Abstract

Visible-light optical coherence tomography (Vis-OCT) is an emerging technology that can image hemodynamic response in microvasculature. Vis-OCT can retrieve blood oxygen saturation (sO2) mapping using intrinsic optical absorption contrast while providing high-resolution anatomical vascular structures at the same time. To improve the accuracy of Vis-OCT oximetry on vessels embedded in highly scattering medium, i.e., brain cortex, we developed and formulated a novel dual-depth sampling and normalization strategy that allowed us to minimize the detrimental effect of ubiquitous tissue scattering. We applied our newly developed approach to monitor the hemodynamic response in mouse cortex after focal photothrombosis. We observed vessel dilatation, which was negatively correlated with the original vessel diameter, in the penumbra region. The sO2 of vessels in the penumbra region also dropped below normal range after focal ischemia.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cerebral metabolic rate of oxygen (CMRO2) assessed by combined Doppler and spectroscopic OCT

Shau Poh Chong, Conrad W. Merkle, Conor Leahy, and Vivek J. Srinivasan
Biomed. Opt. Express 6(10) 3941-3951 (2015)

Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism

Mohammad A. Yaseen, Vivek J. Srinivasan, Iwona Gorczynska, James G. Fujimoto, David A. Boas, and Sava Sakadžić
Biomed. Opt. Express 6(12) 4994-5007 (2015)

Diffuse optical monitoring of repeated cerebral ischemia in mice

Yu Shang, Lei Chen, Michal Toborek, and Guoqiang Yu
Opt. Express 19(21) 20301-20315 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. P. Chong, C. W. Merkle, C. Leahy, and V. J. Srinivasan, “Cerebral metabolic rate of oxygen (CMRO2) assessed by combined Doppler and spectroscopic OCT,” Biomed. Opt. Express 6(10), 3941–3951 (2015).
    [Crossref] [PubMed]
  2. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
    [Crossref] [PubMed]
  3. U. Dirnagl, C. Iadecola, and M. A. Moskowitz, “Pathobiology of ischaemic stroke: an integrated view,” Trends Neurosci. 22(9), 391–397 (1999).
    [Crossref] [PubMed]
  4. K. P. Doyle, R. P. Simon, and M. P. Stenzel-Poore, “Mechanisms of ischemic brain damage,” Neuropharmacology 55(3), 310–318 (2008).
    [Crossref] [PubMed]
  5. B. C. White, J. M. Sullivan, D. J. DeGracia, B. J. O’Neil, R. W. Neumar, L. I. Grossman, J. A. Rafols, and G. S. Krause, “Brain ischemia and reperfusion: molecular mechanisms of neuronal injury,” J. Neurol. Sci. 179(1-2S 1-2), 1–33 (2000).
    [Crossref] [PubMed]
  6. L. Hertz, “Bioenergetics of cerebral ischemia: a cellular perspective,” Neuropharmacology 55(3), 289–309 (2008).
    [Crossref] [PubMed]
  7. M. A. Moskowitz, E. H. Lo, and C. Iadecola, “The science of stroke: mechanisms in search of treatments,” Neuron 67(2), 181–198 (2010).
    [Crossref] [PubMed]
  8. R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
    [Crossref] [PubMed]
  9. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
    [Crossref] [PubMed]
  10. S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
    [Crossref] [PubMed]
  11. M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
    [Crossref] [PubMed]
  12. M. A. Yaseen, V. J. Srinivasan, I. Gorczynska, J. G. Fujimoto, D. A. Boas, and S. Sakadžić, “Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism,” Biomed. Opt. Express 6(12), 4994–5007 (2015).
    [Crossref] [PubMed]
  13. A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
    [Crossref] [PubMed]
  14. S. Sakadžić, J. Lee, D. A. Boas, and C. Ayata, “High-resolution in vivo optical imaging of stroke injury and repair,” Brain Res. 1623, 174–192 (2015).
    [Crossref] [PubMed]
  15. S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
    [Crossref] [PubMed]
  16. U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9(5), 589–596 (1989).
    [Crossref] [PubMed]
  17. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett. 35(1), 43–45 (2010).
    [Crossref] [PubMed]
  18. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
    [Crossref] [PubMed]
  19. Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
    [Crossref] [PubMed]
  20. F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express 1(1), 310–317 (2010).
    [Crossref] [PubMed]
  21. J. Yi and X. Li, “Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography,” Opt. Lett. 35(12), 2094–2096 (2010).
    [Crossref] [PubMed]
  22. S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
    [Crossref] [PubMed]
  23. J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
    [Crossref] [PubMed]
  24. B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol. 17(5), 497–504 (1985).
    [Crossref] [PubMed]
  25. M. Schroeter, S. Jander, and G. Stoll, “Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: characterization of inflammatory responses,” J. Neurosci. Methods 117(1), 43–49 (2002).
    [Crossref] [PubMed]
  26. M. D. Ginsberg and R. Busto, “Rodent models of cerebral ischemia,” Stroke 20(12), 1627–1642 (1989).
    [Crossref] [PubMed]
  27. J. Yi, S. Chen, V. Backman, and H. F. Zhang, “In vivo functional microangiography by visible-light optical coherence tomography,” Biomed. Opt. Express 5(10), 3603–3612 (2014).
    [Crossref] [PubMed]
  28. N. Lue, J. Bewersdorf, M. D. Lessard, K. Badizadegan, R. R. Dasari, M. S. Feld, and G. Popescu, “Tissue refractometry using Hilbert phase microscopy,” Opt. Lett. 32(24), 3522–3524 (2007).
    [Crossref] [PubMed]
  29. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
    [Crossref] [PubMed]
  30. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  31. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [Crossref] [PubMed]
  32. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
    [Crossref] [PubMed]
  33. J. Lee, V. Srinivasan, H. Radhakrishnan, and D. A. Boas, “Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex,” Opt. Express 19(22), 21258–21270 (2011).
    [Crossref] [PubMed]
  34. S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
    [Crossref] [PubMed]
  35. N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
    [Crossref] [PubMed]
  36. A. Y. Shih, B. Friedman, P. J. Drew, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke,” J. Cereb. Blood Flow Metab. 29(4), 738–751 (2009).
    [Crossref] [PubMed]
  37. M. Ishikawa, E. Sekizuka, C. Oshio, S. Sato, N. Yamaguchi, S. Terao, K. Tsukada, H. Minamitani, and T. Kawase, “Platelet adhesion and arteriolar dilation in the photothrombosis: observation with the rat closed cranial and spinal windows,” J. Neurol. Sci. 194(1), 59–69 (2002).
    [Crossref] [PubMed]
  38. A. G. Tsai, P. C. Johnson, and M. Intaglietta, “Oxygen gradients in the microcirculation,” Physiol. Rev. 83(3), 933–963 (2003).
    [Crossref] [PubMed]
  39. P. Moftakhar, J. S. Hauptman, D. Malkasian, and N. A. Martin, “Cerebral arteriovenous malformations. Part 2: physiology,” Neurosurg. Focus 26(5), E11 (2009).
    [Crossref] [PubMed]
  40. K. Masamoto, N. Takizawa, H. Kobayashi, K. Oka, and K. Tanishita, “Dual responses of tissue partial pressure of oxygen after functional stimulation in rat somatosensory cortex,” Brain Res. 979(1-2), 104–113 (2003).
    [Crossref] [PubMed]
  41. C. D. Klaassen, “Pharmacokinetics of rose bengal in the rat, rabbit, dog and guinea pig,” Toxicol. Appl. Pharmacol. 38(1), 85–100 (1976).
    [Crossref] [PubMed]

