Abstract

Most cardiovascular diseases, such as arteriosclerosis and hypertension, are directly linked to pathological changes in hemodynamics, i.e. the complex coupling of blood pressure, blood flow and arterial distension. To improve the current understanding of cardiovascular diseases and pave the way for novel cardiovascular diagnostics, innovative tools are required that measure pressure, flow, and distension waveforms with yet unattained spatiotemporal resolution. In this context, miniaturized implantable solutions for continuously measuring these parameters over the long-term are of particular interest. We present here an implantable photonic sensor system capable of sensing arterial wall movements of a few hundred microns in vivo with sub-micron resolution, a precision in the micrometer range and a temporal resolution of 10 kHz. The photonic measurement principle is based on transmission photoplethysmography with stretchable optoelectronic sensors applied directly to large systemic arteries. The presented photonic sensor system expands the toolbox of cardiovascular measurement techniques and makes these key vital parameters continuously accessible over the long-term. In the near term, this new approach offers a tool for clinical research, and as a perspective, a continuous long-term monitoring system that enables novel diagnostic methods in arteriosclerosis and hypertension research that follow the trend in quantifying cardiovascular diseases by measuring arterial stiffness and more generally analyzing pulse contours.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Radiative transport in large arteries

Dominic Ruh, Sivaraman Subramanian, Michael Theodor, Hans Zappe, and Andreas Seifert
Biomed. Opt. Express 5(1) 54-68 (2014)

Monitoring blood vital bio signs using secondary speckle patterns

Talia Sirkis, Yevgeny Beiderman, Sergey Agdarov, Yafim Beiderman, and Zeev Zalevsky
Opt. Express 24(24) 27899-27909 (2016)

Multi-wavelength photoplethysmography method for skin arterial pulse extraction

Jing Liu, Bryan Ping-Yen Yan, Wen-Xuan Dai, Xiao-Rong Ding, Yuan-Ting Zhang, and Ni Zhao
Biomed. Opt. Express 7(10) 4313-4326 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
    [Crossref] [PubMed]
  2. D. Ruh, P. Reith, S. Sherman, M. Theodor, J. Ruhhammer, A. Seifert, and H. Zappe, “Stretchable optoelectronic circuits embedded in a polymer network,” Adv. Mater. 26, 1706–1710 (2014).
    [Crossref]
  3. D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
    [Crossref]
  4. S.R. Gutbrod, M.S. Sulkin, J.A. Rogers, and I.R. Efimov, “Patient-Specific Flexible and Stretchable Devices for Cardiac Diagnostics and Therapy,” Progress in Biophysics and Molecular Biology 115, 244–251 (2014).
    [Crossref] [PubMed]
  5. M. Theodor, D. Ruh, J. Fiala, K. Förster, C. Heilmann, Y. Manoli, F. Beyersdorf, H. Zappe, and A. Seifert, “Subcutaneous blood pressure monitoring with an implantable optical sensor,” Biomed. Microdevices 15, 811–820 (2013).
    [Crossref] [PubMed]
  6. J. Fiala, P. Bingger, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, H. Zappe, and A. Seifert, “An implantable optical blood pressure sensor based on pulse transit time,” Biomed. Microdevices 15, 73–81 (2013).
    [Crossref]
  7. J. A. Potkay, “Long term, implantable blood pressure monitoring systems,” Biomed. Microdevices 10, 379–392 (2008).
    [Crossref]
  8. E. O. Ofili, A. J. Labovitz, and M. J. Kern, “Coronary flow velocity dynamics in normal and diseased arteries,” Am. J. Cardiol. 71, 3D–9D (1993).
    [Crossref] [PubMed]
  9. F. A. Lupotti, F. Mastik, S. G. Carlier, E. I. Cespedes, and A. F. W. van der Steen, “Quantitative IVUS blood flow using an array catheter,” Computers in Cardiology 2001, 5–8 (2001).
  10. A. Lotfi, A. Jeremias, W. F. Fearon, M. D. Feldman, R. Mehran, J. C. Messenger, C. L. Grines, L. S. Dean, M. J. Kern, and L. W. Klein, “Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography,” Catheter Cardiovasc. Interv. 83, 509–518 (2014).
    [Crossref]
  11. W. W. Nichols, M. F. O’Rourke, and C. Vlachopoulos, McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles (Hodder Arnold, 2011).
  12. R. L. Armentano, J. G. Barra, J. Levenson, A. Simon, and R. H. Pichel, “Arterial wall mechanics in conscious dogs: Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior,” Circ. Res. 76, 468–478 (1995).
    [Crossref] [PubMed]
  13. P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound Med. Biol. 40, 2392–2403 (2014).
    [Crossref] [PubMed]
  14. W. Kong, D. Rollins, R. Ideker, and W. Smith, “Design and initial evaluation of an implantable sonomicrometer and cw doppler flowmeter for simultaneous recordings with a multichannel telemetry system,” IEEE Trans. Biomed. Eng. 52, 1365–1367 (2005).
    [Crossref] [PubMed]
  15. D. H. Kim, N. Lu, R. Ghaffari, Y.-S. Kim, S. P. Lee, L. Xu, J. Wu, R.-H. Kim, J. Song, and Z. Liu, and others, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy,” Nat. Mater. 10, 316–323 (2011).
    [Crossref] [PubMed]
  16. S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” Eur. Heart. J. 27, 2588–2605 (2006).
    [Crossref] [PubMed]
  17. D. Ruh, S. Subramanian, M. Theodor, H. Zappe, and A. Seifert, “Radiative transport in large arteries,” Biomed. Opt. Express 5, 54–68 (2014).
    [Crossref] [PubMed]
  18. M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol. 36, 1662–1676 (1936).
    [Crossref]
  19. P. Tortoli, T. Morganti, G. Bambi, C. Palombo, and K. V. Ramnarine, “Noninvasive simultaneous assessment of wall shear rate and wall distension in carotid arteries,” Ultrasound Med. Biol. 32, 1661–1670 (2006).
    [Crossref] [PubMed]
  20. B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, and T. Stieglitz, “A MEMS-based flexible multichannel ECoG-electrode array,” J. Neural. Eng. 6, 036003 (2009).
    [Crossref] [PubMed]
  21. J. Ruhhammer, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, A. Barker, B. Jung, A. Seifert, F. Goldschmidtboeing, and P. Woias, “Arterial strain measurement by implantable capacitive sensor without vessel constriction,” In Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBC), 535–538 (2012).
  22. L. H. Peterson, R. E. Jensen, and J. Parnell, “Mechanical properties of arteries in vivo,” Circ. Res. 8, 622–639 (1960).
    [Crossref]
  23. L. Wolff, P. Fernandez, and K. Kroy, “Resolving the Stiffening-Softening Paradox in Cell Mechanics,” PLOS one 7, e40063 (2012).
    [Crossref] [PubMed]
  24. R. H. Cox, “Wave propagation through a Newtonian fluid contained within a thick-walled, viscoelastic tube,” Biophys. J. 8, 691 (1968).
    [Crossref]
  25. D. J. Korteweg, “Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Roehren,” Annalen der Physik 241, 525–542 (1878).
    [Crossref]
  26. M. Theodor, J. Fiala, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, Y. Manoli, H. Zappe, and A. Seifert, “Implantable Accelerometer System for the Determination of Blood Pressure Using Reflected Wave Transit Time,” Sensors and Actuators A: Physical 206, 151–158 (2014).
    [Crossref]
  27. M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Empirical model functions to calculate hematocrit-dependent optical properties of human blood,” Appl. Opt. 46, 1742–1753 (2007).
    [Crossref] [PubMed]
  28. M. Keijzer, S. L. Jacques, S. A. Prahl, and A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
    [Crossref] [PubMed]

