Abstract

We describe a dual-modality laser scanning endomicroscope that provides simultaneous fluorescence contrast based on confocal laser endomicroscopy (CLE) and phase-gradient contrast based on scanning oblique back-scattering microscopy (sOBM). The probe consists of a 2.6mm-diameter micro-objective attached to a 30,000-core flexible fiber bundle. The dual contrasts are inherently co-registered, providing complementary information on labeled and un-labeled sample structure. Proof of principle demonstrations are presented with ex-vivo mouse colon tissue.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-gradient contrast in thick tissue with a scanning microscope

J. Mertz, A. Gasecka, A. Daradich, I. Davison, and D. Coté
Biomed. Opt. Express 5(2) 407-416 (2014)

Fluorescence endomicroscopy with structured illumination

Nenad Bozinovic, Cathie Ventalon, Tim Ford, and Jerome Mertz
Opt. Express 16(11) 8016-8025 (2008)

Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope

Zhen Qiu, Zhongyao Liu, Xiyu Duan, Supang Khondee, Bishnu Joshi, Michael J. Mandella, Kenn Oldham, Katsuo Kurabayashi, and Thomas D. Wang
Biomed. Opt. Express 4(2) 322-330 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15, 16413–16423 (2007).
    [Crossref] [PubMed]
  2. M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123, 1979–1990 (2008).
    [Crossref] [PubMed]
  3. W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101, 2015–2022 (2009).
    [Crossref] [PubMed]
  4. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18, 565–567 (1993).
    [Crossref] [PubMed]
  5. P. S. P. Thong, M. Olivo, K. W. Kho, W. Zheng, K. Mancer, M. Harris, and K. C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2007).
    [Crossref] [PubMed]
  6. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
    [Crossref]
  7. N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16, 8016–8025 (2008).
    [Crossref] [PubMed]
  8. S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
    [Crossref] [PubMed]
  9. K. Murari, Y. Zhang, S. Li, Y. Chen, M. J. Li, and X. Li, “Compensation-free, all-fiber-optic, two-photon endomicroscopy at 1.55 μm,” Opt. Lett. 36, 1299–1301 (2011).
    [Crossref] [PubMed]
  10. D. M. Huland, C. M. Brown, S. S. Howard, D. G. Ouzounov, I. Pavlova, K. Wang, D. R. Rivera, W. W. Webb, and C. Xu., “In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems,” Biomed. Opt. Express 3, 1077–1085 (2012).
    [Crossref] [PubMed]
  11. G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
    [Crossref] [PubMed]
  12. B. Viellerobe, A. Osdoit, C. Cavé, F. Lacombe, S. Loiseau, and B. Abrat, “Mauna Kea technologies’ F400 prototype: a new tool for in vivo microscopic imaging during endoscopy,” in Biomedical Optics 2006, 60820C. International Society for Optics and Photonics, 2006.
  13. P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14, 454–458 (2008).
    [Crossref] [PubMed]
  14. H. Li, Y. Li, L. Cui, B. Wang, W. Cui, M. Li, and Y. Cheng, “Monitoring pancreatic carcinogenesis by the molecular imaging of cathepsin E in vivo using confocal laser endomicroscopy,” PloS One 9, e106566 (2014).
    [Crossref] [PubMed]
  15. K. C. Lee, S. Sharma, J. B. Tuttle, and W. D. Steers, “Origin and characterization of retrograde labeled neurons supplying the rat urethra using fiberoptic confocal fluorescent microscopy in vivo and immunohistochemistry,” J. Urology 184, 1550–1554 (2010).
    [Crossref]
  16. Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation - a new cutting edge,” Nat. Rev. Cancer 13, 653–662 (2013).
    [Crossref] [PubMed]
  17. W. A. Welge, a. T. DeMarco, J. M. Watson, P. S. Rice, J. K. Barton, and M. A. Kupinski, “Diagnostic potential of multimodal imaging of ovarian tissue using optical coherence tomography and second-harmonic generation microscopy,” J. Med. Imaging 1, 025501 (2014).
    [Crossref]
  18. C. Joo, K. H. Kim, and J. F. de Boer, “Spectral-domain optical coherence phase and multiphoton microscopy,” Opt. Lett. 32, 623–625 (2007).
    [Crossref] [PubMed]
  19. C. Liang, M. Descour, K. B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in-vivo imaging,” Opt. Express 9, 821–830 (2001).
    [Crossref] [PubMed]
  20. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and G. J. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
    [Crossref]
  21. J. Xi, Y. Chen, Y. Zhang, K. Murari, M. J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett. 37, 362–364 (2012).
    [Crossref] [PubMed]
  22. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Vol. 13, (SPIE press, Bellingham2007).
    [Crossref]
  23. G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16, 9S–11S (1955).
  24. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9, 686–698 (1942).
    [Crossref]
  25. R. Yi, K. K. Chu, and J. Mertz, “Graded-field microscopy with white light,” Opt. Express 14, 5191–5200 (2006).
    [Crossref] [PubMed]
  26. S. B. Mehta and C. J. R. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. Lett. 34, 1924–1926 (2009).
    [Crossref] [PubMed]
  27. X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).
    [Crossref] [PubMed]
  28. A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37, 4062–4064 (2012).
    [Crossref] [PubMed]
  29. C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
    [Crossref] [PubMed]
  30. C. G. Rylander, D. P. Davé, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, “Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy,” Opt. Lett. 29, 1509–1511 (2004).
    [Crossref] [PubMed]
  31. T. N. Ford and J. Mertz, “Video-rate imaging of microcirculation with single-exposure oblique back-illumination microscopy,” J. Biomed. Opt. 18, 066007 (2013).
    [Crossref] [PubMed]
  32. T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9, 1195–1197 (2012).
    [Crossref] [PubMed]
  33. L. P. Hariri, A. R. Tumlinson, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Endoscopic optical coherence tomography and laser-induced fluorescence spectroscopy in a murine colon cancer model,” Lasers Surg Med 38, 305–313 (2006).
    [Crossref] [PubMed]
  34. J. Mertz, A. Gasecka, A. Daradich, I. Davison, and D. Coté, “Phase-gradient contrast in thick tissue with a scanning microscope,” Biomed. Opt. Express 5, 407–416 (2014).
    [Crossref] [PubMed]
  35. D. K. Hamilton and C. J. R. Sheppard, “Differential phase contrast in scanning optical microscopy,” J. Microscopy 133, 27–39 (1984).
    [Crossref]
  36. Y. Kawata, R. Juskaitis, T. Tanaka, T. Wilson, and S. Kawata, “Differential phase-contrast microscope with a split detector for the readout system of a multilayered optical memory,” Appl. Opt. 35, 2466–2470 (1996).
    [Crossref] [PubMed]
  37. W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210, 166–175 (2003).
    [Crossref] [PubMed]
  38. T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of Vascular Wall Fine Structure in the Human Retina Using Adaptive Optics Scanning Laser Ophthalmoscopy Vascular Wall Imaging Using AOSLO,” Invest. Ophthalmol. Vis. Sci. 54, 7115–7124 (2013).
    [Crossref] [PubMed]
  39. D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In Vivo Imaging of Human Cone Photoreceptor Inner Segments In Vivo Imaging of Photoreceptor Inner Segments,” Invest. Ophthalmol. Vis. Sci. 55, 4244–4251 (2014).
    [Crossref] [PubMed]
  40. D. Cunefare, R. F. Cooper, B. Higgins, D. F. Katz, A. Dubra, J. Carroll, and S. Farsiu, “Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images,” Biomed. Opt. Express 7, 2036–2050 (2012).
    [Crossref]
  41. T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17, 0211051 (2012).
    [Crossref]