2015 (5)

2014 (3)

J. Yi, S. Chen, V. Backman, and H. F. Zhang, “In vivo functional microangiography by visible-light optical coherence tomography,” Biomed. Opt. Express 5(10), 3603–3612 (2014).
[Crossref] [PubMed]

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (5)

2009 (4)

A. Y. Shih, B. Friedman, P. J. Drew, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke,” J. Cereb. Blood Flow Metab. 29(4), 738–751 (2009).
[Crossref] [PubMed]

P. Moftakhar, J. S. Hauptman, D. Malkasian, and N. A. Martin, “Cerebral arteriovenous malformations. Part 2: physiology,” Neurosurg. Focus 26(5), E11 (2009).
[Crossref] [PubMed]

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

2008 (3)

K. P. Doyle, R. P. Simon, and M. P. Stenzel-Poore, “Mechanisms of ischemic brain damage,” Neuropharmacology 55(3), 310–318 (2008).
[Crossref] [PubMed]

L. Hertz, “Bioenergetics of cerebral ischemia: a cellular perspective,” Neuropharmacology 55(3), 289–309 (2008).
[Crossref] [PubMed]

M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
[Crossref] [PubMed]

2007 (2)

2004 (1)

2003 (4)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

K. Masamoto, N. Takizawa, H. Kobayashi, K. Oka, and K. Tanishita, “Dual responses of tissue partial pressure of oxygen after functional stimulation in rat somatosensory cortex,” Brain Res. 979(1-2), 104–113 (2003).
[Crossref] [PubMed]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

A. G. Tsai, P. C. Johnson, and M. Intaglietta, “Oxygen gradients in the microcirculation,” Physiol. Rev. 83(3), 933–963 (2003).
[Crossref] [PubMed]

2002 (3)

M. Ishikawa, E. Sekizuka, C. Oshio, S. Sato, N. Yamaguchi, S. Terao, K. Tsukada, H. Minamitani, and T. Kawase, “Platelet adhesion and arteriolar dilation in the photothrombosis: observation with the rat closed cranial and spinal windows,” J. Neurol. Sci. 194(1), 59–69 (2002).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

M. Schroeter, S. Jander, and G. Stoll, “Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: characterization of inflammatory responses,” J. Neurosci. Methods 117(1), 43–49 (2002).
[Crossref] [PubMed]