2014 (6)

S.R. Gutbrod, M.S. Sulkin, J.A. Rogers, and I.R. Efimov, “Patient-Specific Flexible and Stretchable Devices for Cardiac Diagnostics and Therapy,” Progress in Biophysics and Molecular Biology 115, 244–251 (2014).
[Crossref] [PubMed]

D. Ruh, P. Reith, S. Sherman, M. Theodor, J. Ruhhammer, A. Seifert, and H. Zappe, “Stretchable optoelectronic circuits embedded in a polymer network,” Adv. Mater. 26, 1706–1710 (2014).
[Crossref]

A. Lotfi, A. Jeremias, W. F. Fearon, M. D. Feldman, R. Mehran, J. C. Messenger, C. L. Grines, L. S. Dean, M. J. Kern, and L. W. Klein, “Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography,” Catheter Cardiovasc. Interv. 83, 509–518 (2014).
[Crossref]

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound Med. Biol. 40, 2392–2403 (2014).
[Crossref] [PubMed]

M. Theodor, J. Fiala, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, Y. Manoli, H. Zappe, and A. Seifert, “Implantable Accelerometer System for the Determination of Blood Pressure Using Reflected Wave Transit Time,” Sensors and Actuators A: Physical 206, 151–158 (2014).
[Crossref]

D. Ruh, S. Subramanian, M. Theodor, H. Zappe, and A. Seifert, “Radiative transport in large arteries,” Biomed. Opt. Express 5, 54–68 (2014).
[Crossref] [PubMed]

2013 (2)

M. Theodor, D. Ruh, J. Fiala, K. Förster, C. Heilmann, Y. Manoli, F. Beyersdorf, H. Zappe, and A. Seifert, “Subcutaneous blood pressure monitoring with an implantable optical sensor,” Biomed. Microdevices 15, 811–820 (2013).
[Crossref] [PubMed]

J. Fiala, P. Bingger, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, H. Zappe, and A. Seifert, “An implantable optical blood pressure sensor based on pulse transit time,” Biomed. Microdevices 15, 73–81 (2013).
[Crossref]

2012 (2)

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

L. Wolff, P. Fernandez, and K. Kroy, “Resolving the Stiffening-Softening Paradox in Cell Mechanics,” PLOS one 7, e40063 (2012).
[Crossref] [PubMed]

2011 (1)

D. H. Kim, N. Lu, R. Ghaffari, Y.-S. Kim, S. P. Lee, L. Xu, J. Wu, R.-H. Kim, J. Song, and Z. Liu, and others, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy,” Nat. Mater. 10, 316–323 (2011).
[Crossref] [PubMed]

2010 (1)

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
[Crossref] [PubMed]

2009 (1)

B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, and T. Stieglitz, “A MEMS-based flexible multichannel ECoG-electrode array,” J. Neural. Eng. 6, 036003 (2009).
[Crossref] [PubMed]

2008 (1)

J. A. Potkay, “Long term, implantable blood pressure monitoring systems,” Biomed. Microdevices 10, 379–392 (2008).
[Crossref]

2007 (1)

2006 (2)

P. Tortoli, T. Morganti, G. Bambi, C. Palombo, and K. V. Ramnarine, “Noninvasive simultaneous assessment of wall shear rate and wall distension in carotid arteries,” Ultrasound Med. Biol. 32, 1661–1670 (2006).
[Crossref] [PubMed]

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” Eur. Heart. J. 27, 2588–2605 (2006).
[Crossref] [PubMed]

2005 (1)

W. Kong, D. Rollins, R. Ideker, and W. Smith, “Design and initial evaluation of an implantable sonomicrometer and cw doppler flowmeter for simultaneous recordings with a multichannel telemetry system,” IEEE Trans. Biomed. Eng. 52, 1365–1367 (2005).
[Crossref] [PubMed]

2001 (1)

F. A. Lupotti, F. Mastik, S. G. Carlier, E. I. Cespedes, and A. F. W. van der Steen, “Quantitative IVUS blood flow using an array catheter,” Computers in Cardiology 2001, 5–8 (2001).