2015 (1)

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

2014 (4)

H. Li, Y. Li, L. Cui, B. Wang, W. Cui, M. Li, and Y. Cheng, “Monitoring pancreatic carcinogenesis by the molecular imaging of cathepsin E in vivo using confocal laser endomicroscopy,” PloS One 9, e106566 (2014).
[Crossref] [PubMed]

W. A. Welge, a. T. DeMarco, J. M. Watson, P. S. Rice, J. K. Barton, and M. A. Kupinski, “Diagnostic potential of multimodal imaging of ovarian tissue using optical coherence tomography and second-harmonic generation microscopy,” J. Med. Imaging 1, 025501 (2014).
[Crossref]

J. Mertz, A. Gasecka, A. Daradich, I. Davison, and D. Coté, “Phase-gradient contrast in thick tissue with a scanning microscope,” Biomed. Opt. Express 5, 407–416 (2014).
[Crossref] [PubMed]

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In Vivo Imaging of Human Cone Photoreceptor Inner Segments In Vivo Imaging of Photoreceptor Inner Segments,” Invest. Ophthalmol. Vis. Sci. 55, 4244–4251 (2014).
[Crossref] [PubMed]

2013 (4)

T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of Vascular Wall Fine Structure in the Human Retina Using Adaptive Optics Scanning Laser Ophthalmoscopy Vascular Wall Imaging Using AOSLO,” Invest. Ophthalmol. Vis. Sci. 54, 7115–7124 (2013).
[Crossref] [PubMed]

T. N. Ford and J. Mertz, “Video-rate imaging of microcirculation with single-exposure oblique back-illumination microscopy,” J. Biomed. Opt. 18, 066007 (2013).
[Crossref] [PubMed]

Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation - a new cutting edge,” Nat. Rev. Cancer 13, 653–662 (2013).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).
[Crossref] [PubMed]

2012 (6)

2011 (1)

2010 (1)

K. C. Lee, S. Sharma, J. B. Tuttle, and W. D. Steers, “Origin and characterization of retrograde labeled neurons supplying the rat urethra using fiberoptic confocal fluorescent microscopy in vivo and immunohistochemistry,” J. Urology 184, 1550–1554 (2010).
[Crossref]

