Abstract

It is important to know the visual sensitivity to optical blur from both a basic science perspective and a practical point of view. Of particular interest is the sensitivity to blur induced by spherical aberration because it is being used to increase depth of focus as a component of a presbyopic solution. Using a flicker detection-based procedure implemented on an adaptive optics visual simulator, we measured the spherical aberration thresholds that produce just-noticeable differences in perceived image quality. The thresholds were measured for positive and negative values of spherical aberration, for best focus and + 0.5 D and + 1.0 D of defocus. At best focus, the SA thresholds were 0.20 ± 0.01 µm and −0.17 ± 0.03 µm for positive and negative spherical aberration respectively (referred to a 6-mm pupil). These experimental values may be useful in setting spherical aberration permissible levels in different ophthalmic techniques.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Statistical variation of aberration structure and image quality in a normal population of healthy eyes

Larry N. Thibos, Xin Hong, Arthur Bradley, and Xu Cheng
J. Opt. Soc. Am. A 19(12) 2329-2348 (2002)

Correcting ocular spherical aberration with soft contact lenses

Holger H. Dietze and Michael J. Cox
J. Opt. Soc. Am. A 21(4) 473-485 (2004)

References

  • View by:
  • |
  • |
  • |

  1. F. W. Campbell and G. Westheimer, “Sensitivity of the Eye to Differences in Focus,” J. Physiol. 143, 18 (1958).
  2. G. E. Legge, K. T. Mullen, G. C. Woo, and F. W. Campbell, “Tolerance to visual defocus,” J. Opt. Soc. Am. A 4(5), 851–863 (1987).
    [Crossref] [PubMed]
  3. G. Walsh and W. N. Charman, “Visual sensitivity to temporal change in focus and its relevance to the accommodation response,” Vision Res. 28(11), 1207–1221 (1988).
    [Crossref] [PubMed]
  4. R. J. Jacobs, G. Smith, and C. D. C. Chan, “Effect of defocus on blur thresholds and on thresholds of perceived change in blur: comparison of source and observer methods,” Optom. Vis. Sci. 66(8), 545–553 (1989).
    [Crossref] [PubMed]
  5. D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective Depth-of-Focus of the Eye,” Optom. Vis. Sci. 74(7), 511–520 (1997).
    [Crossref] [PubMed]
  6. D. A. Atchison, S. W. Fisher, C. A. Pedersen, and P. G. Ridall, “Noticeable, troublesome and objectionable limits of blur,” Vision Res. 45(15), 1967–1974 (2005).
    [Crossref] [PubMed]
  7. S. Vitale, L. Ellwein, M. F. Cotch, F. L. Ferris, and R. Sperduto, “Prevalence of Refractive Error in the United States, 1999-2004,” Arch. Ophthalmol. 126(8), 1111–1119 (2008).
    [Crossref] [PubMed]
  8. E. A. Villegas, E. Alcón, and P. Artal, “Minimum amount of astigmatism that should be corrected,” J. Cataract Refract. Surg. 40(1), 13–19 (2014).
    [Crossref] [PubMed]
  9. D. A. Atchison and H. Guo, “Subjective Blur Limits for Higher Order Aberrations,” Optom. Vis. Sci. 87(11), E890–E898 (2010).
    [Crossref] [PubMed]
  10. E. J. Fernández and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22(9), 1732–1738 (2005).
    [Crossref] [PubMed]
  11. E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthalmol. 35(7), 381–393 (1951).
    [Crossref] [PubMed]
  12. B. Wang, K. J. Ciuffreda, and J. Miller, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51(1), 75–85 (2006).
    [Crossref] [PubMed]
  13. N. D. Haig and G. J. Burton, “Effects of wavefront aberration on visual instrument performance, and a consequential test technique,” Appl. Opt. 26(3), 492–500 (1987).
    [Crossref] [PubMed]
  14. G. J. Burton and N. D. Haig, “Effects of the Seidel aberrations on visual target discrimination,” J. Opt. Soc. Am. A 1(4), 373–385 (1984).
    [Crossref] [PubMed]
  15. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pacific|Publ. Astron. Soc. Pac. 65, 229 (1953), doi:.
    [Crossref]
  16. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref] [PubMed]
  17. D. A. Atchison, H. Guo, W. N. Charman, and S. W. Fisher, “Blur limits for defocus, astigmatism and trefoil,” Vision Res. 49(19), 2393–2403 (2009).
    [Crossref] [PubMed]
  18. D. A. Atchison, H. Guo, and S. W. Fisher, “Limits of spherical blur determined with an adaptive optics mirror,” Ophthalmic Physiol. Opt. 49, 2393–2403 (2009).
  19. Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22(2), 103–112 (2002).
    [Crossref] [PubMed]
  20. S. Marcos, S. Barbero, and I. Jiménez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21(3), 223–235 (2005).
    [PubMed]
  21. E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended Depth of Focus With Induced Spherical Aberration in Light-Adjustable Intraocular Lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
    [Crossref] [PubMed]
  22. P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
    [Crossref] [PubMed]
  23. F. Yi, D. R. Iskander, and M. Collins, “Depth of focus and visual acuity with primary and secondary spherical aberration,” Vision Res. 51(14), 1648–1658 (2011).
    [Crossref] [PubMed]
  24. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18(5), S634–S638 (2002).
    [PubMed]
  25. E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34(17), 2628–2630 (2009).
    [Crossref] [PubMed]
  26. C. Schwarz, P. M. Prieto, E. J. Fernández, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36(24), 4779–4781 (2011).
    [Crossref] [PubMed]
  27. C. Schwarz, S. Manzanera, and P. Artal, “Binocular visual performance with aberration correction as a function of light level,” J. Vis. 14(14), 6 (2014).
    [Crossref] [PubMed]
  28. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for Reporting the Optical Aberrations of Eyes,” J. Refractive Surg. 18, S652–S660 (2000).