1995 (1)

R. L. Armentano, J. G. Barra, J. Levenson, A. Simon, and R. H. Pichel, “Arterial wall mechanics in conscious dogs: Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior,” Circ. Res. 76, 468–478 (1995).
[Crossref] [PubMed]

1993 (1)

E. O. Ofili, A. J. Labovitz, and M. J. Kern, “Coronary flow velocity dynamics in normal and diseased arteries,” Am. J. Cardiol. 71, 3D–9D (1993).
[Crossref] [PubMed]

1989 (1)

M. Keijzer, S. L. Jacques, S. A. Prahl, and A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[Crossref] [PubMed]

1968 (1)

R. H. Cox, “Wave propagation through a Newtonian fluid contained within a thick-walled, viscoelastic tube,” Biophys. J. 8, 691 (1968).
[Crossref]

1960 (1)

L. H. Peterson, R. E. Jensen, and J. Parnell, “Mechanical properties of arteries in vivo,” Circ. Res. 8, 622–639 (1960).
[Crossref]

1936 (1)

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol. 36, 1662–1676 (1936).
[Crossref]

1878 (1)

D. J. Korteweg, “Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Roehren,” Annalen der Physik 241, 525–542 (1878).
[Crossref]

Ameen, A.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Armentano, R. L.

R. L. Armentano, J. G. Barra, J. Levenson, A. Simon, and R. H. Pichel, “Arterial wall mechanics in conscious dogs: Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior,” Circ. Res. 76, 468–478 (1995).
[Crossref] [PubMed]

Bambi, G.

P. Tortoli, T. Morganti, G. Bambi, C. Palombo, and K. V. Ramnarine, “Noninvasive simultaneous assessment of wall shear rate and wall distension in carotid arteries,” Ultrasound Med. Biol. 32, 1661–1670 (2006).
[Crossref] [PubMed]

Barker, A.

J. Ruhhammer, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, A. Barker, B. Jung, A. Seifert, F. Goldschmidtboeing, and P. Woias, “Arterial strain measurement by implantable capacitive sensor without vessel constriction,” In Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBC), 535–538 (2012).

Barra, J. G.

R. L. Armentano, J. G. Barra, J. Levenson, A. Simon, and R. H. Pichel, “Arterial wall mechanics in conscious dogs: Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior,” Circ. Res. 76, 468–478 (1995).
[Crossref] [PubMed]

Beyersdorf, F.

M. Theodor, J. Fiala, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, Y. Manoli, H. Zappe, and A. Seifert, “Implantable Accelerometer System for the Determination of Blood Pressure Using Reflected Wave Transit Time,” Sensors and Actuators A: Physical 206, 151–158 (2014).
[Crossref]

M. Theodor, D. Ruh, J. Fiala, K. Förster, C. Heilmann, Y. Manoli, F. Beyersdorf, H. Zappe, and A. Seifert, “Subcutaneous blood pressure monitoring with an implantable optical sensor,” Biomed. Microdevices 15, 811–820 (2013).
[Crossref] [PubMed]

J. Fiala, P. Bingger, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, H. Zappe, and A. Seifert, “An implantable optical blood pressure sensor based on pulse transit time,” Biomed. Microdevices 15, 73–81 (2013).
[Crossref]

J. Ruhhammer, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, A. Barker, B. Jung, A. Seifert, F. Goldschmidtboeing, and P. Woias, “Arterial strain measurement by implantable capacitive sensor without vessel constriction,” In Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBC), 535–538 (2012).

Bingger, P.

J. Fiala, P. Bingger, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, H. Zappe, and A. Seifert, “An implantable optical blood pressure sensor based on pulse transit time,” Biomed. Microdevices 15, 73–81 (2013).
[Crossref]

Bosch, J. G.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound Med. Biol. 40, 2392–2403 (2014).
[Crossref] [PubMed]

Bosman, C.

B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, and T. Stieglitz, “A MEMS-based flexible multichannel ECoG-electrode array,” J. Neural. Eng. 6, 036003 (2009).
[Crossref] [PubMed]

Boutouyrie, P.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” Eur. Heart. J. 27, 2588–2605 (2006).
[Crossref] [PubMed]

Bruneval, P.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol. 36, 1662–1676 (1936).
[Crossref]

Carlier, S. G.

F. A. Lupotti, F. Mastik, S. G. Carlier, E. I. Cespedes, and A. F. W. van der Steen, “Quantitative IVUS blood flow using an array catheter,” Computers in Cardiology 2001, 5–8 (2001).

Cespedes, E. I.

F. A. Lupotti, F. Mastik, S. G. Carlier, E. I. Cespedes, and A. F. W. van der Steen, “Quantitative IVUS blood flow using an array catheter,” Computers in Cardiology 2001, 5–8 (2001).

Cockcroft, J.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” Eur. Heart. J. 27, 2588–2605 (2006).
[Crossref] [PubMed]

Couade, M.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol. 36, 1662–1676 (1936).
[Crossref]

Cox, R. H.

R. H. Cox, “Wave propagation through a Newtonian fluid contained within a thick-walled, viscoelastic tube,” Biophys. J. 8, 691 (1968).
[Crossref]

Criton, A.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol. 36, 1662–1676 (1936).
[Crossref]

D’Angelo, R.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

de Graff, B.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

de Jong, N.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound Med. Biol. 40, 2392–2403 (2014).
[Crossref] [PubMed]

Dean, L. S.

A. Lotfi, A. Jeremias, W. F. Fearon, M. D. Feldman, R. Mehran, J. C. Messenger, C. L. Grines, L. S. Dean, M. J. Kern, and L. W. Klein, “Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography,” Catheter Cardiovasc. Interv. 83, 509–518 (2014).
[Crossref]

Efimov, I.R.

S.R. Gutbrod, M.S. Sulkin, J.A. Rogers, and I.R. Efimov, “Patient-Specific Flexible and Stretchable Devices for Cardiac Diagnostics and Therapy,” Progress in Biophysics and Molecular Biology 115, 244–251 (2014).
[Crossref] [PubMed]

Emmerich, J.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol. 36, 1662–1676 (1936).
[Crossref]

Fearon, W. F.

A. Lotfi, A. Jeremias, W. F. Fearon, M. D. Feldman, R. Mehran, J. C. Messenger, C. L. Grines, L. S. Dean, M. J. Kern, and L. W. Klein, “Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography,” Catheter Cardiovasc. Interv. 83, 509–518 (2014).
[Crossref]

Feldman, M. D.