2009 (3)

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101, 2015–2022 (2009).
[Crossref] [PubMed]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

S. B. Mehta and C. J. R. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. Lett. 34, 1924–1926 (2009).
[Crossref] [PubMed]

2008 (3)

N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16, 8016–8025 (2008).
[Crossref] [PubMed]

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123, 1979–1990 (2008).
[Crossref] [PubMed]

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14, 454–458 (2008).
[Crossref] [PubMed]

2007 (4)

C. Joo, K. H. Kim, and J. F. de Boer, “Spectral-domain optical coherence phase and multiphoton microscopy,” Opt. Lett. 32, 623–625 (2007).
[Crossref] [PubMed]

T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15, 16413–16423 (2007).
[Crossref] [PubMed]

P. S. P. Thong, M. Olivo, K. W. Kho, W. Zheng, K. Mancer, M. Harris, and K. C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2007).
[Crossref] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and G. J. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[Crossref]

2006 (2)

R. Yi, K. K. Chu, and J. Mertz, “Graded-field microscopy with white light,” Opt. Express 14, 5191–5200 (2006).
[Crossref] [PubMed]

L. P. Hariri, A. R. Tumlinson, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Endoscopic optical coherence tomography and laser-induced fluorescence spectroscopy in a murine colon cancer model,” Lasers Surg Med 38, 305–313 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

2003 (1)

W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210, 166–175 (2003).
[Crossref] [PubMed]

2001 (1)

1997 (1)

1996 (1)

1993 (1)

1984 (1)

D. K. Hamilton and C. J. R. Sheppard, “Differential phase contrast in scanning optical microscopy,” J. Microscopy 133, 27–39 (1984).
[Crossref]

1955 (1)

G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16, 9S–11S (1955).

1942 (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9, 686–698 (1942).
[Crossref]

Abrat, B.

B. Viellerobe, A. Osdoit, C. Cavé, F. Lacombe, S. Loiseau, and B. Abrat, “Mauna Kea technologies’ F400 prototype: a new tool for in vivo microscopic imaging during endoscopy,” in Biomedical Optics 2006, 60820C. International Society for Optics and Photonics, 2006.

Adler, D. C.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and G. J. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[Crossref]

Akkin, T.

Amos, W. B.

W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210, 166–175 (2003).
[Crossref] [PubMed]

Aziz, D.

Barton, J. K.

W. A. Welge, a. T. DeMarco, J. M. Watson, P. S. Rice, J. K. Barton, and M. A. Kupinski, “Diagnostic potential of multimodal imaging of ovarian tissue using optical coherence tomography and second-harmonic generation microscopy,” J. Med. Imaging 1, 025501 (2014).
[Crossref]

L. P. Hariri, A. R. Tumlinson, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Endoscopic optical coherence tomography and laser-induced fluorescence spectroscopy in a murine colon cancer model,” Lasers Surg Med 38, 305–313 (2006).
[Crossref] [PubMed]

Bartoo, A. C.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Batrin, R.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Besselsen, D. G.

L. P. Hariri, A. R. Tumlinson, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Endoscopic optical coherence tomography and laser-induced fluorescence spectroscopy in a murine colon cancer model,” Lasers Surg Med 38, 305–313 (2006).
[Crossref] [PubMed]

Bourg-Heckly, G.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Bozinovic, N.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16, 8016–8025 (2008).
[Crossref] [PubMed]

Braud, F.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Brevier, J.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Brown, C. M.

Burns, S. A.

T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of Vascular Wall Fine Structure in the Human Retina Using Adaptive Optics Scanning Laser Ophthalmoscopy Vascular Wall Imaging Using AOSLO,” Invest. Ophthalmol. Vis. Sci. 54, 7115–7124 (2013).
[Crossref] [PubMed]

Carroll, J.

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In Vivo Imaging of Human Cone Photoreceptor Inner Segments In Vivo Imaging of Photoreceptor Inner Segments,” Invest. Ophthalmol. Vis. Sci. 55, 4244–4251 (2014).
[Crossref] [PubMed]

D. Cunefare, R. F. Cooper, B. Higgins, D. F. Katz, A. Dubra, J. Carroll, and S. Farsiu, “Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images,” Biomed. Opt. Express 7, 2036–2050 (2012).
[Crossref]

Cattermole, D. M.

W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210, 166–175 (2003).
[Crossref] [PubMed]

Cavé, C.

B. Viellerobe, A. Osdoit, C. Cavé, F. Lacombe, S. Loiseau, and B. Abrat, “Mauna Kea technologies’ F400 prototype: a new tool for in vivo microscopic imaging during endoscopy,” in Biomedical Optics 2006, 60820C. International Society for Optics and Photonics, 2006.

Celli, J. P.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101, 2015–2022 (2009).
[Crossref] [PubMed]

Chen, Y.

Cheng, Y.

