Abstract

The fabrication of a novel optofluidic chip using nanochannels optimized for DNA-stretched molecules and optical detection by enhanced fluorescence is reported. The chips are composed of a series of microchannels that allow the transport of molecules in the femto-liter per second inside a fluid or gas. The nanochannels are surrounded by a photonic crystal structure to enhance the emission of fluorescent light from the molecules, which can travel along the nanochannel, allowing for enhanced optical detection of the molecules in motion. The photonic crystal structure provides an enhancement up to 2.5 times in the light emitted from fluorescent molecules inside the nanochannels which increases to around 250 when normalized to the area of the nanochannels emitting fluorescence. The results may help to the detection of fluorescent molecules (like marked-DNA) in series by speeding it and allowing the use of less sophisticated equipment.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection

Anusha Pokhriyal, Meng Lu, Vikram Chaudhery, Cheng-Sheng Huang, Stephen Schulz, and Brian T. Cunningham
Opt. Express 18(24) 24793-24808 (2010)

Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors

Nikhil Ganesh, Ian D. Block, Patrick C. Mathias, Wei Zhang, Edmond Chow, Viktor Malyarchuk, and Brian T. Cunningham
Opt. Express 16(26) 21626-21640 (2008)

Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device

Benjamin R. Watts, Zhiyi Zhang, Chang-Qing Xu, Xudong Cao, and Min Lin
Biomed. Opt. Express 3(11) 2784-2793 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, “Micro- and nanofluidics for DNA analysis,” Anal. Bioanal. Chem. 378(7), 1678–1692 (2004).
    [Crossref] [PubMed]
  2. T. H. H. Le, K. Mawatari, H. Shimizu, and T. Kitamori, “Detection of zeptomole quantities of nonfluorescent molecules in a 10(1) nm nanochannel by thermal lens microscopy,” Analyst (Lond.) 139(11), 2721–2725 (2014).
    [Crossref] [PubMed]
  3. M. Wanunu, W. Morrison, Y. Rabin, A. Y. Grosberg, and A. Meller, “Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient,” Nat. Nanotechnol. 5(2), 160–165 (2010).
    [Crossref] [PubMed]
  4. N. Douville, D. Huh, and S. Takayama, “DNA linearization through confinement in nanofluidic channels,” Anal. Bioanal. Chem. 391(7), 2395–2409 (2008).
    [Crossref] [PubMed]
  5. J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, “The dynamics of genomic-length DNA molecules in 100-nm channels,” Proc. Natl. Acad. Sci. U.S.A. 101(30), 10979–10983 (2004).
    [Crossref] [PubMed]
  6. W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, “Statics and dynamics of single DNA molecules confined in nanochannels,” Phys. Rev. Lett. 94(19), 196101 (2005).
    [Crossref] [PubMed]
  7. W. Reisner, J. P. Beech, N. B. Larsen, H. Flyvbjerg, A. Kristensen, and J. O. Tegenfeldt, “Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment,” Phys. Rev. Lett. 99(5), 058302 (2007).
    [Crossref] [PubMed]
  8. E. Abad, A. Juarros, A. Retolaza, S. Merino, R. Marie, and A. Kristensen, “DNA analysis by single molecule stretching in nanofluidic biochips,” Microelectron. Eng. 88(3), 300–304 (2011).
    [Crossref]
  9. E. Abad, S. Merino, A. Retolaza, and A. Juarros, “Design and fabrication using nanoimprint lithography of a nanofluidic device for DNA stretching applications,” Microelectron. Eng. 85(5-6), 818–821 (2008).
    [Crossref]
  10. Y. M. Wang, J. O. Tegenfeldt, W. Reisner, R. Riehn, X. J. Guan, L. Guo, I. Golding, E. C. Cox, J. Sturm, and R. H. Austin, “Single-molecule studies of repressor-DNA interactions show long-range interactions,” Proc. Natl. Acad. Sci. U.S.A. 102(28), 9796–9801 (2005).
    [Crossref] [PubMed]
  11. R. Riehn, M. Lu, Y. M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin, “Restriction mapping in nanofluidic devices,” Proc. Natl. Acad. Sci. U.S.A. 102(29), 10012–10016 (2005).
    [Crossref] [PubMed]
  12. K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and D. C. Schwartz, “A single-molecule barcoding system using nanoslits for DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2673–2678 (2007).
    [Crossref] [PubMed]
  13. J. T. Mannion, C. H. Reccius, J. D. Cross, and H. G. Craighead, “Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels,” Biophys. J. 90(12), 4538–4545 (2006).
    [Crossref] [PubMed]
  14. C. H. Reccius, S. M. Stavis, J. T. Mannion, L. P. Walker, and H. G. Craighead, “Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels,” Biophys. J. 95(1), 273–286 (2008).
    [Crossref] [PubMed]
  15. F. Persson, P. Utko, W. Reisner, N. B. Larsen, and A. Kristensen, “Confinement spectroscopy: probing single DNA molecules with tapered nanochannels,” Nano Lett. 9(4), 1382–1385 (2009).
    [Crossref] [PubMed]
  16. C. Wang, Y. Shi, J. Wang, J. Pang, and X.-H. Xia, “Ultrasensitive protein concentration detection on a micro/nanofluidic enrichment chip using fluorescence quenching,” ACS Appl. Mater. Interfaces 7(12), 6835–6841 (2015).
    [Crossref] [PubMed]
  17. P. Bertone and M. Snyder, “Advances in functional protein microarray technology,” FEBS J. 272(21), 5400–5411 (2005).
    [Crossref] [PubMed]
  18. E. C. Yusko, J. M. Johnson, S. Majd, P. Prangkio, R. C. Rollings, J. Li, J. Yang, and M. Mayer, “Controlling protein translocation through nanopores with bio-inspired fluid walls,” Nat. Nanotechnol. 6(4), 253–260 (2011).
    [Crossref] [PubMed]
  19. C. Merstorf, B. Cressiot, M. Pastoriza-Gallego, A. Oukhaled, J. M. Betton, L. Auvray, and J. Pelta, “Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording,” ACS Chem. Biol. 7(4), 652–658 (2012).
    [Crossref] [PubMed]
  20. M. Soskine, A. Biesemans, B. Moeyaert, S. Cheley, H. Bayley, and G. Maglia, “An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry,” Nano Lett. 12(9), 4895–4900 (2012).
    [Crossref] [PubMed]
  21. J. E. Reiner, J. J. Kasianowicz, B. J. Nablo, and J. W. F. Robertson, “Theory for polymer analysis using nanopore-based single-molecule mass spectrometry,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12080–12085 (2010).
    [Crossref] [PubMed]
  22. Z. Azad, M. Roushan, and R. Riehn, “DNA Brushing Shoulders: Targeted Looping and Scanning of Large DNA Strands,” Nano Lett. 15(8), 5641–5646 (2015).
    [Crossref] [PubMed]
  23. I. P. Kaminov, H. P. Weber, and E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497 (1971).
    [Crossref]
  24. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
    [Crossref]
  25. L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express 17(17), 15043–15051 (2009).
    [Crossref] [PubMed]
  26. A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett. 86(14), 1101–1103 (2005).
    [Crossref]
  27. M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett. 78(10), 1325 (2001).
    [Crossref]
  28. S. Noda, K. Kojima, K. Mitsunaga, K. Kyuma, K. Hamanaka, and T. Nakayama, “Monolithic integration of an AlGaAs/GaAs multiple quantum well distributed feedback laser and a grating coupler for surface emission,” Appl. Phys. Lett. 51, 1200 (1987).
  29. L. J. Martinez, A. R. Alija, P. A. Postigo, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, and P. Viktorovitch, “Effect of implementation of a Bragg reflector in the photonic band structure of the Suzuki-phase photonic crystal lattice,” Opt. Express 16(12), 8509–8518 (2008).
    [Crossref] [PubMed]
  30. R. H. Pedersen, O. Hansen, and A. Kristensen, “A compact systemforlarge-areathermalnanoimprintlithographyusingsmartstamps,” J. Micromech. Microeng. 18, 5 (2008).
  31. V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
    [Crossref] [PubMed]
  32. Y.-A. Wu, P.-T. Wu, and C.-S. Huang, “Photonic crystal-enhanced fluorescence through the extraction of dually polarized modes,” Opt. Lett. 40(5), 733–735 (2015).
  33. Y. Tan, T. Tang, H. Xu, C. Zhu, and B. T. Cunningham, “High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system,” Biosens. Bioelectron. 73, 32–40 (2015).
    [Crossref] [PubMed]
  34. Y. K. Xu, S. Hwang, S. Kim, and J. Y. Chen, “Two orders of magnitude fluorescence enhancement of aluminum phthalocyanines by gold nanocubes: a remarkable improvement for cancer cell imaging and detection,” ACS Appl. Mater. Interfaces 6(8), 5619–5628 (2014).
    [Crossref] [PubMed]
  35. A. Puchkova, C. Vietz, E. Pibiri, B. Wünsch, M. Sanz Paz, G. P. Acuna, and P. Tinnefeld, “DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM,” Nano Lett. 15(12), 8354–8359 (2015).
    [Crossref] [PubMed]
  36. P. Strobbia, E. Languirand, and B. M. Cullum, “Recent advances in plasmonic nanostructures for sensing: a review,” Opt. Eng. 54(10), 100902 (2015).
    [Crossref]
  37. W. H. De Jong, L. T. Van Der Ven, A. Sleijffers, M. V. Park, E. H. Jansen, H. Van Loveren, and R. J. Vandebriel, “Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats,” Biomaterials 34(33), 8333–8343 (2013).
    [Crossref] [PubMed]