2014 (3)

E. A. Villegas, E. Alcón, and P. Artal, “Minimum amount of astigmatism that should be corrected,” J. Cataract Refract. Surg. 40(1), 13–19 (2014).
[Crossref] [PubMed]

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended Depth of Focus With Induced Spherical Aberration in Light-Adjustable Intraocular Lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

C. Schwarz, S. Manzanera, and P. Artal, “Binocular visual performance with aberration correction as a function of light level,” J. Vis. 14(14), 6 (2014).
[Crossref] [PubMed]

2011 (2)

C. Schwarz, P. M. Prieto, E. J. Fernández, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36(24), 4779–4781 (2011).
[Crossref] [PubMed]

F. Yi, D. R. Iskander, and M. Collins, “Depth of focus and visual acuity with primary and secondary spherical aberration,” Vision Res. 51(14), 1648–1658 (2011).
[Crossref] [PubMed]

2010 (1)

D. A. Atchison and H. Guo, “Subjective Blur Limits for Higher Order Aberrations,” Optom. Vis. Sci. 87(11), E890–E898 (2010).
[Crossref] [PubMed]

2009 (3)

E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34(17), 2628–2630 (2009).
[Crossref] [PubMed]

D. A. Atchison, H. Guo, W. N. Charman, and S. W. Fisher, “Blur limits for defocus, astigmatism and trefoil,” Vision Res. 49(19), 2393–2403 (2009).
[Crossref] [PubMed]

D. A. Atchison, H. Guo, and S. W. Fisher, “Limits of spherical blur determined with an adaptive optics mirror,” Ophthalmic Physiol. Opt. 49, 2393–2403 (2009).

