Oshiro, C.

C. F. Thorn, C. Oshiro, S. Marsh, T. Hernandez-Boussard, H. McLeod, T. E. Klein, and R. B. Altman, “Doxorubicin pathways: pharmacodynamics and adverse effects,” Pharmacogenet. Genomics 21, 440–446 (2011).
[Crossref]

Ostrand-Rosenberg, S.

B. A. Pulaski and S. Ostrand-Rosenberg, “Mouse 4T1 breast tumor model,” Curr. Protoc. Immunol. 20, Unit 202 (2001).
[Crossref]

Padhani, A. R.

M. Beresford, A. R. Padhani, V. Goh, and A. Makris, “Imaging breast cancer response during neoadjuvant systemic therapy,” Expert Rev. Anticancer Ther. 5, 893–905 (2005).
[Crossref] [PubMed]

Paik, S.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Pajon, E. R.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Pakalniskis, M. G.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: Demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259, 365–374 (2011).
[Crossref] [PubMed]

Palmer, G.

A. S. Betof, C. D. Lascola, D. Weitzel, C. Landon, P. M. Scarbrough, G. R. Devi, G. Palmer, L. W. Jones, and M. W. Dewhirst, “Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise,” J. Natl. Cancer Inst. 107, djv040 (2015).
[Crossref] [PubMed]

Pasquier, E.

E. Pasquier, M. Carré, B. Pourroy, L. Camoin, O. Rebaï, C. Briand, and D. Braguer, “Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway,” Mol. Cancer Ther. 3, 1301–1310 (2004).
[PubMed]

Patterson, M. S.

Paulsen, K. D.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: Demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259, 365–374 (2011).
[Crossref] [PubMed]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: Case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[Crossref] [PubMed]

Paulus, D. D.

M. C. Segel, D. D. Paulus, and G. N. Hortobagyi, “Advanced primary breast cancer: assessment at mammography of response to induction chemotherapy,” Radiology 169, 49–54 (1988).
[Crossref] [PubMed]

Pelicano, H.

J. Alexandre, Y. Hu, W. Lu, H. Pelicano, and P. Huang, “Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species,” Cancer Res. 67, 3512–3517 (2007).
[Crossref] [PubMed]

Peracchia, G.

G. Cocconi, B. Di Blasio, G. Alberti, G. Bisagni, E. Botti, and G. Peracchia, “Problems in evaluating response of primary breast cancer to systemic therapy,” Breast Cancer Res. Treat. 4, 309–313 (1984).
[Crossref] [PubMed]

Perez, E. A.

J. A. Sparano, M. Wang, S. Martino, V. Jones, E. A. Perez, T. Saphner, A. C. Wolff, G. W. J. Sledge, W. C. Wood, and N. E. Davidson, “Weekly paclitaxel in the adjuvant treatment of breast cancer,” N. Engl. J. Med. 358, 1663–1671 (2008).
[Crossref] [PubMed]

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Pifferi, A.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
[Crossref]

Pinheiro, J. C.

J. C. Pinheiro and D. M. Bates, Mixed-Effects Models in S and S-PLUS (Springer, 2000).
[Crossref]

Pogue, B. W.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: Demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259, 365–374 (2011).
[Crossref] [PubMed]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: Case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[Crossref] [PubMed]

Poplack, S. P.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: Demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259, 365–374 (2011).
[Crossref] [PubMed]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: Case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[Crossref] [PubMed]

Pourroy, B.

E. Pasquier, M. Carré, B. Pourroy, L. Camoin, O. Rebaï, C. Briand, and D. Braguer, “Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway,” Mol. Cancer Ther. 3, 1301–1310 (2004).
[PubMed]

Powles, T. J.

S. J. Vinnicombe, A. D. MacVica, R. L. Guy, J. P. Sloane, T. J. Powles, G. Knee, and J. E. Husband, “Primary breast cancer: mammographic changes after neoadjuvant chemotherapy, with pathologic correlation,” Radiology 198, 333–340 (1996).
[Crossref] [PubMed]

Proctor, A. R.

Pulaski, B. A.

B. A. Pulaski and S. Ostrand-Rosenberg, “Mouse 4T1 breast tumor model,” Curr. Protoc. Immunol. 20, Unit 202 (2001).
[Crossref]

Purushotham, A. D.

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography,” Technol. Cancer Res. Treat. 10, 533–547 (2011).
[Crossref] [PubMed]

Pusztai, L.

A. S. Caudle, A. M. Gonzalez-Angulo, K. K. Hunt, P. Liu, L. Pusztai, W. F. Symmans, H. M. Kuerer, E. A. Mittendorf, G. N. Hortobagyi, and F. Meric-Bernstam, “Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer,” J. Clin. Onc. 28, 1821–1828 (2010).
[Crossref]

Putt, M. E.

G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11, 3543–3552 (2005).
[Crossref] [PubMed]

Quon, H.

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

Rafferty, E.

E. Yeh, P. Slanetz, D. B. Kopans, E. Rafferty, D. Georgian-Smith, L. Moy, E. Halpern, R. Moore, I. Kuter, and A. Taghian, “Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer,” Am. J. Roentgenol. 184, 868–877 (2005).
[Crossref]

Raghunand, N.