2001 (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

2000 (1)

B. C. White, J. M. Sullivan, D. J. DeGracia, B. J. O’Neil, R. W. Neumar, L. I. Grossman, J. A. Rafols, and G. S. Krause, “Brain ischemia and reperfusion: molecular mechanisms of neuronal injury,” J. Neurol. Sci. 179(1-2S 1-2), 1–33 (2000).
[Crossref] [PubMed]

1999 (1)

U. Dirnagl, C. Iadecola, and M. A. Moskowitz, “Pathobiology of ischaemic stroke: an integrated view,” Trends Neurosci. 22(9), 391–397 (1999).
[Crossref] [PubMed]

1990 (1)

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[Crossref] [PubMed]

1989 (2)

M. D. Ginsberg and R. Busto, “Rodent models of cerebral ischemia,” Stroke 20(12), 1627–1642 (1989).
[Crossref] [PubMed]

U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9(5), 589–596 (1989).
[Crossref] [PubMed]

1985 (1)

B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol. 17(5), 497–504 (1985).
[Crossref] [PubMed]

1976 (1)

C. D. Klaassen, “Pharmacokinetics of rose bengal in the rat, rabbit, dog and guinea pig,” Toxicol. Appl. Pharmacol. 38(1), 85–100 (1976).
[Crossref] [PubMed]

Aalders, M. C. G.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Aguirre, A. D.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

Arai, K.

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Ayata, C.

S. Sakadžić, J. Lee, D. A. Boas, and C. Ayata, “High-resolution in vivo optical imaging of stroke injury and repair,” Brain Res. 1623, 174–192 (2015).
[Crossref] [PubMed]

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Backman, V.

Badizadegan, K.

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Barry, S.

Bewersdorf, J.

Boas, D. A.

M. A. Yaseen, V. J. Srinivasan, I. Gorczynska, J. G. Fujimoto, D. A. Boas, and S. Sakadžić, “Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism,” Biomed. Opt. Express 6(12), 4994–5007 (2015).
[Crossref] [PubMed]

S. Sakadžić, J. Lee, D. A. Boas, and C. Ayata, “High-resolution in vivo optical imaging of stroke injury and repair,” Brain Res. 1623, 174–192 (2015).
[Crossref] [PubMed]

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

J. Lee, V. Srinivasan, H. Radhakrishnan, and D. A. Boas, “Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex,” Opt. Express 19(22), 21258–21270 (2011).
[Crossref] [PubMed]

V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett. 35(1), 43–45 (2010).
[Crossref] [PubMed]

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Bosschaart, N.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Bouchard, M. B.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Bruno, R. M.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Busto, R.

M. D. Ginsberg and R. Busto, “Rodent models of cerebral ischemia,” Stroke 20(12), 1627–1642 (1989).
[Crossref] [PubMed]

B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol. 17(5), 497–504 (1985).
[Crossref] [PubMed]

Cable, A. E.

Chen, S.

Chen, Y.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

Chong, S. P.

Chowdhury, S.

Dale, A. M.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Dasari, R. R.

DeGracia, D. J.

B. C. White, J. M. Sullivan, D. J. DeGracia, B. J. O’Neil, R. W. Neumar, L. I. Grossman, J. A. Rafols, and G. S. Krause, “Brain ischemia and reperfusion: molecular mechanisms of neuronal injury,” J. Neurol. Sci. 179(1-2S 1-2), 1–33 (2000).
[Crossref] [PubMed]

Devor, A.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

Dietrich, W. D.

B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol. 17(5), 497–504 (1985).
[Crossref] [PubMed]

Dirnagl, U.

U. Dirnagl, C. Iadecola, and M. A. Moskowitz, “Pathobiology of ischaemic stroke: an integrated view,” Trends Neurosci. 22(9), 391–397 (1999).
[Crossref] [PubMed]

U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9(5), 589–596 (1989).
[Crossref] [PubMed]

Doyle, K. P.

K. P. Doyle, R. P. Simon, and M. P. Stenzel-Poore, “Mechanisms of ischemic brain damage,” Neuropharmacology 55(3), 310–318 (2008).
[Crossref] [PubMed]

Drew, P. J.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

A. Y. Shih, B. Friedman, P. J. Drew, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke,” J. Cereb. Blood Flow Metab. 29(4), 738–751 (2009).
[Crossref] [PubMed]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Driscoll, J. D.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

Duker, J.

Dunn, A. K.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Edelman, G. J.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Eikermann-Haerter, K.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Faber, D. J.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Feld, M. S.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Fienup, J. R.

Friedman, B.

A. Y. Shih, B. Friedman, P. J. Drew, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke,” J. Cereb. Blood Flow Metab. 29(4), 738–751 (2009).
[Crossref] [PubMed]

Frostig, R. D.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[Crossref] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

M. A. Yaseen, V. J. Srinivasan, I. Gorczynska, J. G. Fujimoto, D. A. Boas, and S. Sakadžić, “Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism,” Biomed. Opt. Express 6(12), 4994–5007 (2015).
[Crossref] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

Gagnon, L.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Ginsberg, M. D.