2015 (6)

C. Wang, Y. Shi, J. Wang, J. Pang, and X.-H. Xia, “Ultrasensitive protein concentration detection on a micro/nanofluidic enrichment chip using fluorescence quenching,” ACS Appl. Mater. Interfaces 7(12), 6835–6841 (2015).
[Crossref] [PubMed]

Z. Azad, M. Roushan, and R. Riehn, “DNA Brushing Shoulders: Targeted Looping and Scanning of Large DNA Strands,” Nano Lett. 15(8), 5641–5646 (2015).
[Crossref] [PubMed]

Y.-A. Wu, P.-T. Wu, and C.-S. Huang, “Photonic crystal-enhanced fluorescence through the extraction of dually polarized modes,” Opt. Lett. 40(5), 733–735 (2015).

Y. Tan, T. Tang, H. Xu, C. Zhu, and B. T. Cunningham, “High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system,” Biosens. Bioelectron. 73, 32–40 (2015).
[Crossref] [PubMed]

A. Puchkova, C. Vietz, E. Pibiri, B. Wünsch, M. Sanz Paz, G. P. Acuna, and P. Tinnefeld, “DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM,” Nano Lett. 15(12), 8354–8359 (2015).
[Crossref] [PubMed]

P. Strobbia, E. Languirand, and B. M. Cullum, “Recent advances in plasmonic nanostructures for sensing: a review,” Opt. Eng. 54(10), 100902 (2015).
[Crossref]

2014 (2)

Y. K. Xu, S. Hwang, S. Kim, and J. Y. Chen, “Two orders of magnitude fluorescence enhancement of aluminum phthalocyanines by gold nanocubes: a remarkable improvement for cancer cell imaging and detection,” ACS Appl. Mater. Interfaces 6(8), 5619–5628 (2014).
[Crossref] [PubMed]

T. H. H. Le, K. Mawatari, H. Shimizu, and T. Kitamori, “Detection of zeptomole quantities of nonfluorescent molecules in a 10(1) nm nanochannel by thermal lens microscopy,” Analyst (Lond.) 139(11), 2721–2725 (2014).
[Crossref] [PubMed]

2013 (2)

V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
[Crossref] [PubMed]

W. H. De Jong, L. T. Van Der Ven, A. Sleijffers, M. V. Park, E. H. Jansen, H. Van Loveren, and R. J. Vandebriel, “Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats,” Biomaterials 34(33), 8333–8343 (2013).
[Crossref] [PubMed]

2012 (2)

C. Merstorf, B. Cressiot, M. Pastoriza-Gallego, A. Oukhaled, J. M. Betton, L. Auvray, and J. Pelta, “Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording,” ACS Chem. Biol. 7(4), 652–658 (2012).
[Crossref] [PubMed]

M. Soskine, A. Biesemans, B. Moeyaert, S. Cheley, H. Bayley, and G. Maglia, “An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry,” Nano Lett. 12(9), 4895–4900 (2012).
[Crossref] [PubMed]

2011 (2)

E. C. Yusko, J. M. Johnson, S. Majd, P. Prangkio, R. C. Rollings, J. Li, J. Yang, and M. Mayer, “Controlling protein translocation through nanopores with bio-inspired fluid walls,” Nat. Nanotechnol. 6(4), 253–260 (2011).
[Crossref] [PubMed]

E. Abad, A. Juarros, A. Retolaza, S. Merino, R. Marie, and A. Kristensen, “DNA analysis by single molecule stretching in nanofluidic biochips,” Microelectron. Eng. 88(3), 300–304 (2011).
[Crossref]

2010 (2)

M. Wanunu, W. Morrison, Y. Rabin, A. Y. Grosberg, and A. Meller, “Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient,” Nat. Nanotechnol. 5(2), 160–165 (2010).
[Crossref] [PubMed]

J. E. Reiner, J. J. Kasianowicz, B. J. Nablo, and J. W. F. Robertson, “Theory for polymer analysis using nanopore-based single-molecule mass spectrometry,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12080–12085 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (5)

L. J. Martinez, A. R. Alija, P. A. Postigo, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, and P. Viktorovitch, “Effect of implementation of a Bragg reflector in the photonic band structure of the Suzuki-phase photonic crystal lattice,” Opt. Express 16(12), 8509–8518 (2008).
[Crossref] [PubMed]

R. H. Pedersen, O. Hansen, and A. Kristensen, “A compact systemforlarge-areathermalnanoimprintlithographyusingsmartstamps,” J. Micromech. Microeng. 18, 5 (2008).

N. Douville, D. Huh, and S. Takayama, “DNA linearization through confinement in nanofluidic channels,” Anal. Bioanal. Chem. 391(7), 2395–2409 (2008).
[Crossref] [PubMed]

E. Abad, S. Merino, A. Retolaza, and A. Juarros, “Design and fabrication using nanoimprint lithography of a nanofluidic device for DNA stretching applications,” Microelectron. Eng. 85(5-6), 818–821 (2008).
[Crossref]

C. H. Reccius, S. M. Stavis, J. T. Mannion, L. P. Walker, and H. G. Craighead, “Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels,” Biophys. J. 95(1), 273–286 (2008).
[Crossref] [PubMed]

2007 (2)

W. Reisner, J. P. Beech, N. B. Larsen, H. Flyvbjerg, A. Kristensen, and J. O. Tegenfeldt, “Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment,” Phys. Rev. Lett. 99(5), 058302 (2007).
[Crossref] [PubMed]

K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and D. C. Schwartz, “A single-molecule barcoding system using nanoslits for DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2673–2678 (2007).
[Crossref] [PubMed]

2006 (1)

J. T. Mannion, C. H. Reccius, J. D. Cross, and H. G. Craighead, “Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels,” Biophys. J. 90(12), 4538–4545 (2006).
[Crossref] [PubMed]

2005 (5)

W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, “Statics and dynamics of single DNA molecules confined in nanochannels,” Phys. Rev. Lett. 94(19), 196101 (2005).
[Crossref] [PubMed]

P. Bertone and M. Snyder, “Advances in functional protein microarray technology,” FEBS J. 272(21), 5400–5411 (2005).
[Crossref] [PubMed]

Y. M. Wang, J. O. Tegenfeldt, W. Reisner, R. Riehn, X. J. Guan, L. Guo, I. Golding, E. C. Cox, J. Sturm, and R. H. Austin, “Single-molecule studies of repressor-DNA interactions show long-range interactions,” Proc. Natl. Acad. Sci. U.S.A. 102(28), 9796–9801 (2005).
[Crossref] [PubMed]

R. Riehn, M. Lu, Y. M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin, “Restriction mapping in nanofluidic devices,” Proc. Natl. Acad. Sci. U.S.A. 102(29), 10012–10016 (2005).
[Crossref] [PubMed]

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett. 86(14), 1101–1103 (2005).
[Crossref]

2004 (2)

J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, “The dynamics of genomic-length DNA molecules in 100-nm channels,” Proc. Natl. Acad. Sci. U.S.A. 101(30), 10979–10983 (2004).
[Crossref] [PubMed]

J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, “Micro- and nanofluidics for DNA analysis,” Anal. Bioanal. Chem. 378(7), 1678–1692 (2004).
[Crossref] [PubMed]

2002 (1)

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

2001 (1)

M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett. 78(10), 1325 (2001).
[Crossref]

1987 (1)

S. Noda, K. Kojima, K. Mitsunaga, K. Kyuma, K. Hamanaka, and T. Nakayama, “Monolithic integration of an AlGaAs/GaAs multiple quantum well distributed feedback laser and a grating coupler for surface emission,” Appl. Phys. Lett. 51, 1200 (1987).

1971 (1)

I. P. Kaminov, H. P. Weber, and E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497 (1971).
[Crossref]

Abad, E.

E. Abad, A. Juarros, A. Retolaza, S. Merino, R. Marie, and A. Kristensen, “DNA analysis by single molecule stretching in nanofluidic biochips,” Microelectron. Eng. 88(3), 300–304 (2011).
[Crossref]

E. Abad, S. Merino, A. Retolaza, and A. Juarros, “Design and fabrication using nanoimprint lithography of a nanofluidic device for DNA stretching applications,” Microelectron. Eng. 85(5-6), 818–821 (2008).
[Crossref]

Acuna, G. P.