2008 (1)

S. Vitale, L. Ellwein, M. F. Cotch, F. L. Ferris, and R. Sperduto, “Prevalence of Refractive Error in the United States, 1999-2004,” Arch. Ophthalmol. 126(8), 1111–1119 (2008).
[Crossref] [PubMed]

2006 (1)

B. Wang, K. J. Ciuffreda, and J. Miller, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51(1), 75–85 (2006).
[Crossref] [PubMed]

2005 (3)

D. A. Atchison, S. W. Fisher, C. A. Pedersen, and P. G. Ridall, “Noticeable, troublesome and objectionable limits of blur,” Vision Res. 45(15), 1967–1974 (2005).
[Crossref] [PubMed]

E. J. Fernández and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22(9), 1732–1738 (2005).
[Crossref] [PubMed]

S. Marcos, S. Barbero, and I. Jiménez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21(3), 223–235 (2005).
[PubMed]

2004 (1)

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref] [PubMed]

2002 (2)

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22(2), 103–112 (2002).
[Crossref] [PubMed]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18(5), S634–S638 (2002).
[PubMed]

2000 (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for Reporting the Optical Aberrations of Eyes,” J. Refractive Surg. 18, S652–S660 (2000).

1997 (2)

1989 (1)

R. J. Jacobs, G. Smith, and C. D. C. Chan, “Effect of defocus on blur thresholds and on thresholds of perceived change in blur: comparison of source and observer methods,” Optom. Vis. Sci. 66(8), 545–553 (1989).
[Crossref] [PubMed]

1988 (1)

G. Walsh and W. N. Charman, “Visual sensitivity to temporal change in focus and its relevance to the accommodation response,” Vision Res. 28(11), 1207–1221 (1988).
[Crossref] [PubMed]

1987 (2)

1984 (1)

1958 (1)

F. W. Campbell and G. Westheimer, “Sensitivity of the Eye to Differences in Focus,” J. Physiol. 143, 18 (1958).

1953 (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pacific|Publ. Astron. Soc. Pac. 65, 229 (1953), doi:.
[Crossref]

1951 (1)

E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthalmol. 35(7), 381–393 (1951).
[Crossref] [PubMed]

Alcón, E.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended Depth of Focus With Induced Spherical Aberration in Light-Adjustable Intraocular Lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

E. A. Villegas, E. Alcón, and P. Artal, “Minimum amount of astigmatism that should be corrected,” J. Cataract Refract. Surg. 40(1), 13–19 (2014).
[Crossref] [PubMed]

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for Reporting the Optical Aberrations of Eyes,” J. Refractive Surg. 18, S652–S660 (2000).

Artal, P.

E. A. Villegas, E. Alcón, and P. Artal, “Minimum amount of astigmatism that should be corrected,” J. Cataract Refract. Surg. 40(1), 13–19 (2014).
[Crossref] [PubMed]

C. Schwarz, S. Manzanera, and P. Artal, “Binocular visual performance with aberration correction as a function of light level,” J. Vis. 14(14), 6 (2014).
[Crossref] [PubMed]

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended Depth of Focus With Induced Spherical Aberration in Light-Adjustable Intraocular Lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

C. Schwarz, P. M. Prieto, E. J. Fernández, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36(24), 4779–4781 (2011).
[Crossref] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34(17), 2628–2630 (2009).
[Crossref] [PubMed]

E. J. Fernández and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22(9), 1732–1738 (2005).
[Crossref] [PubMed]

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref] [PubMed]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18(5), S634–S638 (2002).
[PubMed]

Atchison, D. A.

D. A. Atchison and H. Guo, “Subjective Blur Limits for Higher Order Aberrations,” Optom. Vis. Sci. 87(11), E890–E898 (2010).
[Crossref] [PubMed]

D. A. Atchison, H. Guo, W. N. Charman, and S. W. Fisher, “Blur limits for defocus, astigmatism and trefoil,” Vision Res. 49(19), 2393–2403 (2009).
[Crossref] [PubMed]

D. A. Atchison, H. Guo, and S. W. Fisher, “Limits of spherical blur determined with an adaptive optics mirror,” Ophthalmic Physiol. Opt. 49, 2393–2403 (2009).