A. Lotfi, A. Jeremias, W. F. Fearon, M. D. Feldman, R. Mehran, J. C. Messenger, C. L. Grines, L. S. Dean, M. J. Kern, and L. W. Klein, “Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography,” Catheter Cardiovasc. Interv. 83, 509–518 (2014).
[Crossref]

Fernandez, P.

L. Wolff, P. Fernandez, and K. Kroy, “Resolving the Stiffening-Softening Paradox in Cell Mechanics,” PLOS one 7, e40063 (2012).
[Crossref] [PubMed]

Fiala, J.

M. Theodor, J. Fiala, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, Y. Manoli, H. Zappe, and A. Seifert, “Implantable Accelerometer System for the Determination of Blood Pressure Using Reflected Wave Transit Time,” Sensors and Actuators A: Physical 206, 151–158 (2014).
[Crossref]

J. Fiala, P. Bingger, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, H. Zappe, and A. Seifert, “An implantable optical blood pressure sensor based on pulse transit time,” Biomed. Microdevices 15, 73–81 (2013).
[Crossref]

M. Theodor, D. Ruh, J. Fiala, K. Förster, C. Heilmann, Y. Manoli, F. Beyersdorf, H. Zappe, and A. Seifert, “Subcutaneous blood pressure monitoring with an implantable optical sensor,” Biomed. Microdevices 15, 811–820 (2013).
[Crossref] [PubMed]

Fink, M.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol. 36, 1662–1676 (1936).
[Crossref]

Förster, K.

M. Theodor, J. Fiala, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, Y. Manoli, H. Zappe, and A. Seifert, “Implantable Accelerometer System for the Determination of Blood Pressure Using Reflected Wave Transit Time,” Sensors and Actuators A: Physical 206, 151–158 (2014).
[Crossref]

M. Theodor, D. Ruh, J. Fiala, K. Förster, C. Heilmann, Y. Manoli, F. Beyersdorf, H. Zappe, and A. Seifert, “Subcutaneous blood pressure monitoring with an implantable optical sensor,” Biomed. Microdevices 15, 811–820 (2013).
[Crossref] [PubMed]

J. Fiala, P. Bingger, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, H. Zappe, and A. Seifert, “An implantable optical blood pressure sensor based on pulse transit time,” Biomed. Microdevices 15, 73–81 (2013).
[Crossref]

J. Ruhhammer, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, A. Barker, B. Jung, A. Seifert, F. Goldschmidtboeing, and P. Woias, “Arterial strain measurement by implantable capacitive sensor without vessel constriction,” In Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBC), 535–538 (2012).

Friebel, M.

Fries, P.

B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, and T. Stieglitz, “A MEMS-based flexible multichannel ECoG-electrode array,” J. Neural. Eng. 6, 036003 (2009).
[Crossref] [PubMed]

Ghaffari, R.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

D. H. Kim, N. Lu, R. Ghaffari, Y.-S. Kim, S. P. Lee, L. Xu, J. Wu, R.-H. Kim, J. Song, and Z. Liu, and others, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy,” Nat. Mater. 10, 316–323 (2011).
[Crossref] [PubMed]

Giannattasio, C.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” Eur. Heart. J. 27, 2588–2605 (2006).
[Crossref] [PubMed]

Goldschmidtboeing, F.

J. Ruhhammer, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, A. Barker, B. Jung, A. Seifert, F. Goldschmidtboeing, and P. Woias, “Arterial strain measurement by implantable capacitive sensor without vessel constriction,” In Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBC), 535–538 (2012).

Grines, C. L.

A. Lotfi, A. Jeremias, W. F. Fearon, M. D. Feldman, R. Mehran, J. C. Messenger, C. L. Grines, L. S. Dean, M. J. Kern, and L. W. Klein, “Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography,” Catheter Cardiovasc. Interv. 83, 509–518 (2014).
[Crossref]

Gutbrod, S.R.

S.R. Gutbrod, M.S. Sulkin, J.A. Rogers, and I.R. Efimov, “Patient-Specific Flexible and Stretchable Devices for Cardiac Diagnostics and Therapy,” Progress in Biophysics and Molecular Biology 115, 244–251 (2014).
[Crossref] [PubMed]

Hayoz, D.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” Eur. Heart. J. 27, 2588–2605 (2006).
[Crossref] [PubMed]

Heilmann, C.

M. Theodor, J. Fiala, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, Y. Manoli, H. Zappe, and A. Seifert, “Implantable Accelerometer System for the Determination of Blood Pressure Using Reflected Wave Transit Time,” Sensors and Actuators A: Physical 206, 151–158 (2014).
[Crossref]

J. Fiala, P. Bingger, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, H. Zappe, and A. Seifert, “An implantable optical blood pressure sensor based on pulse transit time,” Biomed. Microdevices 15, 73–81 (2013).
[Crossref]

M. Theodor, D. Ruh, J. Fiala, K. Förster, C. Heilmann, Y. Manoli, F. Beyersdorf, H. Zappe, and A. Seifert, “Subcutaneous blood pressure monitoring with an implantable optical sensor,” Biomed. Microdevices 15, 811–820 (2013).
[Crossref] [PubMed]

J. Ruhhammer, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, A. Barker, B. Jung, A. Seifert, F. Goldschmidtboeing, and P. Woias, “Arterial strain measurement by implantable capacitive sensor without vessel constriction,” In Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBC), 535–538 (2012).

Helfmann, J.

Hsu, Y.-Y.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Huang, Y.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
[Crossref] [PubMed]

Ideker, R.

W. Kong, D. Rollins, R. Ideker, and W. Smith, “Design and initial evaluation of an implantable sonomicrometer and cw doppler flowmeter for simultaneous recordings with a multichannel telemetry system,” IEEE Trans. Biomed. Eng. 52, 1365–1367 (2005).
[Crossref] [PubMed]

Jacques, S. L.