M. D. Ginsberg and R. Busto, “Rodent models of cerebral ischemia,” Stroke 20(12), 1627–1642 (1989).
[Crossref] [PubMed]

B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol. 17(5), 497–504 (1985).
[Crossref] [PubMed]

Gorczynska, I.

Grinvald, A.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[Crossref] [PubMed]

Grossman, L. I.

B. C. White, J. M. Sullivan, D. J. DeGracia, B. J. O’Neil, R. W. Neumar, L. I. Grossman, J. A. Rafols, and G. S. Krause, “Brain ischemia and reperfusion: molecular mechanisms of neuronal injury,” J. Neurol. Sci. 179(1-2S 1-2), 1–33 (2000).
[Crossref] [PubMed]

Gruber, A.

Grueber, W. B.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Guizar-Sicairos, M.

Hanson, S. R.

Hauptman, J. S.

P. Moftakhar, J. S. Hauptman, D. Malkasian, and N. A. Martin, “Cerebral arteriovenous malformations. Part 2: physiology,” Neurosurg. Focus 26(5), E11 (2009).
[Crossref] [PubMed]

Hertz, L.

L. Hertz, “Bioenergetics of cerebral ischemia: a cellular perspective,” Neuropharmacology 55(3), 289–309 (2008).
[Crossref] [PubMed]

Hillman, E. M. C.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Homma, R.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

Hu, S.

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

Hurst, S.

Iadecola, C.

M. A. Moskowitz, E. H. Lo, and C. Iadecola, “The science of stroke: mechanisms in search of treatments,” Neuron 67(2), 181–198 (2010).
[Crossref] [PubMed]

U. Dirnagl, C. Iadecola, and M. A. Moskowitz, “Pathobiology of ischaemic stroke: an integrated view,” Trends Neurosci. 22(9), 391–397 (1999).
[Crossref] [PubMed]

Intaglietta, M.

A. G. Tsai, P. C. Johnson, and M. Intaglietta, “Oxygen gradients in the microcirculation,” Physiol. Rev. 83(3), 933–963 (2003).
[Crossref] [PubMed]

Ishikawa, M.

M. Ishikawa, E. Sekizuka, C. Oshio, S. Sato, N. Yamaguchi, S. Terao, K. Tsukada, H. Minamitani, and T. Kawase, “Platelet adhesion and arteriolar dilation in the photothrombosis: observation with the rat closed cranial and spinal windows,” J. Neurol. Sci. 194(1), 59–69 (2002).
[Crossref] [PubMed]

Jacewicz, M.

U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9(5), 589–596 (1989).
[Crossref] [PubMed]

Jacques, S. L.

Jander, S.

M. Schroeter, S. Jander, and G. Stoll, “Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: characterization of inflammatory responses,” J. Neurosci. Methods 117(1), 43–49 (2002).
[Crossref] [PubMed]

Jiang, J. Y.

Johnson, P. C.

A. G. Tsai, P. C. Johnson, and M. Intaglietta, “Oxygen gradients in the microcirculation,” Physiol. Rev. 83(3), 933–963 (2003).
[Crossref] [PubMed]

Kadono, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

Kaplan, B.

U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9(5), 589–596 (1989).
[Crossref] [PubMed]

Kawase, T.

M. Ishikawa, E. Sekizuka, C. Oshio, S. Sato, N. Yamaguchi, S. Terao, K. Tsukada, H. Minamitani, and T. Kawase, “Platelet adhesion and arteriolar dilation in the photothrombosis: observation with the rat closed cranial and spinal windows,” J. Neurol. Sci. 194(1), 59–69 (2002).
[Crossref] [PubMed]

Klaassen, C. D.

C. D. Klaassen, “Pharmacokinetics of rose bengal in the rat, rabbit, dog and guinea pig,” Toxicol. Appl. Pharmacol. 38(1), 85–100 (1976).
[Crossref] [PubMed]

Kleinfeld, D.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

A. Y. Shih, B. Friedman, P. J. Drew, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke,” J. Cereb. Blood Flow Metab. 29(4), 738–751 (2009).
[Crossref] [PubMed]

Ko, T.

Kobayashi, H.

K. Masamoto, N. Takizawa, H. Kobayashi, K. Oka, and K. Tanishita, “Dual responses of tissue partial pressure of oxygen after functional stimulation in rat somatosensory cortex,” Brain Res. 979(1-2), 104–113 (2003).
[Crossref] [PubMed]

Kowalczyk, A.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Krause, G. S.

B. C. White, J. M. Sullivan, D. J. DeGracia, B. J. O’Neil, R. W. Neumar, L. I. Grossman, J. A. Rafols, and G. S. Krause, “Brain ischemia and reperfusion: molecular mechanisms of neuronal injury,” J. Neurol. Sci. 179(1-2S 1-2), 1–33 (2000).
[Crossref] [PubMed]

Lacefield, C.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Leahy, C.