J. L. Evelhoch, R. J. Gillies, G. S. Karczmar, J. A. Koutcher, R. J. Maxwell, O. Nalcioglu, N. Raghunand, S. M. Ronen, B. D. Ross, and H. M. Swartz, “Applications of magnetic resonance in model systems: cancer therapeutics,” Neoplasia 2, 152–165 (2000).
[Crossref] [PubMed]

Ramanujam, N.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14, 054051 (2009).
[Crossref] [PubMed]

K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11, 889–900 (2009).
[Crossref] [PubMed]

Rastogi, P.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Raz, A.

J. E. Talmadge, R. K. Singh, I. J. Fidler, and A. Raz, “Murine models to evaluate novel and conventional therapeutic strategies for cancer,” Am. J. Pathol. 170, 793–804 (2007).
[Crossref] [PubMed]

Reagan-Shaw, S.

S. Reagan-Shaw, M. Nihal, and N. Ahmad, “Dose translation from animal to human studies revisited,” FASEB J. 22, 659–661 (2007).
[Crossref] [PubMed]

Rebaï, O.

E. Pasquier, M. Carré, B. Pourroy, L. Camoin, O. Rebaï, C. Briand, and D. Braguer, “Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway,” Mol. Cancer Ther. 3, 1301–1310 (2004).
[PubMed]

Reinhart, W. H.

M. Mark, R. Walter, D. O. Meredith, and W. H. Reinhart, “Commercial taxane formulations induce stomatocytosis and increase blood viscosity,” Br. J. Pharmacol. 134, 1207–1214 (2001).
[Crossref] [PubMed]

Ricci, A. J.

Q. Zhu, P. A. DeFusco, A. J. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266, 433–442 (2012).
[Crossref] [PubMed]

Robert, J.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Robidoux, A.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Roblyer, D.

S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72, 4318–4328 (2012).
[Crossref] [PubMed]

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U. S. A. 108, 14626–14631 (2011).
[Crossref] [PubMed]

Ronen, S. M.

J. L. Evelhoch, R. J. Gillies, G. S. Karczmar, J. A. Koutcher, R. J. Maxwell, O. Nalcioglu, N. Raghunand, S. M. Ronen, B. D. Ross, and H. M. Swartz, “Applications of magnetic resonance in model systems: cancer therapeutics,” Neoplasia 2, 152–165 (2000).
[Crossref] [PubMed]

Rosen, M. A.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Ross, B. D.

J. L. Evelhoch, R. J. Gillies, G. S. Karczmar, J. A. Koutcher, R. J. Maxwell, O. Nalcioglu, N. Raghunand, S. M. Ronen, B. D. Ross, and H. M. Swartz, “Applications of magnetic resonance in model systems: cancer therapeutics,” Neoplasia 2, 152–165 (2000).
[Crossref] [PubMed]

Rycroft, M.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. J. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res. 16, 2605–2614 (2010).
[Crossref] [PubMed]

Santoro, Y.

S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72, 4318–4328 (2012).
[Crossref] [PubMed]

Y. Santoro, A. Leproux, A. Cerussi, B. Tromberg, and E. Gratton, “Breast cancer spatial heterogeneity in near-infrared spectra and the prediction of neoadjuvant chemotherapy response,” J. Biomed. Opt. 16, 097007 (2011).
[Crossref] [PubMed]

Saphner, T.

J. A. Sparano, M. Wang, S. Martino, V. Jones, E. A. Perez, T. Saphner, A. C. Wolff, G. W. J. Sledge, W. C. Wood, and N. E. Davidson, “Weekly paclitaxel in the adjuvant treatment of breast cancer,” N. Engl. J. Med. 358, 1663–1671 (2008).
[Crossref] [PubMed]

Sartor, C. I.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Saunders, M.

G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11, 3543–3552 (2005).
[Crossref] [PubMed]

Scarbrough, P. M.

A. S. Betof, C. D. Lascola, D. Weitzel, C. Landon, P. M. Scarbrough, G. R. Devi, G. Palmer, L. W. Jones, and M. W. Dewhirst, “Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise,” J. Natl. Cancer Inst. 107, djv040 (2015).
[Crossref] [PubMed]

Schellens, J. H. M.

V. A. de Weger, J. H. Beijnen, and J. H. M. Schellens, “Cellular and clinical pharmacology of the taxanes docetaxel and paclitaxel - a review,” Anticancer Drugs 25, 488–494 (2014).
[Crossref] [PubMed]

Schilsky, R. L.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Schroeder, T.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14, 054051 (2009).
[Crossref] [PubMed]

Schubert, E. K.

L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, J. M. Specht, R. K. Doot, T. J. Lawton, W. E. Barlow, B. F. Kurland, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow changes by Positron Emission Tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer,” J. Clin. Oncol. 26, 4449–4457 (2008).
[Crossref] [PubMed]

Schwab, M. C.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: Demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259, 365–374 (2011).
[Crossref] [PubMed]

Schwartz, G. N.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: Case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[Crossref] [PubMed]

Segel, M. C.

M. C. Segel, D. D. Paulus, and G. N. Hortobagyi, “Advanced primary breast cancer: assessment at mammography of response to induction chemotherapy,” Radiology 169, 49–54 (1988).
[Crossref] [PubMed]

Sehgal, C. M.