M. Keijzer, S. L. Jacques, S. A. Prahl, and A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[Crossref] [PubMed]

Jensen, R. E.

L. H. Peterson, R. E. Jensen, and J. Parnell, “Mechanical properties of arteries in vivo,” Circ. Res. 8, 622–639 (1960).
[Crossref]

Jeremias, A.

A. Lotfi, A. Jeremias, W. F. Fearon, M. D. Feldman, R. Mehran, J. C. Messenger, C. L. Grines, L. S. Dean, M. J. Kern, and L. W. Klein, “Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography,” Catheter Cardiovasc. Interv. 83, 509–518 (2014).
[Crossref]

Jung, B.

J. Ruhhammer, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, A. Barker, B. Jung, A. Seifert, F. Goldschmidtboeing, and P. Woias, “Arterial strain measurement by implantable capacitive sensor without vessel constriction,” In Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBC), 535–538 (2012).

Keijzer, M.

M. Keijzer, S. L. Jacques, S. A. Prahl, and A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[Crossref] [PubMed]

Kern, M. J.

A. Lotfi, A. Jeremias, W. F. Fearon, M. D. Feldman, R. Mehran, J. C. Messenger, C. L. Grines, L. S. Dean, M. J. Kern, and L. W. Klein, “Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography,” Catheter Cardiovasc. Interv. 83, 509–518 (2014).
[Crossref]

E. O. Ofili, A. J. Labovitz, and M. J. Kern, “Coronary flow velocity dynamics in normal and diseased arteries,” Am. J. Cardiol. 71, 3D–9D (1993).
[Crossref] [PubMed]

Keume, H.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Kim, D. H.

D. H. Kim, N. Lu, R. Ghaffari, Y.-S. Kim, S. P. Lee, L. Xu, J. Wu, R.-H. Kim, J. Song, and Z. Liu, and others, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy,” Nat. Mater. 10, 316–323 (2011).
[Crossref] [PubMed]

Kim, D.-H.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Kim, R.-H.

D. H. Kim, N. Lu, R. Ghaffari, Y.-S. Kim, S. P. Lee, L. Xu, J. Wu, R.-H. Kim, J. Song, and Z. Liu, and others, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy,” Nat. Mater. 10, 316–323 (2011).
[Crossref] [PubMed]

Kim, Y.-S.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

D. H. Kim, N. Lu, R. Ghaffari, Y.-S. Kim, S. P. Lee, L. Xu, J. Wu, R.-H. Kim, J. Song, and Z. Liu, and others, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy,” Nat. Mater. 10, 316–323 (2011).
[Crossref] [PubMed]

Klein, L. W.

A. Lotfi, A. Jeremias, W. F. Fearon, M. D. Feldman, R. Mehran, J. C. Messenger, C. L. Grines, L. S. Dean, M. J. Kern, and L. W. Klein, “Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography,” Catheter Cardiovasc. Interv. 83, 509–518 (2014).
[Crossref]

Klinker, L.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Kong, W.

W. Kong, D. Rollins, R. Ideker, and W. Smith, “Design and initial evaluation of an implantable sonomicrometer and cw doppler flowmeter for simultaneous recordings with a multichannel telemetry system,” IEEE Trans. Biomed. Eng. 52, 1365–1367 (2005).
[Crossref] [PubMed]

Korteweg, D. J.

D. J. Korteweg, “Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Roehren,” Annalen der Physik 241, 525–542 (1878).
[Crossref]

Kroy, K.

L. Wolff, P. Fernandez, and K. Kroy, “Resolving the Stiffening-Softening Paradox in Cell Mechanics,” PLOS one 7, e40063 (2012).
[Crossref] [PubMed]

Kruizinga, P.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound Med. Biol. 40, 2392–2403 (2014).
[Crossref] [PubMed]

Labovitz, A. J.

E. O. Ofili, A. J. Labovitz, and M. J. Kern, “Coronary flow velocity dynamics in normal and diseased arteries,” Am. J. Cardiol. 71, 3D–9D (1993).
[Crossref] [PubMed]

Laurent, S.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” Eur. Heart. J. 27, 2588–2605 (2006).
[Crossref] [PubMed]

Lee, S. P.

D. H. Kim, N. Lu, R. Ghaffari, Y.-S. Kim, S. P. Lee, L. Xu, J. Wu, R.-H. Kim, J. Song, and Z. Liu, and others, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy,” Nat. Mater. 10, 316–323 (2011).
[Crossref] [PubMed]

Leeb, S.P.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Levenson, J.

R. L. Armentano, J. G. Barra, J. Levenson, A. Simon, and R. H. Pichel, “Arterial wall mechanics in conscious dogs: Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior,” Circ. Res. 76, 468–478 (1995).
[Crossref] [PubMed]

Li, Y.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Liu, Z.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

D. H. Kim, N. Lu, R. Ghaffari, Y.-S. Kim, S. P. Lee, L. Xu, J. Wu, R.-H. Kim, J. Song, and Z. Liu, and others, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy,” Nat. Mater. 10, 316–323 (2011).
[Crossref] [PubMed]

Lotfi, A.

A. Lotfi, A. Jeremias, W. F. Fearon, M. D. Feldman, R. Mehran, J. C. Messenger, C. L. Grines, L. S. Dean, M. J. Kern, and L. W. Klein, “Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography,” Catheter Cardiovasc. Interv. 83, 509–518 (2014).
[Crossref]

Lu, C.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Lu, N.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

D. H. Kim, N. Lu, R. Ghaffari, Y.-S. Kim, S. P. Lee, L. Xu, J. Wu, R.-H. Kim, J. Song, and Z. Liu, and others, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy,” Nat. Mater. 10, 316–323 (2011).
[Crossref] [PubMed]

Lupotti, F. A.

F. A. Lupotti, F. Mastik, S. G. Carlier, E. I. Cespedes, and A. F. W. van der Steen, “Quantitative IVUS blood flow using an array catheter,” Computers in Cardiology 2001, 5–8 (2001).

Manoli, Y.