D. A. Atchison, S. W. Fisher, C. A. Pedersen, and P. G. Ridall, “Noticeable, troublesome and objectionable limits of blur,” Vision Res. 45(15), 1967–1974 (2005).
[Crossref] [PubMed]

D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective Depth-of-Focus of the Eye,” Optom. Vis. Sci. 74(7), 511–520 (1997).
[Crossref] [PubMed]

Babcock, H. W.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pacific|Publ. Astron. Soc. Pac. 65, 229 (1953), doi:.
[Crossref]

Barbero, S.

S. Marcos, S. Barbero, and I. Jiménez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21(3), 223–235 (2005).
[PubMed]

Burton, G. J.

Campbell, F. W.

G. E. Legge, K. T. Mullen, G. C. Woo, and F. W. Campbell, “Tolerance to visual defocus,” J. Opt. Soc. Am. A 4(5), 851–863 (1987).
[Crossref] [PubMed]

F. W. Campbell and G. Westheimer, “Sensitivity of the Eye to Differences in Focus,” J. Physiol. 143, 18 (1958).

Chan, C. D. C.

R. J. Jacobs, G. Smith, and C. D. C. Chan, “Effect of defocus on blur thresholds and on thresholds of perceived change in blur: comparison of source and observer methods,” Optom. Vis. Sci. 66(8), 545–553 (1989).
[Crossref] [PubMed]

Charman, W. N.

D. A. Atchison, H. Guo, W. N. Charman, and S. W. Fisher, “Blur limits for defocus, astigmatism and trefoil,” Vision Res. 49(19), 2393–2403 (2009).
[Crossref] [PubMed]

D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective Depth-of-Focus of the Eye,” Optom. Vis. Sci. 74(7), 511–520 (1997).
[Crossref] [PubMed]

G. Walsh and W. N. Charman, “Visual sensitivity to temporal change in focus and its relevance to the accommodation response,” Vision Res. 28(11), 1207–1221 (1988).
[Crossref] [PubMed]

Ciuffreda, K. J.

B. Wang, K. J. Ciuffreda, and J. Miller, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51(1), 75–85 (2006).
[Crossref] [PubMed]

Collins, M.

F. Yi, D. R. Iskander, and M. Collins, “Depth of focus and visual acuity with primary and secondary spherical aberration,” Vision Res. 51(14), 1648–1658 (2011).
[Crossref] [PubMed]

Cotch, M. F.

S. Vitale, L. Ellwein, M. F. Cotch, F. L. Ferris, and R. Sperduto, “Prevalence of Refractive Error in the United States, 1999-2004,” Arch. Ophthalmol. 126(8), 1111–1119 (2008).
[Crossref] [PubMed]

Ellwein, L.

S. Vitale, L. Ellwein, M. F. Cotch, F. L. Ferris, and R. Sperduto, “Prevalence of Refractive Error in the United States, 1999-2004,” Arch. Ophthalmol. 126(8), 1111–1119 (2008).
[Crossref] [PubMed]

Fernandez, E. J.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref] [PubMed]

Fernández, E. J.

Ferris, F. L.

S. Vitale, L. Ellwein, M. F. Cotch, F. L. Ferris, and R. Sperduto, “Prevalence of Refractive Error in the United States, 1999-2004,” Arch. Ophthalmol. 126(8), 1111–1119 (2008).
[Crossref] [PubMed]

Fidler, V.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22(2), 103–112 (2002).
[Crossref] [PubMed]

Fincham, E. F.

E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthalmol. 35(7), 381–393 (1951).
[Crossref] [PubMed]

Fisher, S. W.

D. A. Atchison, H. Guo, W. N. Charman, and S. W. Fisher, “Blur limits for defocus, astigmatism and trefoil,” Vision Res. 49(19), 2393–2403 (2009).
[Crossref] [PubMed]

D. A. Atchison, H. Guo, and S. W. Fisher, “Limits of spherical blur determined with an adaptive optics mirror,” Ophthalmic Physiol. Opt. 49, 2393–2403 (2009).