H. Li, Y. Li, L. Cui, B. Wang, W. Cui, M. Li, and Y. Cheng, “Monitoring pancreatic carcinogenesis by the molecular imaging of cathepsin E in vivo using confocal laser endomicroscopy,” PloS One 9, e106566 (2014).
[Crossref] [PubMed]

Chu, K. K.

T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9, 1195–1197 (2012).
[Crossref] [PubMed]

A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37, 4062–4064 (2012).
[Crossref] [PubMed]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

R. Yi, K. K. Chu, and J. Mertz, “Graded-field microscopy with white light,” Opt. Express 14, 5191–5200 (2006).
[Crossref] [PubMed]

Chui, T. Y.

T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of Vascular Wall Fine Structure in the Human Retina Using Adaptive Optics Scanning Laser Ophthalmoscopy Vascular Wall Imaging Using AOSLO,” Invest. Ophthalmol. Vis. Sci. 54, 7115–7124 (2013).
[Crossref] [PubMed]

Connolly, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and G. J. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[Crossref]

Contag, C. H.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14, 454–458 (2008).
[Crossref] [PubMed]

Cooper, R. F.

Coté, D.

Crawford, J. M.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14, 454–458 (2008).
[Crossref] [PubMed]

Cui, L.

H. Li, Y. Li, L. Cui, B. Wang, W. Cui, M. Li, and Y. Cheng, “Monitoring pancreatic carcinogenesis by the molecular imaging of cathepsin E in vivo using confocal laser endomicroscopy,” PloS One 9, e106566 (2014).
[Crossref] [PubMed]

Cui, W.

H. Li, Y. Li, L. Cui, B. Wang, W. Cui, M. Li, and Y. Cheng, “Monitoring pancreatic carcinogenesis by the molecular imaging of cathepsin E in vivo using confocal laser endomicroscopy,” PloS One 9, e106566 (2014).
[Crossref] [PubMed]

Cunefare, D.

Curcio, C. A.

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In Vivo Imaging of Human Cone Photoreceptor Inner Segments In Vivo Imaging of Photoreceptor Inner Segments,” Invest. Ophthalmol. Vis. Sci. 55, 4244–4251 (2014).
[Crossref] [PubMed]

Daradich, A.

Davé, D. P.

Davison, I.

de Boer, J. F.

DeMarco, a. T.

W. A. Welge, a. T. DeMarco, J. M. Watson, P. S. Rice, J. K. Barton, and M. A. Kupinski, “Diagnostic potential of multimodal imaging of ovarian tissue using optical coherence tomography and second-harmonic generation microscopy,” J. Med. Imaging 1, 025501 (2014).
[Crossref]

Descour, M.

Diller, K. R.

Druilhe, A.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Du, C. B.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14, 454–458 (2008).
[Crossref] [PubMed]

Dubra, A.

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In Vivo Imaging of Human Cone Photoreceptor Inner Segments In Vivo Imaging of Photoreceptor Inner Segments,” Invest. Ophthalmol. Vis. Sci. 55, 4244–4251 (2014).
[Crossref] [PubMed]

D. Cunefare, R. F. Cooper, B. Higgins, D. F. Katz, A. Dubra, J. Carroll, and S. Farsiu, “Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images,” Biomed. Opt. Express 7, 2036–2050 (2012).
[Crossref]

Ducourthial, G.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Fabert, M.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Farsiu, S.

Fishman, G. A.

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In Vivo Imaging of Human Cone Photoreceptor Inner Segments In Vivo Imaging of Photoreceptor Inner Segments,” Invest. Ophthalmol. Vis. Sci. 55, 4244–4251 (2014).
[Crossref] [PubMed]

Ford, T.

Ford, T. N.

T. N. Ford and J. Mertz, “Video-rate imaging of microcirculation with single-exposure oblique back-illumination microscopy,” J. Biomed. Opt. 18, 066007 (2013).
[Crossref] [PubMed]

T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9, 1195–1197 (2012).
[Crossref] [PubMed]

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17, 0211051 (2012).
[Crossref]

A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37, 4062–4064 (2012).
[Crossref] [PubMed]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Friedland, S.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14, 454–458 (2008).
[Crossref] [PubMed]

Fujimoto, G. J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and G. J. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[Crossref]

Gasecka, A.

Gast, T. J.

T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of Vascular Wall Fine Structure in the Human Retina Using Adaptive Optics Scanning Laser Ophthalmoscopy Vascular Wall Imaging Using AOSLO,” Invest. Ophthalmol. Vis. Sci. 54, 7115–7124 (2013).
[Crossref] [PubMed]

Gerner, E. W.

L. P. Hariri, A. R. Tumlinson, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Endoscopic optical coherence tomography and laser-induced fluorescence spectroscopy in a murine colon cancer model,” Lasers Surg Med 38, 305–313 (2006).
[Crossref] [PubMed]

Gillenwater, A.

Gmitro, A. F.