Lee, J.

Lefebvre, J.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Lesage, F.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Lessard, M. D.

Li, X.

Lieke, E. E.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[Crossref] [PubMed]

Liu, W.

Lo, E. H.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

M. A. Moskowitz, E. H. Lo, and C. Iadecola, “The science of stroke: mechanisms in search of treatments,” Neuron 67(2), 181–198 (2010).
[Crossref] [PubMed]

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Lue, N.

Lyden, P. D.

A. Y. Shih, B. Friedman, P. J. Drew, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke,” J. Cereb. Blood Flow Metab. 29(4), 738–751 (2009).
[Crossref] [PubMed]

Ma, Z.

Maheswari, R. U.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

Malkasian, D.

P. Moftakhar, J. S. Hauptman, D. Malkasian, and N. A. Martin, “Cerebral arteriovenous malformations. Part 2: physiology,” Neurosurg. Focus 26(5), E11 (2009).
[Crossref] [PubMed]

Mandeville, E. T.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Mann, R. S.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Martin, N. A.

P. Moftakhar, J. S. Hauptman, D. Malkasian, and N. A. Martin, “Cerebral arteriovenous malformations. Part 2: physiology,” Neurosurg. Focus 26(5), E11 (2009).
[Crossref] [PubMed]

Masamoto, K.

K. Masamoto, N. Takizawa, H. Kobayashi, K. Oka, and K. Tanishita, “Dual responses of tissue partial pressure of oxygen after functional stimulation in rat somatosensory cortex,” Brain Res. 979(1-2), 104–113 (2003).
[Crossref] [PubMed]

Maslov, K.

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

Mendes, C. S.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Merkle, C. W.

Minamitani, H.

M. Ishikawa, E. Sekizuka, C. Oshio, S. Sato, N. Yamaguchi, S. Terao, K. Tsukada, H. Minamitani, and T. Kawase, “Platelet adhesion and arteriolar dilation in the photothrombosis: observation with the rat closed cranial and spinal windows,” J. Neurol. Sci. 194(1), 59–69 (2002).
[Crossref] [PubMed]

Moftakhar, P.

P. Moftakhar, J. S. Hauptman, D. Malkasian, and N. A. Martin, “Cerebral arteriovenous malformations. Part 2: physiology,” Neurosurg. Focus 26(5), E11 (2009).
[Crossref] [PubMed]

Moskowitz, M. A.

M. A. Moskowitz, E. H. Lo, and C. Iadecola, “The science of stroke: mechanisms in search of treatments,” Neuron 67(2), 181–198 (2010).
[Crossref] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

U. Dirnagl, C. Iadecola, and M. A. Moskowitz, “Pathobiology of ischaemic stroke: an integrated view,” Trends Neurosci. 22(9), 391–397 (1999).
[Crossref] [PubMed]

Musacchia, J. J.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Neumar, R. W.

B. C. White, J. M. Sullivan, D. J. DeGracia, B. J. O’Neil, R. W. Neumar, L. I. Grossman, J. A. Rafols, and G. S. Krause, “Brain ischemia and reperfusion: molecular mechanisms of neuronal injury,” J. Neurol. Sci. 179(1-2S 1-2), 1–33 (2000).
[Crossref] [PubMed]

Nishimura, N.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

O’Neil, B. J.

B. C. White, J. M. Sullivan, D. J. DeGracia, B. J. O’Neil, R. W. Neumar, L. I. Grossman, J. A. Rafols, and G. S. Krause, “Brain ischemia and reperfusion: molecular mechanisms of neuronal injury,” J. Neurol. Sci. 179(1-2S 1-2), 1–33 (2000).
[Crossref] [PubMed]

Oka, K.

K. Masamoto, N. Takizawa, H. Kobayashi, K. Oka, and K. Tanishita, “Dual responses of tissue partial pressure of oxygen after functional stimulation in rat somatosensory cortex,” Brain Res. 979(1-2), 104–113 (2003).
[Crossref] [PubMed]

Oshio, C.

M. Ishikawa, E. Sekizuka, C. Oshio, S. Sato, N. Yamaguchi, S. Terao, K. Tsukada, H. Minamitani, and T. Kawase, “Platelet adhesion and arteriolar dilation in the photothrombosis: observation with the rat closed cranial and spinal windows,” J. Neurol. Sci. 194(1), 59–69 (2002).
[Crossref] [PubMed]

Popescu, G.

Pulsinelli, W.

U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9(5), 589–596 (1989).
[Crossref] [PubMed]

Radhakrishnan, H.

Rafols, J. A.

B. C. White, J. M. Sullivan, D. J. DeGracia, B. J. O’Neil, R. W. Neumar, L. I. Grossman, J. A. Rafols, and G. S. Krause, “Brain ischemia and reperfusion: molecular mechanisms of neuronal injury,” J. Neurol. Sci. 179(1-2S 1-2), 1–33 (2000).
[Crossref] [PubMed]

Robles, F. E.

Roussakis, E.