G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11, 3543–3552 (2005).
[Crossref] [PubMed]

Shah, N.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 104, 4014–4019 (2007).
[Crossref] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007).
[Crossref] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279–285 (2005).
[Crossref]

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, “Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study,” J. Biomed. Opt. 10, 051503 (2005).
[Crossref] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

Shang, Y.

Y. Shang and G. Yu, “A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues,” Appl. Phys. Lett. 105, 133702 (2014).
[Crossref]

Singh, R. K.

J. E. Talmadge, R. K. Singh, I. J. Fidler, and A. Raz, “Murine models to evaluate novel and conventional therapeutic strategies for cancer,” Am. J. Pathol. 170, 793–804 (2007).
[Crossref] [PubMed]

Slanetz, P.

E. Yeh, P. Slanetz, D. B. Kopans, E. Rafferty, D. Georgian-Smith, L. Moy, E. Halpern, R. Moore, I. Kuter, and A. Taghian, “Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer,” Am. J. Roentgenol. 184, 868–877 (2005).
[Crossref]

Sledge, G. W. J.

J. A. Sparano, M. Wang, S. Martino, V. Jones, E. A. Perez, T. Saphner, A. C. Wolff, G. W. J. Sledge, W. C. Wood, and N. E. Davidson, “Weekly paclitaxel in the adjuvant treatment of breast cancer,” N. Engl. J. Med. 358, 1663–1671 (2008).
[Crossref] [PubMed]

Sloane, J. P.

S. J. Vinnicombe, A. D. MacVica, R. L. Guy, J. P. Sloane, T. J. Powles, G. Knee, and J. E. Husband, “Primary breast cancer: mammographic changes after neoadjuvant chemotherapy, with pathologic correlation,” Radiology 198, 333–340 (1996).
[Crossref] [PubMed]

Smith, B. L.

T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).
[Crossref] [PubMed]

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Soliman, H.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. J. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res. 16, 2605–2614 (2010).
[Crossref] [PubMed]

Sparano, J. A.

J. A. Sparano, M. Wang, S. Martino, V. Jones, E. A. Perez, T. Saphner, A. C. Wolff, G. W. J. Sledge, W. C. Wood, and N. E. Davidson, “Weekly paclitaxel in the adjuvant treatment of breast cancer,” N. Engl. J. Med. 358, 1663–1671 (2008).
[Crossref] [PubMed]

Spayne, J.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. J. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res. 16, 2605–2614 (2010).
[Crossref] [PubMed]

Specht, J. M.

L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, J. M. Specht, R. K. Doot, T. J. Lawton, W. E. Barlow, B. F. Kurland, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow changes by Positron Emission Tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer,” J. Clin. Oncol. 26, 4449–4457 (2008).
[Crossref] [PubMed]

Spinelli, L.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
[Crossref]

Stylianopoulos, T.

R. K. Jain, J. D. Martin, and T. Stylianopoulos, “The role of mechanical forces in tumor growth and therapy,” Annu. Rev. Biomed. Eng. 16, 321–346 (2014).
[Crossref] [PubMed]

T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).
[Crossref] [PubMed]

Sunar, U.

U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H. W. Wang, W. M. F. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15, 15507–15516 (2007).
[Crossref] [PubMed]

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

Swartz, H. M.

J. L. Evelhoch, R. J. Gillies, G. S. Karczmar, J. A. Koutcher, R. J. Maxwell, O. Nalcioglu, N. Raghunand, S. M. Ronen, B. D. Ross, and H. M. Swartz, “Applications of magnetic resonance in model systems: cancer therapeutics,” Neoplasia 2, 152–165 (2000).
[Crossref] [PubMed]

Symmans, W. F.

A. S. Caudle, A. M. Gonzalez-Angulo, K. K. Hunt, P. Liu, L. Pusztai, W. F. Symmans, H. M. Kuerer, E. A. Mittendorf, G. N. Hortobagyi, and F. Meric-Bernstam, “Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer,” J. Clin. Onc. 28, 1821–1828 (2010).
[Crossref]

Taghian, A.

E. Yeh, P. Slanetz, D. B. Kopans, E. Rafferty, D. Georgian-Smith, L. Moy, E. Halpern, R. Moore, I. Kuter, and A. Taghian, “Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer,” Am. J. Roentgenol. 184, 868–877 (2005).
[Crossref]

Talmadge, J. E.

J. E. Talmadge, R. K. Singh, I. J. Fidler, and A. Raz, “Murine models to evaluate novel and conventional therapeutic strategies for cancer,” Am. J. Pathol. 170, 793–804 (2007).
[Crossref] [PubMed]

Tamkus, D.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Tanamai, V. W.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Phil. Trans. R. Soc. A 369, 4512–4530 (2011).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17, 1031–1039 (2010).
[Crossref] [PubMed]

Tanamai, W.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U. S. A. 108, 14626–14631 (2011).
[Crossref] [PubMed]

Tannenbaum, S.

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization,” Neoplasia 10, 1028–1040 (2008).
[Crossref] [PubMed]

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Tannenbaum, S. H.