Habert, R.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Hamilton, D. K.

D. K. Hamilton and C. J. R. Sheppard, “Differential phase contrast in scanning optical microscopy,” J. Microscopy 133, 27–39 (1984).
[Crossref]

Hardy, J.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14, 454–458 (2008).
[Crossref] [PubMed]

Hariri, L. P.

L. P. Hariri, A. R. Tumlinson, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Endoscopic optical coherence tomography and laser-induced fluorescence spectroscopy in a murine colon cancer model,” Lasers Surg Med 38, 305–313 (2006).
[Crossref] [PubMed]

Harris, M.

P. S. P. Thong, M. Olivo, K. W. Kho, W. Zheng, K. Mancer, M. Harris, and K. C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2007).
[Crossref] [PubMed]

Hasan, T.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101, 2015–2022 (2009).
[Crossref] [PubMed]

Higgins, B.

Horstmeyer, R.

Hourtoule, C.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Howard, S. S.

Hsiung, P. L.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14, 454–458 (2008).
[Crossref] [PubMed]

Huber, R.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and G. J. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[Crossref]

Huland, D. M.

Javier, D. J.

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123, 1979–1990 (2008).
[Crossref] [PubMed]

Joo, C.

Juskaitis, R.

Katz, D. F.

Kawata, S.

Kawata, Y.

Kho, K. W.

P. S. P. Thong, M. Olivo, K. W. Kho, W. Zheng, K. Mancer, M. Harris, and K. C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2007).
[Crossref] [PubMed]

Kim, K. H.

Kim, M.

Kudlinski, A.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Kupinski, M. A.

W. A. Welge, a. T. DeMarco, J. M. Watson, P. S. Rice, J. K. Barton, and M. A. Kupinski, “Diagnostic potential of multimodal imaging of ovarian tissue using optical coherence tomography and second-harmonic generation microscopy,” J. Med. Imaging 1, 025501 (2014).
[Crossref]

Lacombe, F.

B. Viellerobe, A. Osdoit, C. Cavé, F. Lacombe, S. Loiseau, and B. Abrat, “Mauna Kea technologies’ F400 prototype: a new tool for in vivo microscopic imaging during endoscopy,” in Biomedical Optics 2006, 60820C. International Society for Optics and Photonics, 2006.

Langlo, C. S.

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In Vivo Imaging of Human Cone Photoreceptor Inner Segments In Vivo Imaging of Photoreceptor Inner Segments,” Invest. Ophthalmol. Vis. Sci. 55, 4244–4251 (2014).
[Crossref] [PubMed]

Laufer, J.

W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210, 166–175 (2003).
[Crossref] [PubMed]

Leclerc, P.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Lee, K. C.

K. C. Lee, S. Sharma, J. B. Tuttle, and W. D. Steers, “Origin and characterization of retrograde labeled neurons supplying the rat urethra using fiberoptic confocal fluorescent microscopy in vivo and immunohistochemistry,” J. Urology 184, 1550–1554 (2010).
[Crossref]

Li, H.

H. Li, Y. Li, L. Cui, B. Wang, W. Cui, M. Li, and Y. Cheng, “Monitoring pancreatic carcinogenesis by the molecular imaging of cathepsin E in vivo using confocal laser endomicroscopy,” PloS One 9, e106566 (2014).
[Crossref] [PubMed]

Li, M.

H. Li, Y. Li, L. Cui, B. Wang, W. Cui, M. Li, and Y. Cheng, “Monitoring pancreatic carcinogenesis by the molecular imaging of cathepsin E in vivo using confocal laser endomicroscopy,” PloS One 9, e106566 (2014).
[Crossref] [PubMed]

Li, M. J.

Li, S.

Li, X.

Li, Y.

H. Li, Y. Li, L. Cui, B. Wang, W. Cui, M. Li, and Y. Cheng, “Monitoring pancreatic carcinogenesis by the molecular imaging of cathepsin E in vivo using confocal laser endomicroscopy,” PloS One 9, e106566 (2014).
[Crossref] [PubMed]

Liang, C.

Lim, D.

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17, 0211051 (2012).
[Crossref]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Lo, C. M.

Loiseau, S.

B. Viellerobe, A. Osdoit, C. Cavé, F. Lacombe, S. Loiseau, and B. Abrat, “Mauna Kea technologies’ F400 prototype: a new tool for in vivo microscopic imaging during endoscopy,” in Biomedical Optics 2006, 60820C. International Society for Optics and Photonics, 2006.

Louradour, F.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Lowe, A. W.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14, 454–458 (2008).
[Crossref] [PubMed]

Mai, Z.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101, 2015–2022 (2009).
[Crossref] [PubMed]

Mancer, K.

P. S. P. Thong, M. Olivo, K. W. Kho, W. Zheng, K. Mancer, M. Harris, and K. C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2007).
[Crossref] [PubMed]

Mann, C.

Mansuryan, T.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Mehta, S. B.