A. Puchkova, C. Vietz, E. Pibiri, B. Wünsch, M. Sanz Paz, G. P. Acuna, and P. Tinnefeld, “DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM,” Nano Lett. 15(12), 8354–8359 (2015).
[Crossref] [PubMed]

Alén, B.

Alija, A. R.

L. J. Martinez, A. R. Alija, P. A. Postigo, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, and P. Viktorovitch, “Effect of implementation of a Bragg reflector in the photonic band structure of the Suzuki-phase photonic crystal lattice,” Opt. Express 16(12), 8509–8518 (2008).
[Crossref] [PubMed]

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett. 86(14), 1101–1103 (2005).
[Crossref]

Andreani, L. C.

Austin, R. H.

R. Riehn, M. Lu, Y. M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin, “Restriction mapping in nanofluidic devices,” Proc. Natl. Acad. Sci. U.S.A. 102(29), 10012–10016 (2005).
[Crossref] [PubMed]

Y. M. Wang, J. O. Tegenfeldt, W. Reisner, R. Riehn, X. J. Guan, L. Guo, I. Golding, E. C. Cox, J. Sturm, and R. H. Austin, “Single-molecule studies of repressor-DNA interactions show long-range interactions,” Proc. Natl. Acad. Sci. U.S.A. 102(28), 9796–9801 (2005).
[Crossref] [PubMed]

W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, “Statics and dynamics of single DNA molecules confined in nanochannels,” Phys. Rev. Lett. 94(19), 196101 (2005).
[Crossref] [PubMed]

J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, “The dynamics of genomic-length DNA molecules in 100-nm channels,” Proc. Natl. Acad. Sci. U.S.A. 101(30), 10979–10983 (2004).
[Crossref] [PubMed]

J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, “Micro- and nanofluidics for DNA analysis,” Anal. Bioanal. Chem. 378(7), 1678–1692 (2004).
[Crossref] [PubMed]

Auvray, L.

C. Merstorf, B. Cressiot, M. Pastoriza-Gallego, A. Oukhaled, J. M. Betton, L. Auvray, and J. Pelta, “Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording,” ACS Chem. Biol. 7(4), 652–658 (2012).
[Crossref] [PubMed]

Azad, Z.

Z. Azad, M. Roushan, and R. Riehn, “DNA Brushing Shoulders: Targeted Looping and Scanning of Large DNA Strands,” Nano Lett. 15(8), 5641–5646 (2015).
[Crossref] [PubMed]

Bayley, H.

M. Soskine, A. Biesemans, B. Moeyaert, S. Cheley, H. Bayley, and G. Maglia, “An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry,” Nano Lett. 12(9), 4895–4900 (2012).
[Crossref] [PubMed]

Beech, J. P.

W. Reisner, J. P. Beech, N. B. Larsen, H. Flyvbjerg, A. Kristensen, and J. O. Tegenfeldt, “Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment,” Phys. Rev. Lett. 99(5), 058302 (2007).
[Crossref] [PubMed]

Bertone, P.

P. Bertone and M. Snyder, “Advances in functional protein microarray technology,” FEBS J. 272(21), 5400–5411 (2005).
[Crossref] [PubMed]

Betton, J. M.

C. Merstorf, B. Cressiot, M. Pastoriza-Gallego, A. Oukhaled, J. M. Betton, L. Auvray, and J. Pelta, “Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording,” ACS Chem. Biol. 7(4), 652–658 (2012).
[Crossref] [PubMed]

Biesemans, A.

M. Soskine, A. Biesemans, B. Moeyaert, S. Cheley, H. Bayley, and G. Maglia, “An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry,” Nano Lett. 12(9), 4895–4900 (2012).
[Crossref] [PubMed]

Cao, H.

J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, “Micro- and nanofluidics for DNA analysis,” Anal. Bioanal. Chem. 378(7), 1678–1692 (2004).
[Crossref] [PubMed]

J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, “The dynamics of genomic-length DNA molecules in 100-nm channels,” Proc. Natl. Acad. Sci. U.S.A. 101(30), 10979–10983 (2004).
[Crossref] [PubMed]

Chandross, E. A.

I. P. Kaminov, H. P. Weber, and E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497 (1971).
[Crossref]

Chaudhery, V.

V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
[Crossref] [PubMed]

Cheley, S.

M. Soskine, A. Biesemans, B. Moeyaert, S. Cheley, H. Bayley, and G. Maglia, “An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry,” Nano Lett. 12(9), 4895–4900 (2012).
[Crossref] [PubMed]

Chen, J. Y.

Y. K. Xu, S. Hwang, S. Kim, and J. Y. Chen, “Two orders of magnitude fluorescence enhancement of aluminum phthalocyanines by gold nanocubes: a remarkable improvement for cancer cell imaging and detection,” ACS Appl. Mater. Interfaces 6(8), 5619–5628 (2014).
[Crossref] [PubMed]

Chou, S.

J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, “The dynamics of genomic-length DNA molecules in 100-nm channels,” Proc. Natl. Acad. Sci. U.S.A. 101(30), 10979–10983 (2004).
[Crossref] [PubMed]

Chou, S. Y.

W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, “Statics and dynamics of single DNA molecules confined in nanochannels,” Phys. Rev. Lett. 94(19), 196101 (2005).
[Crossref] [PubMed]

J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, “Micro- and nanofluidics for DNA analysis,” Anal. Bioanal. Chem. 378(7), 1678–1692 (2004).
[Crossref] [PubMed]

Chutinan, A.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

Cox, E. C.

R. Riehn, M. Lu, Y. M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin, “Restriction mapping in nanofluidic devices,” Proc. Natl. Acad. Sci. U.S.A. 102(29), 10012–10016 (2005).
[Crossref] [PubMed]

Y. M. Wang, J. O. Tegenfeldt, W. Reisner, R. Riehn, X. J. Guan, L. Guo, I. Golding, E. C. Cox, J. Sturm, and R. H. Austin, “Single-molecule studies of repressor-DNA interactions show long-range interactions,” Proc. Natl. Acad. Sci. U.S.A. 102(28), 9796–9801 (2005).
[Crossref] [PubMed]

J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, “Micro- and nanofluidics for DNA analysis,” Anal. Bioanal. Chem. 378(7), 1678–1692 (2004).
[Crossref] [PubMed]

J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, “The dynamics of genomic-length DNA molecules in 100-nm channels,” Proc. Natl. Acad. Sci. U.S.A. 101(30), 10979–10983 (2004).
[Crossref] [PubMed]

Craighead, H. G.

C. H. Reccius, S. M. Stavis, J. T. Mannion, L. P. Walker, and H. G. Craighead, “Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels,” Biophys. J. 95(1), 273–286 (2008).
[Crossref] [PubMed]

J. T. Mannion, C. H. Reccius, J. D. Cross, and H. G. Craighead, “Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels,” Biophys. J. 90(12), 4538–4545 (2006).
[Crossref] [PubMed]

Cressiot, B.

C. Merstorf, B. Cressiot, M. Pastoriza-Gallego, A. Oukhaled, J. M. Betton, L. Auvray, and J. Pelta, “Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording,” ACS Chem. Biol. 7(4), 652–658 (2012).
[Crossref] [PubMed]

Cross, J. D.

J. T. Mannion, C. H. Reccius, J. D. Cross, and H. G. Craighead, “Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels,” Biophys. J. 90(12), 4538–4545 (2006).
[Crossref] [PubMed]

Cullum, B. M.

P. Strobbia, E. Languirand, and B. M. Cullum, “Recent advances in plasmonic nanostructures for sensing: a review,” Opt. Eng. 54(10), 100902 (2015).
[Crossref]

Cunningham, B. T.

Y. Tan, T. Tang, H. Xu, C. Zhu, and B. T. Cunningham, “High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system,” Biosens. Bioelectron. 73, 32–40 (2015).
[Crossref] [PubMed]

V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
[Crossref] [PubMed]

De Jong, W. H.

W. H. De Jong, L. T. Van Der Ven, A. Sleijffers, M. V. Park, E. H. Jansen, H. Van Loveren, and R. J. Vandebriel, “Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats,” Biomaterials 34(33), 8333–8343 (2013).
[Crossref] [PubMed]

de Pablo, J. J.

K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and D. C. Schwartz, “A single-molecule barcoding system using nanoslits for DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2673–2678 (2007).
[Crossref] [PubMed]

Dhingra, D. M.

K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and D. C. Schwartz, “A single-molecule barcoding system using nanoslits for DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2673–2678 (2007).
[Crossref] [PubMed]

Dotor, M. L.

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett. 86(14), 1101–1103 (2005).
[Crossref]

Douville, N.

N. Douville, D. Huh, and S. Takayama, “DNA linearization through confinement in nanofluidic channels,” Anal. Bioanal. Chem. 391(7), 2395–2409 (2008).
[Crossref] [PubMed]

Flyvbjerg, H.