Q. Zhu, P. A. DeFusco, A. J. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266, 433–442 (2012).
[Crossref] [PubMed]

Tavakoli, B.

Q. Zhu, P. A. DeFusco, A. J. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266, 433–442 (2012).
[Crossref] [PubMed]

Thorn, C. F.

C. F. Thorn, C. Oshiro, S. Marsh, T. Hernandez-Boussard, H. McLeod, T. E. Klein, and R. B. Altman, “Doxorubicin pathways: pharmacodynamics and adverse effects,” Pharmacogenet. Genomics 21, 440–446 (2011).
[Crossref]

Torricelli, A.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
[Crossref]

Tosteson, T. D.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: Demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259, 365–374 (2011).
[Crossref] [PubMed]

Tromberg, B.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U. S. A. 108, 14626–14631 (2011).
[Crossref] [PubMed]

Y. Santoro, A. Leproux, A. Cerussi, B. Tromberg, and E. Gratton, “Breast cancer spatial heterogeneity in near-infrared spectra and the prediction of neoadjuvant chemotherapy response,” J. Biomed. Opt. 16, 097007 (2011).
[Crossref] [PubMed]

Tromberg, B. J.

S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72, 4318–4328 (2012).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Phil. Trans. R. Soc. A 369, 4512–4530 (2011).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17, 1031–1039 (2010).
[Crossref] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007).
[Crossref] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 104, 4014–4019 (2007).
[Crossref] [PubMed]

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, “Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study,” J. Biomed. Opt. 10, 051503 (2005).
[Crossref] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279–285 (2005).
[Crossref]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

Ueda, S.

S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72, 4318–4328 (2012).
[Crossref] [PubMed]

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U. S. A. 108, 14626–14631 (2011).
[Crossref] [PubMed]

van den Bergh, H.

Vaupel, P.

M. Hockel and P. Vaupel, “Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects,” J. Natl. Cancer Inst. 93, 266–276 (2001).
[Crossref] [PubMed]

P. Vaupel and M. Hockel, “Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance,” Int. J. Oncol. 17, 869–879 (2000).
[PubMed]

H. J. Feldmann, M. Molls, and P. Vaupel, “Blood flow and oxygenation status of human tumors,” Strhlentherapie und Onkologie 175, 1–9 (1999).
[Crossref]

Vella, J. B.

Vesce, G.

S. Gargiulo, M. Gramanzini, R. Liuzzi, A. Greco, A. Brunetti, and G. Vesce, “Effects of some anesthetic agents on skin microcirculation evaluated by laser doppler perfusion imaging in mice,” BMC Vet. Res. 9, 255 (2013).
[Crossref] [PubMed]

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part ii: anesthetic considerations in preclinical imaging studies,” ILAR J. 53, 70–81 (2012).
[Crossref]

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part i: anesthetic considerations in preclinical research,” ILAR J. 53, 55–69 (2012).
[Crossref]

Vinnicombe, S. J.

S. J. Vinnicombe, A. D. MacVica, R. L. Guy, J. P. Sloane, T. J. Powles, G. Knee, and J. E. Husband, “Primary breast cancer: mammographic changes after neoadjuvant chemotherapy, with pathologic correlation,” Radiology 198, 333–340 (1996).
[Crossref] [PubMed]

Vishwanath, K.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14, 054051 (2009).
[Crossref] [PubMed]

K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11, 889–900 (2009).
[Crossref] [PubMed]

Vogel, V. G.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Wagnières, G.

Walter, R.

M. Mark, R. Walter, D. O. Meredith, and W. H. Reinhart, “Commercial taxane formulations induce stomatocytosis and increase blood viscosity,” Br. J. Pharmacol. 134, 1207–1214 (2001).
[Crossref] [PubMed]

Wang, H. W.

U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H. W. Wang, W. M. F. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15, 15507–15516 (2007).
[Crossref] [PubMed]

G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11, 3543–3552 (2005).
[Crossref] [PubMed]

Wang, M.

J. A. Sparano, M. Wang, S. Martino, V. Jones, E. A. Perez, T. Saphner, A. C. Wolff, G. W. J. Sledge, W. C. Wood, and N. E. Davidson, “Weekly paclitaxel in the adjuvant treatment of breast cancer,” N. Engl. J. Med. 358, 1663–1671 (2008).
[Crossref] [PubMed]

Ware, J. H.

G. M. Fitzmaurice, N. M. Laird, and J. H. Ware, Applied Longitudinal Analysis (John Wiley & Sons, Inc.1962).

Weitzel, D.

A. S. Betof, C. D. Lascola, D. Weitzel, C. Landon, P. M. Scarbrough, G. R. Devi, G. Palmer, L. W. Jones, and M. W. Dewhirst, “Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise,” J. Natl. Cancer Inst. 107, djv040 (2015).
[Crossref] [PubMed]

Wells, J.

L. S. Hansen, J. E. Coggle, J. Wells, and M. W. Charles, “The influence of the hair cycle on the thickness of mouse skin,” Anat. Rec. 210, 569–573 (1984).
[Crossref] [PubMed]

Wells, W. A.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: Demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259, 365–374 (2011).
[Crossref] [PubMed]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: Case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[Crossref] [PubMed]

Welsh, J. H.