M. Theodor, J. Fiala, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, Y. Manoli, H. Zappe, and A. Seifert, “Implantable Accelerometer System for the Determination of Blood Pressure Using Reflected Wave Transit Time,” Sensors and Actuators A: Physical 206, 151–158 (2014).
[Crossref]

M. Theodor, D. Ruh, J. Fiala, K. Förster, C. Heilmann, Y. Manoli, F. Beyersdorf, H. Zappe, and A. Seifert, “Subcutaneous blood pressure monitoring with an implantable optical sensor,” Biomed. Microdevices 15, 811–820 (2013).
[Crossref] [PubMed]

Mansour, M.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Mastik, F.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound Med. Biol. 40, 2392–2403 (2014).
[Crossref] [PubMed]

F. A. Lupotti, F. Mastik, S. G. Carlier, E. I. Cespedes, and A. F. W. van der Steen, “Quantitative IVUS blood flow using an array catheter,” Computers in Cardiology 2001, 5–8 (2001).

Mehran, R.

A. Lotfi, A. Jeremias, W. F. Fearon, M. D. Feldman, R. Mehran, J. C. Messenger, C. L. Grines, L. S. Dean, M. J. Kern, and L. W. Klein, “Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography,” Catheter Cardiovasc. Interv. 83, 509–518 (2014).
[Crossref]

Meinke, M.

Messas, E.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol. 36, 1662–1676 (1936).
[Crossref]

Messenger, J. C.

A. Lotfi, A. Jeremias, W. F. Fearon, M. D. Feldman, R. Mehran, J. C. Messenger, C. L. Grines, L. S. Dean, M. J. Kern, and L. W. Klein, “Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography,” Catheter Cardiovasc. Interv. 83, 509–518 (2014).
[Crossref]

Morganti, T.

P. Tortoli, T. Morganti, G. Bambi, C. Palombo, and K. V. Ramnarine, “Noninvasive simultaneous assessment of wall shear rate and wall distension in carotid arteries,” Ultrasound Med. Biol. 32, 1661–1670 (2006).
[Crossref] [PubMed]

Müller, G.

Nichols, W. W.

W. W. Nichols, M. F. O’Rourke, and C. Vlachopoulos, McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles (Hodder Arnold, 2011).

O’Rourke, M. F.

W. W. Nichols, M. F. O’Rourke, and C. Vlachopoulos, McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles (Hodder Arnold, 2011).

Ofili, E. O.

E. O. Ofili, A. J. Labovitz, and M. J. Kern, “Coronary flow velocity dynamics in normal and diseased arteries,” Am. J. Cardiol. 71, 3D–9D (1993).
[Crossref] [PubMed]

Omenetto, F.G.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Oostenveld, R.

B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, and T. Stieglitz, “A MEMS-based flexible multichannel ECoG-electrode array,” J. Neural. Eng. 6, 036003 (2009).
[Crossref] [PubMed]

Palombo, C.

P. Tortoli, T. Morganti, G. Bambi, C. Palombo, and K. V. Ramnarine, “Noninvasive simultaneous assessment of wall shear rate and wall distension in carotid arteries,” Ultrasound Med. Biol. 32, 1661–1670 (2006).
[Crossref] [PubMed]

Pannier, B.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” Eur. Heart. J. 27, 2588–2605 (2006).
[Crossref] [PubMed]

Parnell, J.

L. H. Peterson, R. E. Jensen, and J. Parnell, “Mechanical properties of arteries in vivo,” Circ. Res. 8, 622–639 (1960).
[Crossref]

Pernot, M.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol. 36, 1662–1676 (1936).
[Crossref]

Peterson, L. H.

L. H. Peterson, R. E. Jensen, and J. Parnell, “Mechanical properties of arteries in vivo,” Circ. Res. 8, 622–639 (1960).
[Crossref]

Pichel, R. H.

R. L. Armentano, J. G. Barra, J. Levenson, A. Simon, and R. H. Pichel, “Arterial wall mechanics in conscious dogs: Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior,” Circ. Res. 76, 468–478 (1995).
[Crossref] [PubMed]

Potkay, J. A.

J. A. Potkay, “Long term, implantable blood pressure monitoring systems,” Biomed. Microdevices 10, 379–392 (2008).
[Crossref]

Prada, C.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol. 36, 1662–1676 (1936).
[Crossref]

Prahl, S. A.

M. Keijzer, S. L. Jacques, S. A. Prahl, and A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[Crossref] [PubMed]

Ramnarine, K. V.

P. Tortoli, T. Morganti, G. Bambi, C. Palombo, and K. V. Ramnarine, “Noninvasive simultaneous assessment of wall shear rate and wall distension in carotid arteries,” Ultrasound Med. Biol. 32, 1661–1670 (2006).
[Crossref] [PubMed]

Reith, P.

D. Ruh, P. Reith, S. Sherman, M. Theodor, J. Ruhhammer, A. Seifert, and H. Zappe, “Stretchable optoelectronic circuits embedded in a polymer network,” Adv. Mater. 26, 1706–1710 (2014).
[Crossref]

Rogers, J. A.

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
[Crossref] [PubMed]

Rogers, J.A.

S.R. Gutbrod, M.S. Sulkin, J.A. Rogers, and I.R. Efimov, “Patient-Specific Flexible and Stretchable Devices for Cardiac Diagnostics and Therapy,” Progress in Biophysics and Molecular Biology 115, 244–251 (2014).
[Crossref] [PubMed]

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Rollins, D.

W. Kong, D. Rollins, R. Ideker, and W. Smith, “Design and initial evaluation of an implantable sonomicrometer and cw doppler flowmeter for simultaneous recordings with a multichannel telemetry system,” IEEE Trans. Biomed. Eng. 52, 1365–1367 (2005).
[Crossref] [PubMed]

Rubehn, B.

B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, and T. Stieglitz, “A MEMS-based flexible multichannel ECoG-electrode array,” J. Neural. Eng. 6, 036003 (2009).
[Crossref] [PubMed]

Ruh, D.