D. A. Atchison, S. W. Fisher, C. A. Pedersen, and P. G. Ridall, “Noticeable, troublesome and objectionable limits of blur,” Vision Res. 45(15), 1967–1974 (2005).
[Crossref] [PubMed]

Geraghty, E.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22(2), 103–112 (2002).
[Crossref] [PubMed]

Guo, H.

D. A. Atchison and H. Guo, “Subjective Blur Limits for Higher Order Aberrations,” Optom. Vis. Sci. 87(11), E890–E898 (2010).
[Crossref] [PubMed]

D. A. Atchison, H. Guo, and S. W. Fisher, “Limits of spherical blur determined with an adaptive optics mirror,” Ophthalmic Physiol. Opt. 49, 2393–2403 (2009).

D. A. Atchison, H. Guo, W. N. Charman, and S. W. Fisher, “Blur limits for defocus, astigmatism and trefoil,” Vision Res. 49(19), 2393–2403 (2009).
[Crossref] [PubMed]

Haig, N. D.

Iskander, D. R.

F. Yi, D. R. Iskander, and M. Collins, “Depth of focus and visual acuity with primary and secondary spherical aberration,” Vision Res. 51(14), 1648–1658 (2011).
[Crossref] [PubMed]

Jacobs, R. J.

R. J. Jacobs, G. Smith, and C. D. C. Chan, “Effect of defocus on blur thresholds and on thresholds of perceived change in blur: comparison of source and observer methods,” Optom. Vis. Sci. 66(8), 545–553 (1989).
[Crossref] [PubMed]

Jansonius, N. M.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22(2), 103–112 (2002).
[Crossref] [PubMed]

Jiménez-Alfaro, I.

S. Marcos, S. Barbero, and I. Jiménez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21(3), 223–235 (2005).
[PubMed]

Kooijman, A. C.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22(2), 103–112 (2002).
[Crossref] [PubMed]

Legge, G. E.

Liang, J.

Manzanera, S.

C. Schwarz, S. Manzanera, and P. Artal, “Binocular visual performance with aberration correction as a function of light level,” J. Vis. 14(14), 6 (2014).
[Crossref] [PubMed]

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref] [PubMed]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18(5), S634–S638 (2002).
[PubMed]

Marcos, S.

S. Marcos, S. Barbero, and I. Jiménez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21(3), 223–235 (2005).
[PubMed]

Marín, J. M.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended Depth of Focus With Induced Spherical Aberration in Light-Adjustable Intraocular Lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

Miller, D. T.

Miller, J.

B. Wang, K. J. Ciuffreda, and J. Miller, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51(1), 75–85 (2006).
[Crossref] [PubMed]

Mirabet, S.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended Depth of Focus With Induced Spherical Aberration in Light-Adjustable Intraocular Lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

Mullen, K. T.

Nio, Y. K.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22(2), 103–112 (2002).
[Crossref] [PubMed]

Norrby, S.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref] [PubMed]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22(2), 103–112 (2002).
[Crossref] [PubMed]

Pedersen, C. A.

D. A. Atchison, S. W. Fisher, C. A. Pedersen, and P. G. Ridall, “Noticeable, troublesome and objectionable limits of blur,” Vision Res. 45(15), 1967–1974 (2005).
[Crossref] [PubMed]

Piers, P.

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18(5), S634–S638 (2002).
[PubMed]

Piers, P. A.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref] [PubMed]

Prieto, P. M.

Ridall, P. G.

D. A. Atchison, S. W. Fisher, C. A. Pedersen, and P. G. Ridall, “Noticeable, troublesome and objectionable limits of blur,” Vision Res. 45(15), 1967–1974 (2005).
[Crossref] [PubMed]

Schwarz, C.

C. Schwarz, S. Manzanera, and P. Artal, “Binocular visual performance with aberration correction as a function of light level,” J. Vis. 14(14), 6 (2014).
[Crossref] [PubMed]

C. Schwarz, P. M. Prieto, E. J. Fernández, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36(24), 4779–4781 (2011).
[Crossref] [PubMed]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for Reporting the Optical Aberrations of Eyes,” J. Refractive Surg. 18, S652–S660 (2000).