G. H. Golub and J. H. Welsh, “Calculation of gauss quadrature rules,” Math. Comput. 23, 221–230 (1969).
[Crossref]

Westbroek, D.

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography,” Technol. Cancer Res. Treat. 10, 533–547 (2011).
[Crossref] [PubMed]

Winer, E. P.

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

Wolff, A. C.

J. A. Sparano, M. Wang, S. Martino, V. Jones, E. A. Perez, T. Saphner, A. C. Wolff, G. W. J. Sledge, W. C. Wood, and N. E. Davidson, “Weekly paclitaxel in the adjuvant treatment of breast cancer,” N. Engl. J. Med. 358, 1663–1671 (2008).
[Crossref] [PubMed]

Wolmark, N.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Wolverton, D.

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, “Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study,” J. Biomed. Opt. 10, 051503 (2005).
[Crossref] [PubMed]

Wood, W. C.

J. A. Sparano, M. Wang, S. Martino, V. Jones, E. A. Perez, T. Saphner, A. C. Wolff, G. W. J. Sledge, W. C. Wood, and N. E. Davidson, “Weekly paclitaxel in the adjuvant treatment of breast cancer,” N. Engl. J. Med. 358, 1663–1671 (2008).
[Crossref] [PubMed]

Wright, M. J.

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

Xu, C.

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization,” Neoplasia 10, 1028–1040 (2008).
[Crossref] [PubMed]

Xu, S.

S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72, 4318–4328 (2012).
[Crossref] [PubMed]

Xu, Y.

Q. Zhu, P. A. DeFusco, A. J. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266, 433–442 (2012).
[Crossref] [PubMed]

Yaffe, M. J.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. J. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res. 16, 2605–2614 (2010).
[Crossref] [PubMed]

Yeh, E.

E. Yeh, P. Slanetz, D. B. Kopans, E. Rafferty, D. Georgian-Smith, L. Moy, E. Halpern, R. Moore, I. Kuter, and A. Taghian, “Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer,” Am. J. Roentgenol. 184, 868–877 (2005).
[Crossref]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H. W. Wang, W. M. F. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15, 15507–15516 (2007).
[Crossref] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007).
[Crossref] [PubMed]

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11, 3543–3552 (2005).
[Crossref] [PubMed]

Yu, G.

Y. Shang and G. Yu, “A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues,” Appl. Phys. Lett. 105, 133702 (2014).
[Crossref]

U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H. W. Wang, W. M. F. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15, 15507–15516 (2007).
[Crossref] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007).
[Crossref] [PubMed]

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11, 3543–3552 (2005).
[Crossref] [PubMed]

Yuan, H.

K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11, 889–900 (2009).
[Crossref] [PubMed]

Zarfos, K.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Zhang, J.

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

Zhou, C.

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007).
[Crossref] [PubMed]

U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H. W. Wang, W. M. F. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15, 15507–15516 (2007).
[Crossref] [PubMed]

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11, 3543–3552 (2005).
[Crossref] [PubMed]

Zhu, Q.

Q. Zhu, P. A. DeFusco, A. J. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266, 433–442 (2012).
[Crossref] [PubMed]

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization,” Neoplasia 10, 1028–1040 (2008).
[Crossref] [PubMed]

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Zubovits, J.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. J. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res. 16, 2605–2614 (2010).
[Crossref] [PubMed]

Acad. Radiol. (1)

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17, 1031–1039 (2010).
[Crossref] [PubMed]

Am. J. Pathol. (1)

J. E. Talmadge, R. K. Singh, I. J. Fidler, and A. Raz, “Murine models to evaluate novel and conventional therapeutic strategies for cancer,” Am. J. Pathol. 170, 793–804 (2007).
[Crossref] [PubMed]

Am. J. Roentgenol. (1)

E. Yeh, P. Slanetz, D. B. Kopans, E. Rafferty, D. Georgian-Smith, L. Moy, E. Halpern, R. Moore, I. Kuter, and A. Taghian, “Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer,” Am. J. Roentgenol. 184, 868–877 (2005).
[Crossref]

Anat. Rec. (1)

L. S. Hansen, J. E. Coggle, J. Wells, and M. W. Charles, “The influence of the hair cycle on the thickness of mouse skin,” Anat. Rec. 210, 569–573 (1984).
[Crossref] [PubMed]

Annu. Rev. Biomed. Eng. (1)

R. K. Jain, J. D. Martin, and T. Stylianopoulos, “The role of mechanical forces in tumor growth and therapy,” Annu. Rev. Biomed. Eng. 16, 321–346 (2014).
[Crossref] [PubMed]

Anticancer Drugs (1)

V. A. de Weger, J. H. Beijnen, and J. H. M. Schellens, “Cellular and clinical pharmacology of the taxanes docetaxel and paclitaxel - a review,” Anticancer Drugs 25, 488–494 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Shang and G. Yu, “A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues,” Appl. Phys. Lett. 105, 133702 (2014).
[Crossref]

Biomed. Opt. Express (3)

BMC Vet. Res. (1)

S. Gargiulo, M. Gramanzini, R. Liuzzi, A. Greco, A. Brunetti, and G. Vesce, “Effects of some anesthetic agents on skin microcirculation evaluated by laser doppler perfusion imaging in mice,” BMC Vet. Res. 9, 255 (2013).
[Crossref] [PubMed]