Mertz, J.

J. Mertz, A. Gasecka, A. Daradich, I. Davison, and D. Coté, “Phase-gradient contrast in thick tissue with a scanning microscope,” Biomed. Opt. Express 5, 407–416 (2014).
[Crossref] [PubMed]

T. N. Ford and J. Mertz, “Video-rate imaging of microcirculation with single-exposure oblique back-illumination microscopy,” J. Biomed. Opt. 18, 066007 (2013).
[Crossref] [PubMed]

T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9, 1195–1197 (2012).
[Crossref] [PubMed]

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17, 0211051 (2012).
[Crossref]

A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37, 4062–4064 (2012).
[Crossref] [PubMed]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16, 8016–8025 (2008).
[Crossref] [PubMed]

R. Yi, K. K. Chu, and J. Mertz, “Graded-field microscopy with white light,” Opt. Express 14, 5191–5200 (2006).
[Crossref] [PubMed]

Milner, T. E.

Muldoon, T. J.

Murari, K.

Neil, M. A. A.

Nguyen, Q. T.

Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation - a new cutting edge,” Nat. Rev. Cancer 13, 653–662 (2013).
[Crossref] [PubMed]

Nida, D. L.

Nomarski, G.

G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16, 9S–11S (1955).

Olivo, M.

P. S. P. Thong, M. Olivo, K. W. Kho, W. Zheng, K. Mancer, M. Harris, and K. C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2007).
[Crossref] [PubMed]

Osdoit, A.

B. Viellerobe, A. Osdoit, C. Cavé, F. Lacombe, S. Loiseau, and B. Abrat, “Mauna Kea technologies’ F400 prototype: a new tool for in vivo microscopic imaging during endoscopy,” in Biomedical Optics 2006, 60820C. International Society for Optics and Photonics, 2006.

Ou, X.

Ouzounov, D. G.

Parthasarathy, A. B.

Pavlova, I.

Pierce, M. C.

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123, 1979–1990 (2008).
[Crossref] [PubMed]

T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15, 16413–16423 (2007).
[Crossref] [PubMed]

Reichelt, S.

W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210, 166–175 (2003).
[Crossref] [PubMed]

Rice, P. S.

W. A. Welge, a. T. DeMarco, J. M. Watson, P. S. Rice, J. K. Barton, and M. A. Kupinski, “Diagnostic potential of multimodal imaging of ovarian tissue using optical coherence tomography and second-harmonic generation microscopy,” J. Med. Imaging 1, 025501 (2014).
[Crossref]

Richards-Kortum, R.

Rivera, D. R.

Rizvi, I.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101, 2015–2022 (2009).
[Crossref] [PubMed]

Rylander, C. G.

Sahbaie, P.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14, 454–458 (2008).
[Crossref] [PubMed]

Santos, S.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Schmitt, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and G. J. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[Crossref]

Scoles, D.

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In Vivo Imaging of Human Cone Photoreceptor Inner Segments In Vivo Imaging of Photoreceptor Inner Segments,” Invest. Ophthalmol. Vis. Sci. 55, 4244–4251 (2014).
[Crossref] [PubMed]

Sharma, S.

K. C. Lee, S. Sharma, J. B. Tuttle, and W. D. Steers, “Origin and characterization of retrograde labeled neurons supplying the rat urethra using fiberoptic confocal fluorescent microscopy in vivo and immunohistochemistry,” J. Urology 184, 1550–1554 (2010).
[Crossref]

Sheppard, C. J. R.

Singh, S. K.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Soetikno, R.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14, 454–458 (2008).
[Crossref] [PubMed]

Soo, K. C.

P. S. P. Thong, M. Olivo, K. W. Kho, W. Zheng, K. Mancer, M. Harris, and K. C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2007).
[Crossref] [PubMed]

Spring, B. Q.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101, 2015–2022 (2009).
[Crossref] [PubMed]

Steers, W. D.

K. C. Lee, S. Sharma, J. B. Tuttle, and W. D. Steers, “Origin and characterization of retrograde labeled neurons supplying the rat urethra using fiberoptic confocal fluorescent microscopy in vivo and immunohistochemistry,” J. Urology 184, 1550–1554 (2010).
[Crossref]

Sulai, Y. N.

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In Vivo Imaging of Human Cone Photoreceptor Inner Segments In Vivo Imaging of Photoreceptor Inner Segments,” Invest. Ophthalmol. Vis. Sci. 55, 4244–4251 (2014).
[Crossref] [PubMed]

Sung, K. B.

Tanaka, T.

Thiberville, L.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Thong, P. S. P.

P. S. P. Thong, M. Olivo, K. W. Kho, W. Zheng, K. Mancer, M. Harris, and K. C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2007).
[Crossref] [PubMed]

Tsien, R. Y.

Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation - a new cutting edge,” Nat. Rev. Cancer 13, 653–662 (2013).
[Crossref] [PubMed]

Tuchin, V.