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Ruvinskaya, L.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

Ruvinskaya, S.

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Sakadzic, S.

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Sakadžic, S.

S. Sakadžić, J. Lee, D. A. Boas, and C. Ayata, “High-resolution in vivo optical imaging of stroke injury and repair,” Brain Res. 1623, 174–192 (2015).
[Crossref] [PubMed]

M. A. Yaseen, V. J. Srinivasan, I. Gorczynska, J. G. Fujimoto, D. A. Boas, and S. Sakadžić, “Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism,” Biomed. Opt. Express 6(12), 4994–5007 (2015).
[Crossref] [PubMed]

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Sato, S.

M. Ishikawa, E. Sekizuka, C. Oshio, S. Sato, N. Yamaguchi, S. Terao, K. Tsukada, H. Minamitani, and T. Kawase, “Platelet adhesion and arteriolar dilation in the photothrombosis: observation with the rat closed cranial and spinal windows,” J. Neurol. Sci. 194(1), 59–69 (2002).
[Crossref] [PubMed]

Schaffer, C. B.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

Schroeter, M.

M. Schroeter, S. Jander, and G. Stoll, “Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: characterization of inflammatory responses,” J. Neurosci. Methods 117(1), 43–49 (2002).
[Crossref] [PubMed]

Sekizuka, E.

M. Ishikawa, E. Sekizuka, C. Oshio, S. Sato, N. Yamaguchi, S. Terao, K. Tsukada, H. Minamitani, and T. Kawase, “Platelet adhesion and arteriolar dilation in the photothrombosis: observation with the rat closed cranial and spinal windows,” J. Neurol. Sci. 194(1), 59–69 (2002).
[Crossref] [PubMed]

Shih, A. Y.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

A. Y. Shih, B. Friedman, P. J. Drew, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke,” J. Cereb. Blood Flow Metab. 29(4), 738–751 (2009).
[Crossref] [PubMed]

Simon, R. P.

K. P. Doyle, R. P. Simon, and M. P. Stenzel-Poore, “Mechanisms of ischemic brain damage,” Neuropharmacology 55(3), 310–318 (2008).
[Crossref] [PubMed]

Srinivasan, V.

Srinivasan, V. J.

M. A. Yaseen, V. J. Srinivasan, I. Gorczynska, J. G. Fujimoto, D. A. Boas, and S. Sakadžić, “Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism,” Biomed. Opt. Express 6(12), 4994–5007 (2015).
[Crossref] [PubMed]

S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
[Crossref] [PubMed]

S. P. Chong, C. W. Merkle, C. Leahy, and V. J. Srinivasan, “Cerebral metabolic rate of oxygen (CMRO2) assessed by combined Doppler and spectroscopic OCT,” Biomed. Opt. Express 6(10), 3941–3951 (2015).
[Crossref] [PubMed]

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett. 35(1), 43–45 (2010).
[Crossref] [PubMed]

Stenzel-Poore, M. P.

K. P. Doyle, R. P. Simon, and M. P. Stenzel-Poore, “Mechanisms of ischemic brain damage,” Neuropharmacology 55(3), 310–318 (2008).
[Crossref] [PubMed]

Stoll, G.

M. Schroeter, S. Jander, and G. Stoll, “Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: characterization of inflammatory responses,” J. Neurosci. Methods 117(1), 43–49 (2002).
[Crossref] [PubMed]

Sullivan, J. M.

B. C. White, J. M. Sullivan, D. J. DeGracia, B. J. O’Neil, R. W. Neumar, L. I. Grossman, J. A. Rafols, and G. S. Krause, “Brain ischemia and reperfusion: molecular mechanisms of neuronal injury,” J. Neurol. Sci. 179(1-2S 1-2), 1–33 (2000).
[Crossref] [PubMed]

Takaoka, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

Takizawa, N.

K. Masamoto, N. Takizawa, H. Kobayashi, K. Oka, and K. Tanishita, “Dual responses of tissue partial pressure of oxygen after functional stimulation in rat somatosensory cortex,” Brain Res. 979(1-2), 104–113 (2003).
[Crossref] [PubMed]

Tanifuji, M.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

Tanishita, K.

K. Masamoto, N. Takizawa, H. Kobayashi, K. Oka, and K. Tanishita, “Dual responses of tissue partial pressure of oxygen after functional stimulation in rat somatosensory cortex,” Brain Res. 979(1-2), 104–113 (2003).
[Crossref] [PubMed]

Terao, S.

M. Ishikawa, E. Sekizuka, C. Oshio, S. Sato, N. Yamaguchi, S. Terao, K. Tsukada, H. Minamitani, and T. Kawase, “Platelet adhesion and arteriolar dilation in the photothrombosis: observation with the rat closed cranial and spinal windows,” J. Neurol. Sci. 194(1), 59–69 (2002).
[Crossref] [PubMed]

Thurman, S. T.

Ts’o, D. Y.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[Crossref] [PubMed]

Tsai, A. G.