Br. J. Pharmacol. (1)

M. Mark, R. Walter, D. O. Meredith, and W. H. Reinhart, “Commercial taxane formulations induce stomatocytosis and increase blood viscosity,” Br. J. Pharmacol. 134, 1207–1214 (2001).
[Crossref] [PubMed]

Breast Cancer Res. (1)

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279–285 (2005).
[Crossref]

Breast Cancer Res. Treat. (1)

G. Cocconi, B. Di Blasio, G. Alberti, G. Bisagni, E. Botti, and G. Peracchia, “Problems in evaluating response of primary breast cancer to systemic therapy,” Breast Cancer Res. Treat. 4, 309–313 (1984).
[Crossref] [PubMed]

Cancer Res. (2)

J. Alexandre, Y. Hu, W. Lu, H. Pelicano, and P. Huang, “Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species,” Cancer Res. 67, 3512–3517 (2007).
[Crossref] [PubMed]

S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72, 4318–4328 (2012).
[Crossref] [PubMed]

Clin. Breast Cancer (1)

C. A. Hudis, “Current status and future directions in breast cancer therapy,” Clin. Breast Cancer 4, Suppl. 2, S70–S75 (2003).
[Crossref] [PubMed]

Clin. Cancer Res. (2)

G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11, 3543–3552 (2005).
[Crossref] [PubMed]

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. J. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res. 16, 2605–2614 (2010).
[Crossref] [PubMed]

Curr. Protoc. Immunol. (1)

B. A. Pulaski and S. Ostrand-Rosenberg, “Mouse 4T1 breast tumor model,” Curr. Protoc. Immunol. 20, Unit 202 (2001).
[Crossref]

Expert Rev. Anticancer Ther. (1)

M. Beresford, A. R. Padhani, V. Goh, and A. Makris, “Imaging breast cancer response during neoadjuvant systemic therapy,” Expert Rev. Anticancer Ther. 5, 893–905 (2005).
[Crossref] [PubMed]

FASEB J. (1)

S. Reagan-Shaw, M. Nihal, and N. Ahmad, “Dose translation from animal to human studies revisited,” FASEB J. 22, 659–661 (2007).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron. 18, 1367–1386 (2012).
[Crossref] [PubMed]

ILAR J. (2)

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part i: anesthetic considerations in preclinical research,” ILAR J. 53, 55–69 (2012).
[Crossref]

S. Gargiulo, A. Greco, M. Gramanzini, S. Esposito, A. Affuso, A. Brunetti, and G. Vesce, “Mice anesthesia, analgesia, and care, part ii: anesthetic considerations in preclinical imaging studies,” ILAR J. 53, 70–81 (2012).
[Crossref]

Int. J. Oncol. (1)

P. Vaupel and M. Hockel, “Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance,” Int. J. Oncol. 17, 869–879 (2000).
[PubMed]

J. Biomed. Opt. (7)

Y. Santoro, A. Leproux, A. Cerussi, B. Tromberg, and E. Gratton, “Breast cancer spatial heterogeneity in near-infrared spectra and the prediction of neoadjuvant chemotherapy response,” J. Biomed. Opt. 16, 097007 (2011).
[Crossref] [PubMed]

U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11, 064021 (2006).
[Crossref]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, “Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study,” J. Biomed. Opt. 10, 051503 (2005).
[Crossref] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007).
[Crossref] [PubMed]

P. Farzam and T. Durduran, “Multidistance diffuse correlation spectroscopy for simultaneous estimation of blood flow index and optical properties,” J. Biomed. Opt. 20, 55001 (2015).
[Crossref] [PubMed]

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14, 054051 (2009).
[Crossref] [PubMed]

J. Clin. Onc. (2)

P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas, and N. Wolmark, “Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” J. Clin. Onc. 26, 778–785 (2008).
[Crossref]

A. S. Caudle, A. M. Gonzalez-Angulo, K. K. Hunt, P. Liu, L. Pusztai, W. F. Symmans, H. M. Kuerer, E. A. Mittendorf, G. N. Hortobagyi, and F. Meric-Bernstam, “Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer,” J. Clin. Onc. 28, 1821–1828 (2010).
[Crossref]

J. Clin. Oncol. (2)

L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, J. M. Specht, R. K. Doot, T. J. Lawton, W. E. Barlow, B. F. Kurland, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow changes by Positron Emission Tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer,” J. Clin. Oncol. 26, 4449–4457 (2008).
[Crossref] [PubMed]

M. L. Citron, D. A. Berry, C. Cirrincione, C. Hudis, E. P. Winer, W. J. Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss, and L. Norton, “Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741,” J. Clin. Oncol. 21, 1431–1439 (2003).
[Crossref] [PubMed]

J. Natl. Cancer Inst. (2)

A. S. Betof, C. D. Lascola, D. Weitzel, C. Landon, P. M. Scarbrough, G. R. Devi, G. Palmer, L. W. Jones, and M. W. Dewhirst, “Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise,” J. Natl. Cancer Inst. 107, djv040 (2015).
[Crossref] [PubMed]