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Vol. 13, (SPIE press, Bellingham2007).
[Crossref]

Tumlinson, A. R.

L. P. Hariri, A. R. Tumlinson, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Endoscopic optical coherence tomography and laser-induced fluorescence spectroscopy in a murine colon cancer model,” Lasers Surg Med 38, 305–313 (2006).
[Crossref] [PubMed]

Tuttle, J. B.

K. C. Lee, S. Sharma, J. B. Tuttle, and W. D. Steers, “Origin and characterization of retrograde labeled neurons supplying the rat urethra using fiberoptic confocal fluorescent microscopy in vivo and immunohistochemistry,” J. Urology 184, 1550–1554 (2010).
[Crossref]

Utzinger, U.

L. P. Hariri, A. R. Tumlinson, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Endoscopic optical coherence tomography and laser-induced fluorescence spectroscopy in a murine colon cancer model,” Lasers Surg Med 38, 305–313 (2006).
[Crossref] [PubMed]

Ventalon, C.

Vever-Bizet, C.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Viellerobe, B.

B. Viellerobe, A. Osdoit, C. Cavé, F. Lacombe, S. Loiseau, and B. Abrat, “Mauna Kea technologies’ F400 prototype: a new tool for in vivo microscopic imaging during endoscopy,” in Biomedical Optics 2006, 60820C. International Society for Optics and Photonics, 2006.

Wang, B.

H. Li, Y. Li, L. Cui, B. Wang, W. Cui, M. Li, and Y. Cheng, “Monitoring pancreatic carcinogenesis by the molecular imaging of cathepsin E in vivo using confocal laser endomicroscopy,” PloS One 9, e106566 (2014).
[Crossref] [PubMed]

Wang, K.

Wang, T. D.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14, 454–458 (2008).
[Crossref] [PubMed]

Watson, J. M.

W. A. Welge, a. T. DeMarco, J. M. Watson, P. S. Rice, J. K. Barton, and M. A. Kupinski, “Diagnostic potential of multimodal imaging of ovarian tissue using optical coherence tomography and second-harmonic generation microscopy,” J. Med. Imaging 1, 025501 (2014).
[Crossref]

Webb, W. W.

Welch, A. J.

Welge, W. A.

W. A. Welge, a. T. DeMarco, J. M. Watson, P. S. Rice, J. K. Barton, and M. A. Kupinski, “Diagnostic potential of multimodal imaging of ovarian tissue using optical coherence tomography and second-harmonic generation microscopy,” J. Med. Imaging 1, 025501 (2014).
[Crossref]

Williams, M. D.

Wilson, T.

Wu, A. P.

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14, 454–458 (2008).
[Crossref] [PubMed]

Xi, J.

Xu., C.

Yang, C.

Yi, R.

Yu, L.

Yun, S. H.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101, 2015–2022 (2009).
[Crossref] [PubMed]

Zernike, F.

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9, 686–698 (1942).
[Crossref]

Zhang, Y.

Zheng, G.

Zheng, W.

P. S. P. Thong, M. Olivo, K. W. Kho, W. Zheng, K. Mancer, M. Harris, and K. C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2007).
[Crossref] [PubMed]

Zhong, W.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101, 2015–2022 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (3)

Br. J. Cancer (1)

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101, 2015–2022 (2009).
[Crossref] [PubMed]

Int. J. Cancer (1)

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123, 1979–1990 (2008).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of Vascular Wall Fine Structure in the Human Retina Using Adaptive Optics Scanning Laser Ophthalmoscopy Vascular Wall Imaging Using AOSLO,” Invest. Ophthalmol. Vis. Sci. 54, 7115–7124 (2013).
[Crossref] [PubMed]

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In Vivo Imaging of Human Cone Photoreceptor Inner Segments In Vivo Imaging of Photoreceptor Inner Segments,” Invest. Ophthalmol. Vis. Sci. 55, 4244–4251 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17, 0211051 (2012).
[Crossref]

P. S. P. Thong, M. Olivo, K. W. Kho, W. Zheng, K. Mancer, M. Harris, and K. C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt. 12, 014007 (2007).
[Crossref] [PubMed]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

T. N. Ford and J. Mertz, “Video-rate imaging of microcirculation with single-exposure oblique back-illumination microscopy,” J. Biomed. Opt. 18, 066007 (2013).
[Crossref] [PubMed]

J. Med. Imaging (1)

W. A. Welge, a. T. DeMarco, J. M. Watson, P. S. Rice, J. K. Barton, and M. A. Kupinski, “Diagnostic potential of multimodal imaging of ovarian tissue using optical coherence tomography and second-harmonic generation microscopy,” J. Med. Imaging 1, 025501 (2014).
[Crossref]

J. Microsc. (1)

W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210, 166–175 (2003).
[Crossref] [PubMed]

J. Microscopy (1)

D. K. Hamilton and C. J. R. Sheppard, “Differential phase contrast in scanning optical microscopy,” J. Microscopy 133, 27–39 (1984).
[Crossref]

J. Phys. Radium (1)

G. Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16, 9S–11S (1955).