D. Ruh, P. Reith, S. Sherman, M. Theodor, J. Ruhhammer, A. Seifert, and H. Zappe, “Stretchable optoelectronic circuits embedded in a polymer network,” Adv. Mater. 26, 1706–1710 (2014).
[Crossref]

M. Theodor, J. Fiala, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, Y. Manoli, H. Zappe, and A. Seifert, “Implantable Accelerometer System for the Determination of Blood Pressure Using Reflected Wave Transit Time,” Sensors and Actuators A: Physical 206, 151–158 (2014).
[Crossref]

D. Ruh, S. Subramanian, M. Theodor, H. Zappe, and A. Seifert, “Radiative transport in large arteries,” Biomed. Opt. Express 5, 54–68 (2014).
[Crossref] [PubMed]

M. Theodor, D. Ruh, J. Fiala, K. Förster, C. Heilmann, Y. Manoli, F. Beyersdorf, H. Zappe, and A. Seifert, “Subcutaneous blood pressure monitoring with an implantable optical sensor,” Biomed. Microdevices 15, 811–820 (2013).
[Crossref] [PubMed]

J. Fiala, P. Bingger, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, H. Zappe, and A. Seifert, “An implantable optical blood pressure sensor based on pulse transit time,” Biomed. Microdevices 15, 73–81 (2013).
[Crossref]

J. Ruhhammer, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, A. Barker, B. Jung, A. Seifert, F. Goldschmidtboeing, and P. Woias, “Arterial strain measurement by implantable capacitive sensor without vessel constriction,” In Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBC), 535–538 (2012).

Ruhhammer, J.

D. Ruh, P. Reith, S. Sherman, M. Theodor, J. Ruhhammer, A. Seifert, and H. Zappe, “Stretchable optoelectronic circuits embedded in a polymer network,” Adv. Mater. 26, 1706–1710 (2014).
[Crossref]

J. Ruhhammer, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, A. Barker, B. Jung, A. Seifert, F. Goldschmidtboeing, and P. Woias, “Arterial strain measurement by implantable capacitive sensor without vessel constriction,” In Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBC), 535–538 (2012).

Ruskin, J.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Schinkel, A. F. L.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound Med. Biol. 40, 2392–2403 (2014).
[Crossref] [PubMed]

Seifert, A.

D. Ruh, P. Reith, S. Sherman, M. Theodor, J. Ruhhammer, A. Seifert, and H. Zappe, “Stretchable optoelectronic circuits embedded in a polymer network,” Adv. Mater. 26, 1706–1710 (2014).
[Crossref]

D. Ruh, S. Subramanian, M. Theodor, H. Zappe, and A. Seifert, “Radiative transport in large arteries,” Biomed. Opt. Express 5, 54–68 (2014).
[Crossref] [PubMed]

M. Theodor, J. Fiala, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, Y. Manoli, H. Zappe, and A. Seifert, “Implantable Accelerometer System for the Determination of Blood Pressure Using Reflected Wave Transit Time,” Sensors and Actuators A: Physical 206, 151–158 (2014).
[Crossref]

M. Theodor, D. Ruh, J. Fiala, K. Förster, C. Heilmann, Y. Manoli, F. Beyersdorf, H. Zappe, and A. Seifert, “Subcutaneous blood pressure monitoring with an implantable optical sensor,” Biomed. Microdevices 15, 811–820 (2013).
[Crossref] [PubMed]

J. Fiala, P. Bingger, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, H. Zappe, and A. Seifert, “An implantable optical blood pressure sensor based on pulse transit time,” Biomed. Microdevices 15, 73–81 (2013).
[Crossref]

J. Ruhhammer, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, A. Barker, B. Jung, A. Seifert, F. Goldschmidtboeing, and P. Woias, “Arterial strain measurement by implantable capacitive sensor without vessel constriction,” In Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBC), 535–538 (2012).

Sherman, S.

D. Ruh, P. Reith, S. Sherman, M. Theodor, J. Ruhhammer, A. Seifert, and H. Zappe, “Stretchable optoelectronic circuits embedded in a polymer network,” Adv. Mater. 26, 1706–1710 (2014).
[Crossref]

Simon, A.

R. L. Armentano, J. G. Barra, J. Levenson, A. Simon, and R. H. Pichel, “Arterial wall mechanics in conscious dogs: Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior,” Circ. Res. 76, 468–478 (1995).
[Crossref] [PubMed]

Slepian, M.J.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Smith, W.

W. Kong, D. Rollins, R. Ideker, and W. Smith, “Design and initial evaluation of an implantable sonomicrometer and cw doppler flowmeter for simultaneous recordings with a multichannel telemetry system,” IEEE Trans. Biomed. Eng. 52, 1365–1367 (2005).
[Crossref] [PubMed]

Someya, T.

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
[Crossref] [PubMed]

Song, J.

D. H. Kim, N. Lu, R. Ghaffari, Y.-S. Kim, S. P. Lee, L. Xu, J. Wu, R.-H. Kim, J. Song, and Z. Liu, and others, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy,” Nat. Mater. 10, 316–323 (2011).
[Crossref] [PubMed]

Stieglitz, T.

B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, and T. Stieglitz, “A MEMS-based flexible multichannel ECoG-electrode array,” J. Neural. Eng. 6, 036003 (2009).
[Crossref] [PubMed]

Struijker-Boudier, H.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” Eur. Heart. J. 27, 2588–2605 (2006).
[Crossref] [PubMed]

Su, Y.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Subramanian, S.

Sulkin, M.S.

S.R. Gutbrod, M.S. Sulkin, J.A. Rogers, and I.R. Efimov, “Patient-Specific Flexible and Stretchable Devices for Cardiac Diagnostics and Therapy,” Progress in Biophysics and Molecular Biology 115, 244–251 (2014).
[Crossref] [PubMed]

Tanter, M.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol. 36, 1662–1676 (1936).
[Crossref]

Theodor, M.