W. Reisner, J. P. Beech, N. B. Larsen, H. Flyvbjerg, A. Kristensen, and J. O. Tegenfeldt, “Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment,” Phys. Rev. Lett. 99(5), 058302 (2007).
[Crossref] [PubMed]

Forrest, D.

K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and D. C. Schwartz, “A single-molecule barcoding system using nanoslits for DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2673–2678 (2007).
[Crossref] [PubMed]

Frey, E.

W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, “Statics and dynamics of single DNA molecules confined in nanochannels,” Phys. Rev. Lett. 94(19), 196101 (2005).
[Crossref] [PubMed]

Galisteo-López, J. F.

Galli, M.

García-Martín, A.

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett. 86(14), 1101–1103 (2005).
[Crossref]

George, S.

V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
[Crossref] [PubMed]

Golding, I.

Y. M. Wang, J. O. Tegenfeldt, W. Reisner, R. Riehn, X. J. Guan, L. Guo, I. Golding, E. C. Cox, J. Sturm, and R. H. Austin, “Single-molecule studies of repressor-DNA interactions show long-range interactions,” Proc. Natl. Acad. Sci. U.S.A. 102(28), 9796–9801 (2005).
[Crossref] [PubMed]

Golmayo, D.

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett. 86(14), 1101–1103 (2005).
[Crossref]

Graham, M. D.

K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and D. C. Schwartz, “A single-molecule barcoding system using nanoslits for DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2673–2678 (2007).
[Crossref] [PubMed]

Grosberg, A. Y.

M. Wanunu, W. Morrison, Y. Rabin, A. Y. Grosberg, and A. Meller, “Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient,” Nat. Nanotechnol. 5(2), 160–165 (2010).
[Crossref] [PubMed]

Guan, X. J.

Y. M. Wang, J. O. Tegenfeldt, W. Reisner, R. Riehn, X. J. Guan, L. Guo, I. Golding, E. C. Cox, J. Sturm, and R. H. Austin, “Single-molecule studies of repressor-DNA interactions show long-range interactions,” Proc. Natl. Acad. Sci. U.S.A. 102(28), 9796–9801 (2005).
[Crossref] [PubMed]

Guo, L.

Y. M. Wang, J. O. Tegenfeldt, W. Reisner, R. Riehn, X. J. Guan, L. Guo, I. Golding, E. C. Cox, J. Sturm, and R. H. Austin, “Single-molecule studies of repressor-DNA interactions show long-range interactions,” Proc. Natl. Acad. Sci. U.S.A. 102(28), 9796–9801 (2005).
[Crossref] [PubMed]

Hamanaka, K.

S. Noda, K. Kojima, K. Mitsunaga, K. Kyuma, K. Hamanaka, and T. Nakayama, “Monolithic integration of an AlGaAs/GaAs multiple quantum well distributed feedback laser and a grating coupler for surface emission,” Appl. Phys. Lett. 51, 1200 (1987).

Hansen, O.

R. H. Pedersen, O. Hansen, and A. Kristensen, “A compact systemforlarge-areathermalnanoimprintlithographyusingsmartstamps,” J. Micromech. Microeng. 18, 5 (2008).

Huang, C.-S.

Huang, R. L.

J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, “Micro- and nanofluidics for DNA analysis,” Anal. Bioanal. Chem. 378(7), 1678–1692 (2004).
[Crossref] [PubMed]

Huh, D.

N. Douville, D. Huh, and S. Takayama, “DNA linearization through confinement in nanofluidic channels,” Anal. Bioanal. Chem. 391(7), 2395–2409 (2008).
[Crossref] [PubMed]

Hwang, S.

Y. K. Xu, S. Hwang, S. Kim, and J. Y. Chen, “Two orders of magnitude fluorescence enhancement of aluminum phthalocyanines by gold nanocubes: a remarkable improvement for cancer cell imaging and detection,” ACS Appl. Mater. Interfaces 6(8), 5619–5628 (2014).
[Crossref] [PubMed]

Imada, M.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

Jansen, E. H.

W. H. De Jong, L. T. Van Der Ven, A. Sleijffers, M. V. Park, E. H. Jansen, H. Van Loveren, and R. J. Vandebriel, “Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats,” Biomaterials 34(33), 8333–8343 (2013).
[Crossref] [PubMed]

Jo, K.

K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and D. C. Schwartz, “A single-molecule barcoding system using nanoslits for DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2673–2678 (2007).
[Crossref] [PubMed]

Johnson, J. M.

E. C. Yusko, J. M. Johnson, S. Majd, P. Prangkio, R. C. Rollings, J. Li, J. Yang, and M. Mayer, “Controlling protein translocation through nanopores with bio-inspired fluid walls,” Nat. Nanotechnol. 6(4), 253–260 (2011).
[Crossref] [PubMed]

Juarros, A.

E. Abad, A. Juarros, A. Retolaza, S. Merino, R. Marie, and A. Kristensen, “DNA analysis by single molecule stretching in nanofluidic biochips,” Microelectron. Eng. 88(3), 300–304 (2011).
[Crossref]

E. Abad, S. Merino, A. Retolaza, and A. Juarros, “Design and fabrication using nanoimprint lithography of a nanofluidic device for DNA stretching applications,” Microelectron. Eng. 85(5-6), 818–821 (2008).
[Crossref]

Kaminov, I. P.

I. P. Kaminov, H. P. Weber, and E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497 (1971).
[Crossref]

Kasianowicz, J. J.

J. E. Reiner, J. J. Kasianowicz, B. J. Nablo, and J. W. F. Robertson, “Theory for polymer analysis using nanopore-based single-molecule mass spectrometry,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12080–12085 (2010).
[Crossref] [PubMed]

Kim, S.

Y. K. Xu, S. Hwang, S. Kim, and J. Y. Chen, “Two orders of magnitude fluorescence enhancement of aluminum phthalocyanines by gold nanocubes: a remarkable improvement for cancer cell imaging and detection,” ACS Appl. Mater. Interfaces 6(8), 5619–5628 (2014).
[Crossref] [PubMed]

Kitamori, T.

T. H. H. Le, K. Mawatari, H. Shimizu, and T. Kitamori, “Detection of zeptomole quantities of nonfluorescent molecules in a 10(1) nm nanochannel by thermal lens microscopy,” Analyst (Lond.) 139(11), 2721–2725 (2014).
[Crossref] [PubMed]

Kojima, K.

S. Noda, K. Kojima, K. Mitsunaga, K. Kyuma, K. Hamanaka, and T. Nakayama, “Monolithic integration of an AlGaAs/GaAs multiple quantum well distributed feedback laser and a grating coupler for surface emission,” Appl. Phys. Lett. 51, 1200 (1987).

Kristensen, A.

E. Abad, A. Juarros, A. Retolaza, S. Merino, R. Marie, and A. Kristensen, “DNA analysis by single molecule stretching in nanofluidic biochips,” Microelectron. Eng. 88(3), 300–304 (2011).
[Crossref]

F. Persson, P. Utko, W. Reisner, N. B. Larsen, and A. Kristensen, “Confinement spectroscopy: probing single DNA molecules with tapered nanochannels,” Nano Lett. 9(4), 1382–1385 (2009).
[Crossref] [PubMed]

R. H. Pedersen, O. Hansen, and A. Kristensen, “A compact systemforlarge-areathermalnanoimprintlithographyusingsmartstamps,” J. Micromech. Microeng. 18, 5 (2008).

W. Reisner, J. P. Beech, N. B. Larsen, H. Flyvbjerg, A. Kristensen, and J. O. Tegenfeldt, “Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment,” Phys. Rev. Lett. 99(5), 058302 (2007).
[Crossref] [PubMed]

Kyuma, K.

S. Noda, K. Kojima, K. Mitsunaga, K. Kyuma, K. Hamanaka, and T. Nakayama, “Monolithic integration of an AlGaAs/GaAs multiple quantum well distributed feedback laser and a grating coupler for surface emission,” Appl. Phys. Lett. 51, 1200 (1987).

Languirand, E.

P. Strobbia, E. Languirand, and B. M. Cullum, “Recent advances in plasmonic nanostructures for sensing: a review,” Opt. Eng. 54(10), 100902 (2015).
[Crossref]

Larsen, N. B.

F. Persson, P. Utko, W. Reisner, N. B. Larsen, and A. Kristensen, “Confinement spectroscopy: probing single DNA molecules with tapered nanochannels,” Nano Lett. 9(4), 1382–1385 (2009).
[Crossref] [PubMed]

W. Reisner, J. P. Beech, N. B. Larsen, H. Flyvbjerg, A. Kristensen, and J. O. Tegenfeldt, “Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment,” Phys. Rev. Lett. 99(5), 058302 (2007).
[Crossref] [PubMed]

Le, T. H. H.

T. H. H. Le, K. Mawatari, H. Shimizu, and T. Kitamori, “Detection of zeptomole quantities of nonfluorescent molecules in a 10(1) nm nanochannel by thermal lens microscopy,” Analyst (Lond.) 139(11), 2721–2725 (2014).
[Crossref] [PubMed]

Li, J.