Smith, G.

R. J. Jacobs, G. Smith, and C. D. C. Chan, “Effect of defocus on blur thresholds and on thresholds of perceived change in blur: comparison of source and observer methods,” Optom. Vis. Sci. 66(8), 545–553 (1989).
[Crossref] [PubMed]

Sperduto, R.

S. Vitale, L. Ellwein, M. F. Cotch, F. L. Ferris, and R. Sperduto, “Prevalence of Refractive Error in the United States, 1999-2004,” Arch. Ophthalmol. 126(8), 1111–1119 (2008).
[Crossref] [PubMed]

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for Reporting the Optical Aberrations of Eyes,” J. Refractive Surg. 18, S652–S660 (2000).

Villegas, E. A.

E. A. Villegas, E. Alcón, and P. Artal, “Minimum amount of astigmatism that should be corrected,” J. Cataract Refract. Surg. 40(1), 13–19 (2014).
[Crossref] [PubMed]

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended Depth of Focus With Induced Spherical Aberration in Light-Adjustable Intraocular Lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

Vitale, S.

S. Vitale, L. Ellwein, M. F. Cotch, F. L. Ferris, and R. Sperduto, “Prevalence of Refractive Error in the United States, 1999-2004,” Arch. Ophthalmol. 126(8), 1111–1119 (2008).
[Crossref] [PubMed]

Walsh, G.

G. Walsh and W. N. Charman, “Visual sensitivity to temporal change in focus and its relevance to the accommodation response,” Vision Res. 28(11), 1207–1221 (1988).
[Crossref] [PubMed]

Wang, B.

B. Wang, K. J. Ciuffreda, and J. Miller, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51(1), 75–85 (2006).
[Crossref] [PubMed]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for Reporting the Optical Aberrations of Eyes,” J. Refractive Surg. 18, S652–S660 (2000).

Westheimer, G.

F. W. Campbell and G. Westheimer, “Sensitivity of the Eye to Differences in Focus,” J. Physiol. 143, 18 (1958).

Williams, D. R.

Woo, G. C.

Woods, R. L.

D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective Depth-of-Focus of the Eye,” Optom. Vis. Sci. 74(7), 511–520 (1997).
[Crossref] [PubMed]

Yago, I.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended Depth of Focus With Induced Spherical Aberration in Light-Adjustable Intraocular Lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

Yi, F.

F. Yi, D. R. Iskander, and M. Collins, “Depth of focus and visual acuity with primary and secondary spherical aberration,” Vision Res. 51(14), 1648–1658 (2011).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended Depth of Focus With Induced Spherical Aberration in Light-Adjustable Intraocular Lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (1)

S. Vitale, L. Ellwein, M. F. Cotch, F. L. Ferris, and R. Sperduto, “Prevalence of Refractive Error in the United States, 1999-2004,” Arch. Ophthalmol. 126(8), 1111–1119 (2008).
[Crossref] [PubMed]

Br. J. Ophthalmol. (1)

E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthalmol. 35(7), 381–393 (1951).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (1)

E. A. Villegas, E. Alcón, and P. Artal, “Minimum amount of astigmatism that should be corrected,” J. Cataract Refract. Surg. 40(1), 13–19 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (4)

J. Physiol. (1)

F. W. Campbell and G. Westheimer, “Sensitivity of the Eye to Differences in Focus,” J. Physiol. 143, 18 (1958).

J. Refract. Surg. (2)

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18(5), S634–S638 (2002).
[PubMed]

S. Marcos, S. Barbero, and I. Jiménez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21(3), 223–235 (2005).
[PubMed]

J. Refractive Surg. (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for Reporting the Optical Aberrations of Eyes,” J. Refractive Surg. 18, S652–S660 (2000).