M. Hockel and P. Vaupel, “Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects,” J. Natl. Cancer Inst. 93, 266–276 (2001).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Math. Comput. (1)

G. H. Golub and J. H. Welsh, “Calculation of gauss quadrature rules,” Math. Comput. 23, 221–230 (1969).
[Crossref]

Med. Phys. (1)

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Mol. Cancer Ther. (1)

E. Pasquier, M. Carré, B. Pourroy, L. Camoin, O. Rebaï, C. Briand, and D. Braguer, “Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway,” Mol. Cancer Ther. 3, 1301–1310 (2004).
[PubMed]

N. Engl. J. Med. (1)

J. A. Sparano, M. Wang, S. Martino, V. Jones, E. A. Perez, T. Saphner, A. C. Wolff, G. W. J. Sledge, W. C. Wood, and N. E. Davidson, “Weekly paclitaxel in the adjuvant treatment of breast cancer,” N. Engl. J. Med. 358, 1663–1671 (2008).
[Crossref] [PubMed]

Nat. Rev. Clin.Oncol. (1)

A. Emadi, R. J. Jones, and R. A. Brodsky, “Cyclophosphamide and cancer: golden anniversary,” Nat. Rev. Clin.Oncol. 6, 638–647 (2009).
[Crossref]

Neoplasia (4)

K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11, 889–900 (2009).
[Crossref] [PubMed]

J. L. Evelhoch, R. J. Gillies, G. S. Karczmar, J. A. Koutcher, R. J. Maxwell, O. Nalcioglu, N. Raghunand, S. M. Ronen, B. D. Ross, and H. M. Swartz, “Applications of magnetic resonance in model systems: cancer therapeutics,” Neoplasia 2, 152–165 (2000).
[Crossref] [PubMed]

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization,” Neoplasia 10, 1028–1040 (2008).
[Crossref] [PubMed]

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Opt. Express (2)

Pharmacogenet. Genomics (1)

C. F. Thorn, C. Oshiro, S. Marsh, T. Hernandez-Boussard, H. McLeod, T. E. Klein, and R. B. Altman, “Doxorubicin pathways: pharmacodynamics and adverse effects,” Pharmacogenet. Genomics 21, 440–446 (2011).
[Crossref]

Phil. Trans. R. Soc. A (1)

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Phil. Trans. R. Soc. A 369, 4512–4530 (2011).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37–R61 (2013).
[Crossref] [PubMed]

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44, 2689–2702 (1999).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (2)

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W. P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U. S. A. 108, 14626–14631 (2011).
[Crossref] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 104, 4014–4019 (2007).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

T. Stylianopoulos, J. D. Martin, V. P. Chauhan, S. R. Jain, B. Diop-Frimpong, N. Bardeesy, B. L. Smith, C. R. Ferrone, F. J. Hornicek, Y. Boucher, L. L. Munn, and R. K. Jain, “Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors,” Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).
[Crossref] [PubMed]

Radiology (5)

M. C. Segel, D. D. Paulus, and G. N. Hortobagyi, “Advanced primary breast cancer: assessment at mammography of response to induction chemotherapy,” Radiology 169, 49–54 (1988).
[Crossref] [PubMed]

S. J. Vinnicombe, A. D. MacVica, R. L. Guy, J. P. Sloane, T. J. Powles, G. Knee, and J. E. Husband, “Primary breast cancer: mammographic changes after neoadjuvant chemotherapy, with pathologic correlation,” Radiology 198, 333–340 (1996).
[Crossref] [PubMed]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: Case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[Crossref] [PubMed]

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: Demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259, 365–374 (2011).
[Crossref] [PubMed]

Q. Zhu, P. A. DeFusco, A. J. Ricci, E. B. Cronin, P. U. Hegde, M. Kane, B. Tavakoli, Y. Xu, J. Hart, and S. H. Tannenbaum, “Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography,” Radiology 266, 433–442 (2012).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
[Crossref]

Science (1)

R. K. Jain, “Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy,” Science 307, 58–62 (2005).
[Crossref] [PubMed]

Strhlentherapie und Onkologie (1)

H. J. Feldmann, M. Molls, and P. Vaupel, “Blood flow and oxygenation status of human tumors,” Strhlentherapie und Onkologie 175, 1–9 (1999).
[Crossref]

Targ. Oncol. (1)

L. C. Enfield, A. P. Gibson, J. C. Hebden, and M. Douek, “Optical tomography of breast cancer - monitoring response to primary medical therapy,” Targ. Oncol. 4, 219–233 (2009).
[Crossref]

Technol. Cancer Res. Treat. (1)

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography,” Technol. Cancer Res. Treat. 10, 533–547 (2011).
[Crossref] [PubMed]

Other (3)

T. Durduran, (Personal communication, August11, 2016).

J. C. Pinheiro and D. M. Bates, Mixed-Effects Models in S and S-PLUS (Springer, 2000).
[Crossref]

G. M. Fitzmaurice, N. M. Laird, and J. H. Ware, Applied Longitudinal Analysis (John Wiley & Sons, Inc.1962).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diagram of diffuse correlation spectroscopy and probe placement on a murine breast tumor in the mammary fat-pad. After the mouse was anesthetized with isoflurane, a custom-made probe was placed on the center of the tumor. A micromanipulator and a linear translational stage attached to the probe were utilized to enable placement of the probe on the same location within the tumor each day. A multi-mode optical fiber in the probe delivered near-infrared light from a 785 nm long coherence laser to the tumor surface. Light signals detected at four single-mode optical fibers placed 2.55, 2.89, 3.25 and 3.94 mm away from the source fiber were relayed to photon-counting avalanche photodiodes (APDs). Normalized temporal intensity autocorrelation functions of the detected light were calculated by an autocorrelator board and passed onto the computer.