E. C. Yusko, J. M. Johnson, S. Majd, P. Prangkio, R. C. Rollings, J. Li, J. Yang, and M. Mayer, “Controlling protein translocation through nanopores with bio-inspired fluid walls,” Nat. Nanotechnol. 6(4), 253–260 (2011).
[Crossref] [PubMed]

Lim, S. F.

R. Riehn, M. Lu, Y. M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin, “Restriction mapping in nanofluidic devices,” Proc. Natl. Acad. Sci. U.S.A. 102(29), 10012–10016 (2005).
[Crossref] [PubMed]

Lu, M.

V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
[Crossref] [PubMed]

R. Riehn, M. Lu, Y. M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin, “Restriction mapping in nanofluidic devices,” Proc. Natl. Acad. Sci. U.S.A. 102(29), 10012–10016 (2005).
[Crossref] [PubMed]

Maglia, G.

M. Soskine, A. Biesemans, B. Moeyaert, S. Cheley, H. Bayley, and G. Maglia, “An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry,” Nano Lett. 12(9), 4895–4900 (2012).
[Crossref] [PubMed]

Majd, S.

E. C. Yusko, J. M. Johnson, S. Majd, P. Prangkio, R. C. Rollings, J. Li, J. Yang, and M. Mayer, “Controlling protein translocation through nanopores with bio-inspired fluid walls,” Nat. Nanotechnol. 6(4), 253–260 (2011).
[Crossref] [PubMed]

Mannion, J. T.

C. H. Reccius, S. M. Stavis, J. T. Mannion, L. P. Walker, and H. G. Craighead, “Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels,” Biophys. J. 95(1), 273–286 (2008).
[Crossref] [PubMed]

J. T. Mannion, C. H. Reccius, J. D. Cross, and H. G. Craighead, “Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels,” Biophys. J. 90(12), 4538–4545 (2006).
[Crossref] [PubMed]

Marie, R.

E. Abad, A. Juarros, A. Retolaza, S. Merino, R. Marie, and A. Kristensen, “DNA analysis by single molecule stretching in nanofluidic biochips,” Microelectron. Eng. 88(3), 300–304 (2011).
[Crossref]

Martinez, L. J.

Martínez, L. J.

L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express 17(17), 15043–15051 (2009).
[Crossref] [PubMed]

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett. 86(14), 1101–1103 (2005).
[Crossref]

Mawatari, K.

T. H. H. Le, K. Mawatari, H. Shimizu, and T. Kitamori, “Detection of zeptomole quantities of nonfluorescent molecules in a 10(1) nm nanochannel by thermal lens microscopy,” Analyst (Lond.) 139(11), 2721–2725 (2014).
[Crossref] [PubMed]

Mayer, M.

E. C. Yusko, J. M. Johnson, S. Majd, P. Prangkio, R. C. Rollings, J. Li, J. Yang, and M. Mayer, “Controlling protein translocation through nanopores with bio-inspired fluid walls,” Nat. Nanotechnol. 6(4), 253–260 (2011).
[Crossref] [PubMed]

Meller, A.

M. Wanunu, W. Morrison, Y. Rabin, A. Y. Grosberg, and A. Meller, “Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient,” Nat. Nanotechnol. 5(2), 160–165 (2010).
[Crossref] [PubMed]

Merino, S.

E. Abad, A. Juarros, A. Retolaza, S. Merino, R. Marie, and A. Kristensen, “DNA analysis by single molecule stretching in nanofluidic biochips,” Microelectron. Eng. 88(3), 300–304 (2011).
[Crossref]

E. Abad, S. Merino, A. Retolaza, and A. Juarros, “Design and fabrication using nanoimprint lithography of a nanofluidic device for DNA stretching applications,” Microelectron. Eng. 85(5-6), 818–821 (2008).
[Crossref]

Merstorf, C.

C. Merstorf, B. Cressiot, M. Pastoriza-Gallego, A. Oukhaled, J. M. Betton, L. Auvray, and J. Pelta, “Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording,” ACS Chem. Biol. 7(4), 652–658 (2012).
[Crossref] [PubMed]

Mitsunaga, K.

S. Noda, K. Kojima, K. Mitsunaga, K. Kyuma, K. Hamanaka, and T. Nakayama, “Monolithic integration of an AlGaAs/GaAs multiple quantum well distributed feedback laser and a grating coupler for surface emission,” Appl. Phys. Lett. 51, 1200 (1987).

Mochizuki, M.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

Moeyaert, B.

M. Soskine, A. Biesemans, B. Moeyaert, S. Cheley, H. Bayley, and G. Maglia, “An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry,” Nano Lett. 12(9), 4895–4900 (2012).
[Crossref] [PubMed]

Morrison, W.

M. Wanunu, W. Morrison, Y. Rabin, A. Y. Grosberg, and A. Meller, “Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient,” Nat. Nanotechnol. 5(2), 160–165 (2010).
[Crossref] [PubMed]

Morton, K. J.

W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, “Statics and dynamics of single DNA molecules confined in nanochannels,” Phys. Rev. Lett. 94(19), 196101 (2005).
[Crossref] [PubMed]

Nablo, B. J.

J. E. Reiner, J. J. Kasianowicz, B. J. Nablo, and J. W. F. Robertson, “Theory for polymer analysis using nanopore-based single-molecule mass spectrometry,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12080–12085 (2010).
[Crossref] [PubMed]

Nakayama, T.

S. Noda, K. Kojima, K. Mitsunaga, K. Kyuma, K. Hamanaka, and T. Nakayama, “Monolithic integration of an AlGaAs/GaAs multiple quantum well distributed feedback laser and a grating coupler for surface emission,” Appl. Phys. Lett. 51, 1200 (1987).

Noda, S.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

S. Noda, K. Kojima, K. Mitsunaga, K. Kyuma, K. Hamanaka, and T. Nakayama, “Monolithic integration of an AlGaAs/GaAs multiple quantum well distributed feedback laser and a grating coupler for surface emission,” Appl. Phys. Lett. 51, 1200 (1987).

Notomi, M.

M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett. 78(10), 1325 (2001).
[Crossref]

Odijk, T.

K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and D. C. Schwartz, “A single-molecule barcoding system using nanoslits for DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2673–2678 (2007).
[Crossref] [PubMed]

Oukhaled, A.

C. Merstorf, B. Cressiot, M. Pastoriza-Gallego, A. Oukhaled, J. M. Betton, L. Auvray, and J. Pelta, “Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording,” ACS Chem. Biol. 7(4), 652–658 (2012).
[Crossref] [PubMed]

Pang, J.

C. Wang, Y. Shi, J. Wang, J. Pang, and X.-H. Xia, “Ultrasensitive protein concentration detection on a micro/nanofluidic enrichment chip using fluorescence quenching,” ACS Appl. Mater. Interfaces 7(12), 6835–6841 (2015).
[Crossref] [PubMed]

Park, M. V.

W. H. De Jong, L. T. Van Der Ven, A. Sleijffers, M. V. Park, E. H. Jansen, H. Van Loveren, and R. J. Vandebriel, “Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats,” Biomaterials 34(33), 8333–8343 (2013).
[Crossref] [PubMed]

Pastoriza-Gallego, M.

C. Merstorf, B. Cressiot, M. Pastoriza-Gallego, A. Oukhaled, J. M. Betton, L. Auvray, and J. Pelta, “Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording,” ACS Chem. Biol. 7(4), 652–658 (2012).
[Crossref] [PubMed]

Pedersen, R. H.

R. H. Pedersen, O. Hansen, and A. Kristensen, “A compact systemforlarge-areathermalnanoimprintlithographyusingsmartstamps,” J. Micromech. Microeng. 18, 5 (2008).

Pelta, J.

C. Merstorf, B. Cressiot, M. Pastoriza-Gallego, A. Oukhaled, J. M. Betton, L. Auvray, and J. Pelta, “Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording,” ACS Chem. Biol. 7(4), 652–658 (2012).
[Crossref] [PubMed]

Persson, F.

F. Persson, P. Utko, W. Reisner, N. B. Larsen, and A. Kristensen, “Confinement spectroscopy: probing single DNA molecules with tapered nanochannels,” Nano Lett. 9(4), 1382–1385 (2009).
[Crossref] [PubMed]

Pibiri, E.

A. Puchkova, C. Vietz, E. Pibiri, B. Wünsch, M. Sanz Paz, G. P. Acuna, and P. Tinnefeld, “DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM,” Nano Lett. 15(12), 8354–8359 (2015).
[Crossref] [PubMed]

Pokhriyal, A.

V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
[Crossref] [PubMed]

Postigo, P. A.

Prangkio, P.

E. C. Yusko, J. M. Johnson, S. Majd, P. Prangkio, R. C. Rollings, J. Li, J. Yang, and M. Mayer, “Controlling protein translocation through nanopores with bio-inspired fluid walls,” Nat. Nanotechnol. 6(4), 253–260 (2011).
[Crossref] [PubMed]

Prieto, I.