J. Vis. (1)

C. Schwarz, S. Manzanera, and P. Artal, “Binocular visual performance with aberration correction as a function of light level,” J. Vis. 14(14), 6 (2014).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (2)

D. A. Atchison, H. Guo, and S. W. Fisher, “Limits of spherical blur determined with an adaptive optics mirror,” Ophthalmic Physiol. Opt. 49, 2393–2403 (2009).

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22(2), 103–112 (2002).
[Crossref] [PubMed]

Opt. Lett. (2)

Optom. Vis. Sci. (3)

D. A. Atchison and H. Guo, “Subjective Blur Limits for Higher Order Aberrations,” Optom. Vis. Sci. 87(11), E890–E898 (2010).
[Crossref] [PubMed]

R. J. Jacobs, G. Smith, and C. D. C. Chan, “Effect of defocus on blur thresholds and on thresholds of perceived change in blur: comparison of source and observer methods,” Optom. Vis. Sci. 66(8), 545–553 (1989).
[Crossref] [PubMed]

D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective Depth-of-Focus of the Eye,” Optom. Vis. Sci. 74(7), 511–520 (1997).
[Crossref] [PubMed]

Publ. Astron. Soc. Pacific|Publ. Astron. Soc. Pac. (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pacific|Publ. Astron. Soc. Pac. 65, 229 (1953), doi:.
[Crossref]

Surv. Ophthalmol. (1)

B. Wang, K. J. Ciuffreda, and J. Miller, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51(1), 75–85 (2006).
[Crossref] [PubMed]

Vision Res. (4)

D. A. Atchison, H. Guo, W. N. Charman, and S. W. Fisher, “Blur limits for defocus, astigmatism and trefoil,” Vision Res. 49(19), 2393–2403 (2009).
[Crossref] [PubMed]

D. A. Atchison, S. W. Fisher, C. A. Pedersen, and P. G. Ridall, “Noticeable, troublesome and objectionable limits of blur,” Vision Res. 45(15), 1967–1974 (2005).
[Crossref] [PubMed]

G. Walsh and W. N. Charman, “Visual sensitivity to temporal change in focus and its relevance to the accommodation response,” Vision Res. 28(11), 1207–1221 (1988).
[Crossref] [PubMed]

F. Yi, D. R. Iskander, and M. Collins, “Depth of focus and visual acuity with primary and secondary spherical aberration,” Vision Res. 51(14), 1648–1658 (2011).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (79 KB)      Video

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic layout of the BAOVS. Visual stimuli are presented to the subject using a micro display (OLED μDisplay). Pupil size is artificially limited by the SLM in amplitude mode (SLM-ampl) and wave-front is shaped using the SLM in phase mode (SLM-phase). Ocular aberrations are measured by a Hartmann-Shack type wave-front sensor (HS-WFS). An additional path is used to monitor pupils’ location (Pupil CAM + IR LED).
Fig. 2
Fig. 2 Representation of the flicker effect for three different Zernike-SA values. The subject may perceive a flickering image when alternating between those labeled as A (net SA = 0) and B (net SA = {0, 0.05, 0.10 μm}). Letter size is 2.63 arc min and pupil size is 5 mm. See Visualization 1.
Fig. 3
Fig. 3 SA thresholds for both positive (SA + ) and negative (SA-) SA for the three tested subjects and for the three different focus conditions: A) at best subjective focus; B) adding + 0.5 D; C) adding + 1.0 D. SA values are expressed as microns of the Z(4,0) Zernike term for a 6-mm pupil. Error bars represent one standard deviation.
Fig. 4
Fig. 4 Mean through subjects of the SA thresholds as a function of the added defocus. Positive (SA + ) and negative (SA-) SA values are expressed as microns of the Z(4,0) Zernike term for a 6-mm pupil. Error bars represent the inter-subject variability.

Tables (1)

Tables Icon

Table 1 Refraction and natural SA for subjects #1 through #3. SA is expressed as the coefficient corresponding to the Z(4,0) Zernike term for a 5-mm pupil.

Metrics