Fig. 2
Fig. 2

Schematic of (a) a homogeneous semi-infinite medium (one-layer model), and (b) a semi-infinite two-layer medium (two-layer model) with a source (S) and four detectors (D) on the tissue surface (z = 0).

Fig. 3
Fig. 3

Example of in vivo DCS data from a mouse tumor in the control group at different time points and varying quality of fits. Black circle is the measured data and the red line is the fitted curve from multi-distance fitting of the analytic solution to different layer models. Only data from source-detector separations 2.5 and 3.9 mm are shown for clarity. The quality of one-layer model fit is good for (a) DCS measurements at day 0 (BFI = 1.38 × 10−8 cm2/s), but poor for (b) DCS measurements at day 11 (BFI = 2.03 × 10−9 cm2/s). Two-layer model provides a good fit for (c) DCS measurements at day 11 (BFI1 = 3.34 × 10−10 cm2/s, BFI2 = 9.21 × 10−9 cm2/s with L = 0.17 cm). S: source, D: detector.

Fig. 4
Fig. 4

Flow chart for hybrid algorithm based on layer models to separate the effect of scab on tumor blood flow quantification.

Fig. 5
Fig. 5

Group-averaged temporal changes in relative tumor area, rTA (left column) and relative blood flow, rBF (right column) are compared between the control group (filled black circle, solid line) and the treatment group (red star, dotted line). N refers to the number of animals per group. Error bars are derived from the standard error of the mean of each group at each measurement time point. Blue vertical line indicates the time when treatment drug or control vehicle was injected. Blue star indicates statistically significant difference between each treatment and control group based on two-sample test (p < 0.05).

Fig. 6
Fig. 6

Group-averaged temporal changes in relative tumor area, rTA (left column) and relative blood flow, rBF (right column) are compared between the control group (filled black circle, solid line) and the treatment group (red star, dotted line). Top and bottom figures are from the group with 40 mg/kg paclitaxel (Taxol) and from the group with 60 mg/kg paclitaxel treatment, respectively. N refers to the number of animals per group. Error bars are derived from the standard error of the mean of each group at each measurement time point. Blue vertical line indicates the time when treatment drug or control vehicle was injected. Blue star indicates statistically significant difference between each treatment and control group based on two-sample test (p < 0.05).

Fig. 7
Fig. 7

Correlation between treatment outcome (rTA at Day 11) and rBF at (a) Day 3 or (b) Day 7.

Fig. 8
Fig. 8

(a) ROC curve for distinguishing group with AC combination therapy and control group based on rBF at day 3 and 7. (b) ROC curve for distinguishing group with cyclophosphamide 200 mg/kg and control group based on rBF at day 3 and 7.

Fig. 9
Fig. 9

Group-averaged temporal changes in L from mice in the control group which yielded two-layer model fit. Error bars are derived from the standard error of the mean at each time point.

Tables (2)

Tables Icon

Table 1 Treatment and control group information. Treatment group received 200 μL solution of chemotherapeutic drug of the listed dose, whereas control group received 200 μL of DPBS. NA: Not applicable.

Tables Icon

Table 2 Linear mixed effects model analysis for relative tumor area and relative blood flow of different treatment regimens. p-values for β1,m with respect to the control group are presented. * indicates the statistical significance based on Bonferroni correction for multiple comparisons. AC: Adriamycin and cyclophosphamide.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

G 1 ( ρ , τ ) = ν S 0 4 π D [ exp ( K ( τ ) r 1 ) r 1 exp ( K ( τ ) r 2 ) r 2 ]
where K ( τ ) = [ ( ν / D ) ( μ a + 2 τ μ s κ 0 2 B F I ) ] 1 / 2
G 1 ( 1 ) ( ρ , τ ) = S 0 2 π 0 G ˜ 1 ( 1 ) ( s , τ ) s J 0 ( s ρ ) d s ,
G ˜ 1 ( 1 ) ( s , τ ) = v sinh [ A 1 ( z b + z 0 ) ] D 1 A 1 D 1 A 1 cosh ( A 1 L ) + D 2 A 2 sinh ( A 1 L ) D 1 A 1 cosh [ A 1 ( L + z b ) ] + D 2 A 2 sinh [ ( A 1 ( L + z b ) ] v sinh ( A 1 z 0 ) D 1 A 1 ,
χ 2 = i N sd j N τ g 2 , m ( r i , τ j ) ( 1 + β i | g 1 , c ( r i , τ j ) | 2 ) ,
Y i , j , m = β 0 , 0 + β 1 , 0 × t i , j + q = 1 M ( δ q m × β 1 , q × t i , j ) + b 1 , i × t i , j +

Metrics