Prinz, C.

J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, “The dynamics of genomic-length DNA molecules in 100-nm channels,” Proc. Natl. Acad. Sci. U.S.A. 101(30), 10979–10983 (2004).
[Crossref] [PubMed]

J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, “Micro- and nanofluidics for DNA analysis,” Anal. Bioanal. Chem. 378(7), 1678–1692 (2004).
[Crossref] [PubMed]

Puchkova, A.

A. Puchkova, C. Vietz, E. Pibiri, B. Wünsch, M. Sanz Paz, G. P. Acuna, and P. Tinnefeld, “DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM,” Nano Lett. 15(12), 8354–8359 (2015).
[Crossref] [PubMed]

Rabin, Y.

M. Wanunu, W. Morrison, Y. Rabin, A. Y. Grosberg, and A. Meller, “Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient,” Nat. Nanotechnol. 5(2), 160–165 (2010).
[Crossref] [PubMed]

Reccius, C. H.

C. H. Reccius, S. M. Stavis, J. T. Mannion, L. P. Walker, and H. G. Craighead, “Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels,” Biophys. J. 95(1), 273–286 (2008).
[Crossref] [PubMed]

J. T. Mannion, C. H. Reccius, J. D. Cross, and H. G. Craighead, “Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels,” Biophys. J. 90(12), 4538–4545 (2006).
[Crossref] [PubMed]

Reiner, J. E.

J. E. Reiner, J. J. Kasianowicz, B. J. Nablo, and J. W. F. Robertson, “Theory for polymer analysis using nanopore-based single-molecule mass spectrometry,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12080–12085 (2010).
[Crossref] [PubMed]

Reisner, W.

F. Persson, P. Utko, W. Reisner, N. B. Larsen, and A. Kristensen, “Confinement spectroscopy: probing single DNA molecules with tapered nanochannels,” Nano Lett. 9(4), 1382–1385 (2009).
[Crossref] [PubMed]

W. Reisner, J. P. Beech, N. B. Larsen, H. Flyvbjerg, A. Kristensen, and J. O. Tegenfeldt, “Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment,” Phys. Rev. Lett. 99(5), 058302 (2007).
[Crossref] [PubMed]

W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, “Statics and dynamics of single DNA molecules confined in nanochannels,” Phys. Rev. Lett. 94(19), 196101 (2005).
[Crossref] [PubMed]

Y. M. Wang, J. O. Tegenfeldt, W. Reisner, R. Riehn, X. J. Guan, L. Guo, I. Golding, E. C. Cox, J. Sturm, and R. H. Austin, “Single-molecule studies of repressor-DNA interactions show long-range interactions,” Proc. Natl. Acad. Sci. U.S.A. 102(28), 9796–9801 (2005).
[Crossref] [PubMed]

Reisner, W. W.

J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, “The dynamics of genomic-length DNA molecules in 100-nm channels,” Proc. Natl. Acad. Sci. U.S.A. 101(30), 10979–10983 (2004).
[Crossref] [PubMed]

Retolaza, A.

E. Abad, A. Juarros, A. Retolaza, S. Merino, R. Marie, and A. Kristensen, “DNA analysis by single molecule stretching in nanofluidic biochips,” Microelectron. Eng. 88(3), 300–304 (2011).
[Crossref]

E. Abad, S. Merino, A. Retolaza, and A. Juarros, “Design and fabrication using nanoimprint lithography of a nanofluidic device for DNA stretching applications,” Microelectron. Eng. 85(5-6), 818–821 (2008).
[Crossref]

Riehn, R.

Z. Azad, M. Roushan, and R. Riehn, “DNA Brushing Shoulders: Targeted Looping and Scanning of Large DNA Strands,” Nano Lett. 15(8), 5641–5646 (2015).
[Crossref] [PubMed]

Y. M. Wang, J. O. Tegenfeldt, W. Reisner, R. Riehn, X. J. Guan, L. Guo, I. Golding, E. C. Cox, J. Sturm, and R. H. Austin, “Single-molecule studies of repressor-DNA interactions show long-range interactions,” Proc. Natl. Acad. Sci. U.S.A. 102(28), 9796–9801 (2005).
[Crossref] [PubMed]

R. Riehn, M. Lu, Y. M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin, “Restriction mapping in nanofluidic devices,” Proc. Natl. Acad. Sci. U.S.A. 102(29), 10012–10016 (2005).
[Crossref] [PubMed]

W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, “Statics and dynamics of single DNA molecules confined in nanochannels,” Phys. Rev. Lett. 94(19), 196101 (2005).
[Crossref] [PubMed]

J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, “The dynamics of genomic-length DNA molecules in 100-nm channels,” Proc. Natl. Acad. Sci. U.S.A. 101(30), 10979–10983 (2004).
[Crossref] [PubMed]

Robertson, J. W. F.

J. E. Reiner, J. J. Kasianowicz, B. J. Nablo, and J. W. F. Robertson, “Theory for polymer analysis using nanopore-based single-molecule mass spectrometry,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12080–12085 (2010).
[Crossref] [PubMed]

Rollings, R. C.

E. C. Yusko, J. M. Johnson, S. Majd, P. Prangkio, R. C. Rollings, J. Li, J. Yang, and M. Mayer, “Controlling protein translocation through nanopores with bio-inspired fluid walls,” Nat. Nanotechnol. 6(4), 253–260 (2011).
[Crossref] [PubMed]

Rosen, M.

W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, “Statics and dynamics of single DNA molecules confined in nanochannels,” Phys. Rev. Lett. 94(19), 196101 (2005).
[Crossref] [PubMed]

Roushan, M.

Z. Azad, M. Roushan, and R. Riehn, “DNA Brushing Shoulders: Targeted Looping and Scanning of Large DNA Strands,” Nano Lett. 15(8), 5641–5646 (2015).
[Crossref] [PubMed]

Runnheim, R.

K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and D. C. Schwartz, “A single-molecule barcoding system using nanoslits for DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2673–2678 (2007).
[Crossref] [PubMed]

Sanz Paz, M.

A. Puchkova, C. Vietz, E. Pibiri, B. Wünsch, M. Sanz Paz, G. P. Acuna, and P. Tinnefeld, “DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM,” Nano Lett. 15(12), 8354–8359 (2015).
[Crossref] [PubMed]

Schwartz, D. C.

K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and D. C. Schwartz, “A single-molecule barcoding system using nanoslits for DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2673–2678 (2007).
[Crossref] [PubMed]

Seassal, C.

Shi, Y.

C. Wang, Y. Shi, J. Wang, J. Pang, and X.-H. Xia, “Ultrasensitive protein concentration detection on a micro/nanofluidic enrichment chip using fluorescence quenching,” ACS Appl. Mater. Interfaces 7(12), 6835–6841 (2015).
[Crossref] [PubMed]

Shimizu, H.

T. H. H. Le, K. Mawatari, H. Shimizu, and T. Kitamori, “Detection of zeptomole quantities of nonfluorescent molecules in a 10(1) nm nanochannel by thermal lens microscopy,” Analyst (Lond.) 139(11), 2721–2725 (2014).
[Crossref] [PubMed]

Silberzan, P.

J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, “The dynamics of genomic-length DNA molecules in 100-nm channels,” Proc. Natl. Acad. Sci. U.S.A. 101(30), 10979–10983 (2004).
[Crossref] [PubMed]

Sleijffers, A.

W. H. De Jong, L. T. Van Der Ven, A. Sleijffers, M. V. Park, E. H. Jansen, H. Van Loveren, and R. J. Vandebriel, “Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats,” Biomaterials 34(33), 8333–8343 (2013).
[Crossref] [PubMed]

Snyder, M.

P. Bertone and M. Snyder, “Advances in functional protein microarray technology,” FEBS J. 272(21), 5400–5411 (2005).
[Crossref] [PubMed]

Soskine, M.

M. Soskine, A. Biesemans, B. Moeyaert, S. Cheley, H. Bayley, and G. Maglia, “An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry,” Nano Lett. 12(9), 4895–4900 (2012).
[Crossref] [PubMed]

Stavis, S. M.

C. H. Reccius, S. M. Stavis, J. T. Mannion, L. P. Walker, and H. G. Craighead, “Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels,” Biophys. J. 95(1), 273–286 (2008).
[Crossref] [PubMed]

Strobbia, P.

P. Strobbia, E. Languirand, and B. M. Cullum, “Recent advances in plasmonic nanostructures for sensing: a review,” Opt. Eng. 54(10), 100902 (2015).
[Crossref]

Sturm, J.

Y. M. Wang, J. O. Tegenfeldt, W. Reisner, R. Riehn, X. J. Guan, L. Guo, I. Golding, E. C. Cox, J. Sturm, and R. H. Austin, “Single-molecule studies of repressor-DNA interactions show long-range interactions,” Proc. Natl. Acad. Sci. U.S.A. 102(28), 9796–9801 (2005).
[Crossref] [PubMed]

Sturm, J. C.