A. G. Tsai, P. C. Johnson, and M. Intaglietta, “Oxygen gradients in the microcirculation,” Physiol. Rev. 83(3), 933–963 (2003).
[Crossref] [PubMed]

Tsai, P. S.

A. Y. Shih, B. Friedman, P. J. Drew, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke,” J. Cereb. Blood Flow Metab. 29(4), 738–751 (2009).
[Crossref] [PubMed]

Tsukada, K.

M. Ishikawa, E. Sekizuka, C. Oshio, S. Sato, N. Yamaguchi, S. Terao, K. Tsukada, H. Minamitani, and T. Kawase, “Platelet adhesion and arteriolar dilation in the photothrombosis: observation with the rat closed cranial and spinal windows,” J. Neurol. Sci. 194(1), 59–69 (2002).
[Crossref] [PubMed]

Tsytsarev, V.

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

van Leeuwen, T. G.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Vinogradov, S. A.

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Voleti, V.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Wachtel, M. S.

B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol. 17(5), 497–504 (1985).
[Crossref] [PubMed]

Wang, L. V.

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

Wang, R. K.

Watson, B. D.

B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol. 17(5), 497–504 (1985).
[Crossref] [PubMed]

Wax, A.

Wei, Q.

White, B. C.

B. C. White, J. M. Sullivan, D. J. DeGracia, B. J. O’Neil, R. W. Neumar, L. I. Grossman, J. A. Rafols, and G. S. Krause, “Brain ischemia and reperfusion: molecular mechanisms of neuronal injury,” J. Neurol. Sci. 179(1-2S 1-2), 1–33 (2000).
[Crossref] [PubMed]

Wojtkowski, M.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Wu, W.

Yamaguchi, N.

M. Ishikawa, E. Sekizuka, C. Oshio, S. Sato, N. Yamaguchi, S. Terao, K. Tsukada, H. Minamitani, and T. Kawase, “Platelet adhesion and arteriolar dilation in the photothrombosis: observation with the rat closed cranial and spinal windows,” J. Neurol. Sci. 194(1), 59–69 (2002).
[Crossref] [PubMed]

Yaseen, M. A.

M. A. Yaseen, V. J. Srinivasan, I. Gorczynska, J. G. Fujimoto, D. A. Boas, and S. Sakadžić, “Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism,” Biomed. Opt. Express 6(12), 4994–5007 (2015).
[Crossref] [PubMed]

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett. 35(1), 43–45 (2010).
[Crossref] [PubMed]

Yi, J.

Yucel, M. A.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Zhang, H. F.

Ann. Neurol. (1)

B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol. 17(5), 497–504 (1985).
[Crossref] [PubMed]

Biomed. Opt. Express (5)

Brain Res. (2)

K. Masamoto, N. Takizawa, H. Kobayashi, K. Oka, and K. Tanishita, “Dual responses of tissue partial pressure of oxygen after functional stimulation in rat somatosensory cortex,” Brain Res. 979(1-2), 104–113 (2003).
[Crossref] [PubMed]

S. Sakadžić, J. Lee, D. A. Boas, and C. Ayata, “High-resolution in vivo optical imaging of stroke injury and repair,” Brain Res. 1623, 174–192 (2015).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (4)

A. Y. Shih, B. Friedman, P. J. Drew, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke,” J. Cereb. Blood Flow Metab. 29(4), 738–751 (2009).
[Crossref] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9(5), 589–596 (1989).
[Crossref] [PubMed]

J. Neurol. Sci. (2)

B. C. White, J. M. Sullivan, D. J. DeGracia, B. J. O’Neil, R. W. Neumar, L. I. Grossman, J. A. Rafols, and G. S. Krause, “Brain ischemia and reperfusion: molecular mechanisms of neuronal injury,” J. Neurol. Sci. 179(1-2S 1-2), 1–33 (2000).
[Crossref] [PubMed]

M. Ishikawa, E. Sekizuka, C. Oshio, S. Sato, N. Yamaguchi, S. Terao, K. Tsukada, H. Minamitani, and T. Kawase, “Platelet adhesion and arteriolar dilation in the photothrombosis: observation with the rat closed cranial and spinal windows,” J. Neurol. Sci. 194(1), 59–69 (2002).
[Crossref] [PubMed]

J. Neurosci. Methods (3)

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

M. Schroeter, S. Jander, and G. Stoll, “Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: characterization of inflammatory responses,” J. Neurosci. Methods 117(1), 43–49 (2002).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Neuron (1)

M. A. Moskowitz, E. H. Lo, and C. Iadecola, “The science of stroke: mechanisms in search of treatments,” Neuron 67(2), 181–198 (2010).
[Crossref] [PubMed]

Neuropharmacology (2)

L. Hertz, “Bioenergetics of cerebral ischemia: a cellular perspective,” Neuropharmacology 55(3), 289–309 (2008).
[Crossref] [PubMed]

K. P. Doyle, R. P. Simon, and M. P. Stenzel-Poore, “Mechanisms of ischemic brain damage,” Neuropharmacology 55(3), 310–318 (2008).
[Crossref] [PubMed]