J. Urology (1)

K. C. Lee, S. Sharma, J. B. Tuttle, and W. D. Steers, “Origin and characterization of retrograde labeled neurons supplying the rat urethra using fiberoptic confocal fluorescent microscopy in vivo and immunohistochemistry,” J. Urology 184, 1550–1554 (2010).
[Crossref]

Lasers Surg Med (1)

L. P. Hariri, A. R. Tumlinson, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Endoscopic optical coherence tomography and laser-induced fluorescence spectroscopy in a murine colon cancer model,” Lasers Surg Med 38, 305–313 (2006).
[Crossref] [PubMed]

Nat. Med. (1)

P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14, 454–458 (2008).
[Crossref] [PubMed]

Nat. Methods (1)

T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9, 1195–1197 (2012).
[Crossref] [PubMed]

Nat. Photon. (1)

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and G. J. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[Crossref]

Nat. Rev. Cancer (1)

Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation - a new cutting edge,” Nat. Rev. Cancer 13, 653–662 (2013).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (9)

C. G. Rylander, D. P. Davé, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, “Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy,” Opt. Lett. 29, 1509–1511 (2004).
[Crossref] [PubMed]

S. B. Mehta and C. J. R. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. Lett. 34, 1924–1926 (2009).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).
[Crossref] [PubMed]

A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37, 4062–4064 (2012).
[Crossref] [PubMed]

J. Xi, Y. Chen, Y. Zhang, K. Murari, M. J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett. 37, 362–364 (2012).
[Crossref] [PubMed]

A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18, 565–567 (1993).
[Crossref] [PubMed]

K. Murari, Y. Zhang, S. Li, Y. Chen, M. J. Li, and X. Li, “Compensation-free, all-fiber-optic, two-photon endomicroscopy at 1.55 μm,” Opt. Lett. 36, 1299–1301 (2011).
[Crossref] [PubMed]

M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
[Crossref]

C. Joo, K. H. Kim, and J. F. de Boer, “Spectral-domain optical coherence phase and multiphoton microscopy,” Opt. Lett. 32, 623–625 (2007).
[Crossref] [PubMed]

Physica (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9, 686–698 (1942).
[Crossref]

PloS One (1)

H. Li, Y. Li, L. Cui, B. Wang, W. Cui, M. Li, and Y. Cheng, “Monitoring pancreatic carcinogenesis by the molecular imaging of cathepsin E in vivo using confocal laser endomicroscopy,” PloS One 9, e106566 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Other (2)

B. Viellerobe, A. Osdoit, C. Cavé, F. Lacombe, S. Loiseau, and B. Abrat, “Mauna Kea technologies’ F400 prototype: a new tool for in vivo microscopic imaging during endoscopy,” in Biomedical Optics 2006, 60820C. International Society for Optics and Photonics, 2006.

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Vol. 13, (SPIE press, Bellingham2007).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1: AVI (249 KB)      Video acquired with micro-objective
» Visualization 2: AVI (4506 KB)      Video acquired with no probe

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Principle of sOBM based on differential split detection. In-focus phase gradients at the laser focus deflect the laser beam and lead to an asymmetric distribution of the back-scattered light with respect to the focus axis. This imbalance is detected by a differential split detector. To obtain an image, the sample must be scanned, or the laser light must be scanned and de-scanned (see setup).
Fig. 2
Fig. 2 Schematic of our dual modality endomicroscope. PBS, polarized beam splitter; GM, galvanometric mirrors; OBJ, microscope objective; FB, fiber bundle; μOBJ, micro-objective; RP, reflective pinhole; EF, emission filter; PMT, photomultiplier tube; LP, linear polarizer; ND, neutral density filter; QD, quadrant detector.
Fig. 3
Fig. 3 Simultaneous fluorescence (left) and sOBM (right) images of 20μm beads in a scattering phantom, acquired with a 2.5× micro-objective. Top and bottom panels correspond to images before and after the application of segmentation-interpolation to remove patterning artifacts due to the fiber bundle cores (scale bar 24μm).
Fig. 4
Fig. 4 Top row from left to right: fluorescence, phase-gradient and combined images of mouse colon tissue labeled with acridine orange, acquired with 2.5× micro-objective (scale bar 24μm). See also Visualization 1 for a video recorded with a frame rate of 2 fps. Bottom row from left to right, fluorescence, phase-gradient and combined images of the same sample acquired with 1× micro-objective (scale bar 60μm).
Fig. 5
Fig. 5 From left to right: fluorescence, phase-gradient and combined images of labeled mouse colon tissue acquired directly through the microscope objective with no fiber probe (scale bar 60μm). These span the same FoV as the bottom row images in Fig. 4 and can be used to evaluate the degradation caused by the fiber probe. Also see Visualization 2 for a video recorded with this setup.

Metrics