W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, “Statics and dynamics of single DNA molecules confined in nanochannels,” Phys. Rev. Lett. 94(19), 196101 (2005).
[Crossref] [PubMed]

J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, “The dynamics of genomic-length DNA molecules in 100-nm channels,” Proc. Natl. Acad. Sci. U.S.A. 101(30), 10979–10983 (2004).
[Crossref] [PubMed]

J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, “Micro- and nanofluidics for DNA analysis,” Anal. Bioanal. Chem. 378(7), 1678–1692 (2004).
[Crossref] [PubMed]

Suzuki, H.

M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett. 78(10), 1325 (2001).
[Crossref]

Takayama, S.

N. Douville, D. Huh, and S. Takayama, “DNA linearization through confinement in nanofluidic channels,” Anal. Bioanal. Chem. 391(7), 2395–2409 (2008).
[Crossref] [PubMed]

Tamamura, T.

M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett. 78(10), 1325 (2001).
[Crossref]

Tan, Y.

Y. Tan, T. Tang, H. Xu, C. Zhu, and B. T. Cunningham, “High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system,” Biosens. Bioelectron. 73, 32–40 (2015).
[Crossref] [PubMed]

Tang, T.

Y. Tan, T. Tang, H. Xu, C. Zhu, and B. T. Cunningham, “High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system,” Biosens. Bioelectron. 73, 32–40 (2015).
[Crossref] [PubMed]

Tegenfeldt, J. O.

W. Reisner, J. P. Beech, N. B. Larsen, H. Flyvbjerg, A. Kristensen, and J. O. Tegenfeldt, “Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment,” Phys. Rev. Lett. 99(5), 058302 (2007).
[Crossref] [PubMed]

Y. M. Wang, J. O. Tegenfeldt, W. Reisner, R. Riehn, X. J. Guan, L. Guo, I. Golding, E. C. Cox, J. Sturm, and R. H. Austin, “Single-molecule studies of repressor-DNA interactions show long-range interactions,” Proc. Natl. Acad. Sci. U.S.A. 102(28), 9796–9801 (2005).
[Crossref] [PubMed]

J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, “The dynamics of genomic-length DNA molecules in 100-nm channels,” Proc. Natl. Acad. Sci. U.S.A. 101(30), 10979–10983 (2004).
[Crossref] [PubMed]

J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, “Micro- and nanofluidics for DNA analysis,” Anal. Bioanal. Chem. 378(7), 1678–1692 (2004).
[Crossref] [PubMed]

Tinnefeld, P.

A. Puchkova, C. Vietz, E. Pibiri, B. Wünsch, M. Sanz Paz, G. P. Acuna, and P. Tinnefeld, “DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM,” Nano Lett. 15(12), 8354–8359 (2015).
[Crossref] [PubMed]

Utko, P.

F. Persson, P. Utko, W. Reisner, N. B. Larsen, and A. Kristensen, “Confinement spectroscopy: probing single DNA molecules with tapered nanochannels,” Nano Lett. 9(4), 1382–1385 (2009).
[Crossref] [PubMed]

Van Der Ven, L. T.

W. H. De Jong, L. T. Van Der Ven, A. Sleijffers, M. V. Park, E. H. Jansen, H. Van Loveren, and R. J. Vandebriel, “Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats,” Biomaterials 34(33), 8333–8343 (2013).
[Crossref] [PubMed]

Van Loveren, H.

W. H. De Jong, L. T. Van Der Ven, A. Sleijffers, M. V. Park, E. H. Jansen, H. Van Loveren, and R. J. Vandebriel, “Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats,” Biomaterials 34(33), 8333–8343 (2013).
[Crossref] [PubMed]

Vandebriel, R. J.

W. H. De Jong, L. T. Van Der Ven, A. Sleijffers, M. V. Park, E. H. Jansen, H. Van Loveren, and R. J. Vandebriel, “Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats,” Biomaterials 34(33), 8333–8343 (2013).
[Crossref] [PubMed]

Vietz, C.

A. Puchkova, C. Vietz, E. Pibiri, B. Wünsch, M. Sanz Paz, G. P. Acuna, and P. Tinnefeld, “DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM,” Nano Lett. 15(12), 8354–8359 (2015).
[Crossref] [PubMed]

Viktorovitch, P.

Walker, L. P.

C. H. Reccius, S. M. Stavis, J. T. Mannion, L. P. Walker, and H. G. Craighead, “Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels,” Biophys. J. 95(1), 273–286 (2008).
[Crossref] [PubMed]

Wang, C.

C. Wang, Y. Shi, J. Wang, J. Pang, and X.-H. Xia, “Ultrasensitive protein concentration detection on a micro/nanofluidic enrichment chip using fluorescence quenching,” ACS Appl. Mater. Interfaces 7(12), 6835–6841 (2015).
[Crossref] [PubMed]

Wang, J.

C. Wang, Y. Shi, J. Wang, J. Pang, and X.-H. Xia, “Ultrasensitive protein concentration detection on a micro/nanofluidic enrichment chip using fluorescence quenching,” ACS Appl. Mater. Interfaces 7(12), 6835–6841 (2015).
[Crossref] [PubMed]

Wang, Y. M.

W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, “Statics and dynamics of single DNA molecules confined in nanochannels,” Phys. Rev. Lett. 94(19), 196101 (2005).
[Crossref] [PubMed]

Y. M. Wang, J. O. Tegenfeldt, W. Reisner, R. Riehn, X. J. Guan, L. Guo, I. Golding, E. C. Cox, J. Sturm, and R. H. Austin, “Single-molecule studies of repressor-DNA interactions show long-range interactions,” Proc. Natl. Acad. Sci. U.S.A. 102(28), 9796–9801 (2005).
[Crossref] [PubMed]

R. Riehn, M. Lu, Y. M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin, “Restriction mapping in nanofluidic devices,” Proc. Natl. Acad. Sci. U.S.A. 102(29), 10012–10016 (2005).
[Crossref] [PubMed]

J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, “The dynamics of genomic-length DNA molecules in 100-nm channels,” Proc. Natl. Acad. Sci. U.S.A. 101(30), 10979–10983 (2004).
[Crossref] [PubMed]

Wanunu, M.

M. Wanunu, W. Morrison, Y. Rabin, A. Y. Grosberg, and A. Meller, “Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient,” Nat. Nanotechnol. 5(2), 160–165 (2010).
[Crossref] [PubMed]

Weber, H. P.

I. P. Kaminov, H. P. Weber, and E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497 (1971).
[Crossref]

Wu, P.-T.

Wu, Y.-A.

Wünsch, B.

A. Puchkova, C. Vietz, E. Pibiri, B. Wünsch, M. Sanz Paz, G. P. Acuna, and P. Tinnefeld, “DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM,” Nano Lett. 15(12), 8354–8359 (2015).
[Crossref] [PubMed]

Xia, X.-H.

C. Wang, Y. Shi, J. Wang, J. Pang, and X.-H. Xia, “Ultrasensitive protein concentration detection on a micro/nanofluidic enrichment chip using fluorescence quenching,” ACS Appl. Mater. Interfaces 7(12), 6835–6841 (2015).
[Crossref] [PubMed]

Xu, H.

Y. Tan, T. Tang, H. Xu, C. Zhu, and B. T. Cunningham, “High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system,” Biosens. Bioelectron. 73, 32–40 (2015).
[Crossref] [PubMed]

Xu, Y. K.

Y. K. Xu, S. Hwang, S. Kim, and J. Y. Chen, “Two orders of magnitude fluorescence enhancement of aluminum phthalocyanines by gold nanocubes: a remarkable improvement for cancer cell imaging and detection,” ACS Appl. Mater. Interfaces 6(8), 5619–5628 (2014).
[Crossref] [PubMed]

Yang, J.

E. C. Yusko, J. M. Johnson, S. Majd, P. Prangkio, R. C. Rollings, J. Li, J. Yang, and M. Mayer, “Controlling protein translocation through nanopores with bio-inspired fluid walls,” Nat. Nanotechnol. 6(4), 253–260 (2011).
[Crossref] [PubMed]

Yu, Z.

W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, “Statics and dynamics of single DNA molecules confined in nanochannels,” Phys. Rev. Lett. 94(19), 196101 (2005).
[Crossref] [PubMed]

Yusko, E. C.

E. C. Yusko, J. M. Johnson, S. Majd, P. Prangkio, R. C. Rollings, J. Li, J. Yang, and M. Mayer, “Controlling protein translocation through nanopores with bio-inspired fluid walls,” Nat. Nanotechnol. 6(4), 253–260 (2011).
[Crossref] [PubMed]

Zhu, C.