Neurosurg. Focus (1)

P. Moftakhar, J. S. Hauptman, D. Malkasian, and N. A. Martin, “Cerebral arteriovenous malformations. Part 2: physiology,” Neurosurg. Focus 26(5), E11 (2009).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (5)

Physiol. Rev. (1)

A. G. Tsai, P. C. Johnson, and M. Intaglietta, “Oxygen gradients in the microcirculation,” Physiol. Rev. 83(3), 933–963 (2003).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Stroke (1)

M. D. Ginsberg and R. Busto, “Rodent models of cerebral ischemia,” Stroke 20(12), 1627–1642 (1989).
[Crossref] [PubMed]

Toxicol. Appl. Pharmacol. (1)

C. D. Klaassen, “Pharmacokinetics of rose bengal in the rat, rabbit, dog and guinea pig,” Toxicol. Appl. Pharmacol. 38(1), 85–100 (1976).
[Crossref] [PubMed]

Trends Neurosci. (1)

U. Dirnagl, C. Iadecola, and M. A. Moskowitz, “Pathobiology of ischaemic stroke: an integrated view,” Trends Neurosci. 22(9), 391–397 (1999).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of Vis-OCT experimental system for cortical imaging. (b) Photograph of a mouse undergoing imaging session. White arrow: homemade steel head holder to reduce motion artifacts.

Fig. 2
Fig. 2

OCT angiography spectra from selected artery and vein before and after scattering correction. (a) Uncorrected raw OCT intensity spectra. (b) Scattering-corrected OCT intensity spectra. Dashed lines are theoretical intensity spectra for fully oxygenated whole blood (Oxy-WB) and fully deoxygenated whole blood (Deoxy-WB), which are calculated using Beer-Lambert law and compiled literature data for the optical properties of whole blood. (c) Normalized frequency (fnorm) of calculated sO2 using our original method. (d) fnorm of calculated sO2 using the new dual-depth sampling and normalization method.

Fig. 3
Fig. 3

Depth-coded OCT angiograph in a mouse cortex before and after focal ischemic stroke. (a) Pre-photothrombosis microvascular structure. A: middle cerebral artery. V: superficial pial veins (b) Post-photothrombosis microvascular structure. Scale bar: 500 µm. (c) and (d): OCT B-scan images taken from respective locations indicated by colored dashed line in (a) and (b). The red arrows indicate main artery (in purple square) and vein (in yellow square), respectively. (e)-(g) Vessel profile taken from respective lines indicated in (a) and (b) showing vessel dilation after photothrombosis. Blue line: pre-photothrombosis; red line: post-photothrombosis.

Fig. 4
Fig. 4

Vis-OCT angiography sO2 map before and after focal ischemic stroke. (a) Before photothrombosis (Pre-PT). (b) After photothrombosis (Post-PT). Scale bar: 500 µm. Arrows indicate the vessels where mean sO2 was calculated. Elliptical area indicates where arteries and veins overlapped each other and the averaged sO2 was displayed. (c) Mean sO2 values from the selected vessels. A1-A2: first- and second-order branches of middle cerebral artery. V1-V3: first-, second-, and third-order branches of a vein. Error bar: S.D.

Fig. 5
Fig. 5

Measurement of mouse blood Rose Bengal (RB) concentration using quantitative fluorescence (FL) analysis. (a) Extinction spectra of RB, oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb). These three chromophores have overlapping strong absorption within the wavelength range from 500 nm – 620 nm. (b) Calibration curve for quantitative FL measurement of RB concentration. Normalized FL intensity from RB solution is plotted against its known concentrations (black dots, error bar: S.D.). FL intensity showed strong positive correlation with RB concentration. We performed linear regression to retrieve the calibration curve (red dashed line, r2 = 0.97). (c) Blood RB concentration as estimated using quantitative FL measurements at time points 8, 16, 24, and 32 minutes after intravenous RB injection. Blood samples were diluted 10,000 times prior to FL measurement to prevent fluorescence quenching and virtually eliminated blood optical absorption. The first three measurement points are plotted onto the calibration curve in (b) (blue crosses), then converted to blood RB concentration and plotted against time in (c).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

AI( z,λ )= [ AA( z,λ ) ] 2 = I 0 ( λ )r( z,λ )η( z,λ )G( v ),
η(z,λ)= e 0 z 2 μ t ( z ' ,  λ)dz' ,
OD=ln( AI( z 2 ,λ ) AI( z 1 ,λ ) )=ln( I 0 ( λ )r( z 2 ,λ )η( z 2 ,λ )G( v, z 2 ) I 0 ( λ )r( z 1 ,λ )η( z 1 ,λ )G( v, z 1 ) ) =ln( η( z 2 ,λ ) η( z 1 ,λ ) )=2 μ ¯ t ( λ )d=2d[ s O 2 μ Hb O 2 ( λ )+( 1s O 2 ) μ Hb ( λ ) ],

Metrics