Y. Tan, T. Tang, H. Xu, C. Zhu, and B. T. Cunningham, “High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system,” Biosens. Bioelectron. 73, 32–40 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

C. Wang, Y. Shi, J. Wang, J. Pang, and X.-H. Xia, “Ultrasensitive protein concentration detection on a micro/nanofluidic enrichment chip using fluorescence quenching,” ACS Appl. Mater. Interfaces 7(12), 6835–6841 (2015).
[Crossref] [PubMed]

Y. K. Xu, S. Hwang, S. Kim, and J. Y. Chen, “Two orders of magnitude fluorescence enhancement of aluminum phthalocyanines by gold nanocubes: a remarkable improvement for cancer cell imaging and detection,” ACS Appl. Mater. Interfaces 6(8), 5619–5628 (2014).
[Crossref] [PubMed]

ACS Chem. Biol. (1)

C. Merstorf, B. Cressiot, M. Pastoriza-Gallego, A. Oukhaled, J. M. Betton, L. Auvray, and J. Pelta, “Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording,” ACS Chem. Biol. 7(4), 652–658 (2012).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (2)

J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, “Micro- and nanofluidics for DNA analysis,” Anal. Bioanal. Chem. 378(7), 1678–1692 (2004).
[Crossref] [PubMed]

N. Douville, D. Huh, and S. Takayama, “DNA linearization through confinement in nanofluidic channels,” Anal. Bioanal. Chem. 391(7), 2395–2409 (2008).
[Crossref] [PubMed]

Analyst (Lond.) (1)

T. H. H. Le, K. Mawatari, H. Shimizu, and T. Kitamori, “Detection of zeptomole quantities of nonfluorescent molecules in a 10(1) nm nanochannel by thermal lens microscopy,” Analyst (Lond.) 139(11), 2721–2725 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

I. P. Kaminov, H. P. Weber, and E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497 (1971).
[Crossref]

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett. 86(14), 1101–1103 (2005).
[Crossref]

M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett. 78(10), 1325 (2001).
[Crossref]

S. Noda, K. Kojima, K. Mitsunaga, K. Kyuma, K. Hamanaka, and T. Nakayama, “Monolithic integration of an AlGaAs/GaAs multiple quantum well distributed feedback laser and a grating coupler for surface emission,” Appl. Phys. Lett. 51, 1200 (1987).

Biomaterials (1)

W. H. De Jong, L. T. Van Der Ven, A. Sleijffers, M. V. Park, E. H. Jansen, H. Van Loveren, and R. J. Vandebriel, “Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats,” Biomaterials 34(33), 8333–8343 (2013).
[Crossref] [PubMed]

Biophys. J. (2)

J. T. Mannion, C. H. Reccius, J. D. Cross, and H. G. Craighead, “Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels,” Biophys. J. 90(12), 4538–4545 (2006).
[Crossref] [PubMed]

C. H. Reccius, S. M. Stavis, J. T. Mannion, L. P. Walker, and H. G. Craighead, “Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels,” Biophys. J. 95(1), 273–286 (2008).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

Y. Tan, T. Tang, H. Xu, C. Zhu, and B. T. Cunningham, “High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system,” Biosens. Bioelectron. 73, 32–40 (2015).
[Crossref] [PubMed]

FEBS J. (1)

P. Bertone and M. Snyder, “Advances in functional protein microarray technology,” FEBS J. 272(21), 5400–5411 (2005).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

R. H. Pedersen, O. Hansen, and A. Kristensen, “A compact systemforlarge-areathermalnanoimprintlithographyusingsmartstamps,” J. Micromech. Microeng. 18, 5 (2008).

Microelectron. Eng. (2)

E. Abad, A. Juarros, A. Retolaza, S. Merino, R. Marie, and A. Kristensen, “DNA analysis by single molecule stretching in nanofluidic biochips,” Microelectron. Eng. 88(3), 300–304 (2011).
[Crossref]

E. Abad, S. Merino, A. Retolaza, and A. Juarros, “Design and fabrication using nanoimprint lithography of a nanofluidic device for DNA stretching applications,” Microelectron. Eng. 85(5-6), 818–821 (2008).
[Crossref]

Nano Lett. (4)

M. Soskine, A. Biesemans, B. Moeyaert, S. Cheley, H. Bayley, and G. Maglia, “An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry,” Nano Lett. 12(9), 4895–4900 (2012).
[Crossref] [PubMed]

F. Persson, P. Utko, W. Reisner, N. B. Larsen, and A. Kristensen, “Confinement spectroscopy: probing single DNA molecules with tapered nanochannels,” Nano Lett. 9(4), 1382–1385 (2009).
[Crossref] [PubMed]

A. Puchkova, C. Vietz, E. Pibiri, B. Wünsch, M. Sanz Paz, G. P. Acuna, and P. Tinnefeld, “DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM,” Nano Lett. 15(12), 8354–8359 (2015).
[Crossref] [PubMed]

Z. Azad, M. Roushan, and R. Riehn, “DNA Brushing Shoulders: Targeted Looping and Scanning of Large DNA Strands,” Nano Lett. 15(8), 5641–5646 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

E. C. Yusko, J. M. Johnson, S. Majd, P. Prangkio, R. C. Rollings, J. Li, J. Yang, and M. Mayer, “Controlling protein translocation through nanopores with bio-inspired fluid walls,” Nat. Nanotechnol. 6(4), 253–260 (2011).
[Crossref] [PubMed]

M. Wanunu, W. Morrison, Y. Rabin, A. Y. Grosberg, and A. Meller, “Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient,” Nat. Nanotechnol. 5(2), 160–165 (2010).
[Crossref] [PubMed]

Opt. Eng. (1)

P. Strobbia, E. Languirand, and B. M. Cullum, “Recent advances in plasmonic nanostructures for sensing: a review,” Opt. Eng. 54(10), 100902 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

Phys. Rev. Lett. (2)

W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, “Statics and dynamics of single DNA molecules confined in nanochannels,” Phys. Rev. Lett. 94(19), 196101 (2005).
[Crossref] [PubMed]

W. Reisner, J. P. Beech, N. B. Larsen, H. Flyvbjerg, A. Kristensen, and J. O. Tegenfeldt, “Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment,” Phys. Rev. Lett. 99(5), 058302 (2007).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (5)

J. E. Reiner, J. J. Kasianowicz, B. J. Nablo, and J. W. F. Robertson, “Theory for polymer analysis using nanopore-based single-molecule mass spectrometry,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12080–12085 (2010).
[Crossref] [PubMed]

J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, “The dynamics of genomic-length DNA molecules in 100-nm channels,” Proc. Natl. Acad. Sci. U.S.A. 101(30), 10979–10983 (2004).
[Crossref] [PubMed]

Y. M. Wang, J. O. Tegenfeldt, W. Reisner, R. Riehn, X. J. Guan, L. Guo, I. Golding, E. C. Cox, J. Sturm, and R. H. Austin, “Single-molecule studies of repressor-DNA interactions show long-range interactions,” Proc. Natl. Acad. Sci. U.S.A. 102(28), 9796–9801 (2005).
[Crossref] [PubMed]

R. Riehn, M. Lu, Y. M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin, “Restriction mapping in nanofluidic devices,” Proc. Natl. Acad. Sci. U.S.A. 102(29), 10012–10016 (2005).
[Crossref] [PubMed]

K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and D. C. Schwartz, “A single-molecule barcoding system using nanoslits for DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2673–2678 (2007).
[Crossref] [PubMed]

Sensors (Basel) (1)

V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic drawing of the fabricated chips. The area containing the nanochannels appears magnified in the bottom panel. The chip contains two microchannels with inlets and outlets for the introduction of the carrying fluid with the fluorescent molecules. They are fabricated on a silicon 4-inch wafer and sealed with a pyrex 4-inch wafer on top.
Fig. 2
Fig. 2 Photonic band dispersion diagram of the TE(blue) and TM (red) modes for an effective index n = 1.5 and holes with r = 0.3a. The different areas for the DFB effect are labeled (I to IV) and discussed in the text.
Fig. 3
Fig. 3 a) Photonic band dispersion diagram of the TE(blue) and TM (red) modes for an effective index n = 1.62 and holes with r = 0.25a.The photonic bands contributing to the point III-related DFB effect are inside the black rectangle. b) Square lattice symmetry and n = 1.7.
Fig. 4
Fig. 4 Scanning electron microscopy (SEM) images of the chips fabricated. The magnification of the areas marked by the white rectangles (a, b and c) is sequentially increased. The image in (d) is anatomic force microscopy (AFM) image of the area marked by the white box in c). The nanochannels are labeled from #1 to #6.
Fig. 5
Fig. 5 a) Experimental setup used for detection of the fluorescence. (b) Intensity of the fluorescence vs. the position recorded along the vertical white line shown in (c). (c) SEM image of the nanochannels labeled from #1 to #6. The peaks observed in the intensity profile correspond to the position of the nanochannels.
Fig. 6
Fig. 6 Profiles of the intensity of fluorescence vs. the position (pixel number) in the chip, recorded for different sections perpendicular to the nanochannels. The peaks correspond to the nanochannels #1 to #6. The number on top of the peaks gives the average value of the intensity for each of the peaks.

Metrics