D. Ruh, P. Reith, S. Sherman, M. Theodor, J. Ruhhammer, A. Seifert, and H. Zappe, “Stretchable optoelectronic circuits embedded in a polymer network,” Adv. Mater. 26, 1706–1710 (2014).
[Crossref]

D. Ruh, S. Subramanian, M. Theodor, H. Zappe, and A. Seifert, “Radiative transport in large arteries,” Biomed. Opt. Express 5, 54–68 (2014).
[Crossref] [PubMed]

M. Theodor, J. Fiala, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, Y. Manoli, H. Zappe, and A. Seifert, “Implantable Accelerometer System for the Determination of Blood Pressure Using Reflected Wave Transit Time,” Sensors and Actuators A: Physical 206, 151–158 (2014).
[Crossref]

M. Theodor, D. Ruh, J. Fiala, K. Förster, C. Heilmann, Y. Manoli, F. Beyersdorf, H. Zappe, and A. Seifert, “Subcutaneous blood pressure monitoring with an implantable optical sensor,” Biomed. Microdevices 15, 811–820 (2013).
[Crossref] [PubMed]

Tortoli, P.

P. Tortoli, T. Morganti, G. Bambi, C. Palombo, and K. V. Ramnarine, “Noninvasive simultaneous assessment of wall shear rate and wall distension in carotid arteries,” Ultrasound Med. Biol. 32, 1661–1670 (2006).
[Crossref] [PubMed]

Van Bortel, L.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” Eur. Heart. J. 27, 2588–2605 (2006).
[Crossref] [PubMed]

van den Oord, S. C. H.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound Med. Biol. 40, 2392–2403 (2014).
[Crossref] [PubMed]

van der Steen, A. F. W.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound Med. Biol. 40, 2392–2403 (2014).
[Crossref] [PubMed]

F. A. Lupotti, F. Mastik, S. G. Carlier, E. I. Cespedes, and A. F. W. van der Steen, “Quantitative IVUS blood flow using an array catheter,” Computers in Cardiology 2001, 5–8 (2001).

van Soest, G.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound Med. Biol. 40, 2392–2403 (2014).
[Crossref] [PubMed]

Vlachopoulos, C.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” Eur. Heart. J. 27, 2588–2605 (2006).
[Crossref] [PubMed]

W. W. Nichols, M. F. O’Rourke, and C. Vlachopoulos, McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles (Hodder Arnold, 2011).

Wang, S.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Welch, A. J.

M. Keijzer, S. L. Jacques, S. A. Prahl, and A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[Crossref] [PubMed]

Wilkinson, I.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” Eur. Heart. J. 27, 2588–2605 (2006).
[Crossref] [PubMed]

Woias, P.

J. Ruhhammer, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, A. Barker, B. Jung, A. Seifert, F. Goldschmidtboeing, and P. Woias, “Arterial strain measurement by implantable capacitive sensor without vessel constriction,” In Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBC), 535–538 (2012).

Wolff, L.

L. Wolff, P. Fernandez, and K. Kroy, “Resolving the Stiffening-Softening Paradox in Cell Mechanics,” PLOS one 7, e40063 (2012).
[Crossref] [PubMed]

Wu, J.

D. H. Kim, N. Lu, R. Ghaffari, Y.-S. Kim, S. P. Lee, L. Xu, J. Wu, R.-H. Kim, J. Song, and Z. Liu, and others, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy,” Nat. Mater. 10, 316–323 (2011).
[Crossref] [PubMed]

Xu, L.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

D. H. Kim, N. Lu, R. Ghaffari, Y.-S. Kim, S. P. Lee, L. Xu, J. Wu, R.-H. Kim, J. Song, and Z. Liu, and others, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy,” Nat. Mater. 10, 316–323 (2011).
[Crossref] [PubMed]

Zappe, H.

D. Ruh, P. Reith, S. Sherman, M. Theodor, J. Ruhhammer, A. Seifert, and H. Zappe, “Stretchable optoelectronic circuits embedded in a polymer network,” Adv. Mater. 26, 1706–1710 (2014).
[Crossref]

M. Theodor, J. Fiala, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, Y. Manoli, H. Zappe, and A. Seifert, “Implantable Accelerometer System for the Determination of Blood Pressure Using Reflected Wave Transit Time,” Sensors and Actuators A: Physical 206, 151–158 (2014).
[Crossref]

D. Ruh, S. Subramanian, M. Theodor, H. Zappe, and A. Seifert, “Radiative transport in large arteries,” Biomed. Opt. Express 5, 54–68 (2014).
[Crossref] [PubMed]

J. Fiala, P. Bingger, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, H. Zappe, and A. Seifert, “An implantable optical blood pressure sensor based on pulse transit time,” Biomed. Microdevices 15, 73–81 (2013).
[Crossref]

M. Theodor, D. Ruh, J. Fiala, K. Förster, C. Heilmann, Y. Manoli, F. Beyersdorf, H. Zappe, and A. Seifert, “Subcutaneous blood pressure monitoring with an implantable optical sensor,” Biomed. Microdevices 15, 811–820 (2013).
[Crossref] [PubMed]

Zhang, Y.

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Adv. Mater. (1)

D. Ruh, P. Reith, S. Sherman, M. Theodor, J. Ruhhammer, A. Seifert, and H. Zappe, “Stretchable optoelectronic circuits embedded in a polymer network,” Adv. Mater. 26, 1706–1710 (2014).
[Crossref]

Am. J. Cardiol. (1)

E. O. Ofili, A. J. Labovitz, and M. J. Kern, “Coronary flow velocity dynamics in normal and diseased arteries,” Am. J. Cardiol. 71, 3D–9D (1993).
[Crossref] [PubMed]

Annalen der Physik (1)

D. J. Korteweg, “Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Roehren,” Annalen der Physik 241, 525–542 (1878).
[Crossref]

Appl. Opt. (1)

Biomed. Microdevices (3)

M. Theodor, D. Ruh, J. Fiala, K. Förster, C. Heilmann, Y. Manoli, F. Beyersdorf, H. Zappe, and A. Seifert, “Subcutaneous blood pressure monitoring with an implantable optical sensor,” Biomed. Microdevices 15, 811–820 (2013).
[Crossref] [PubMed]

J. Fiala, P. Bingger, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, H. Zappe, and A. Seifert, “An implantable optical blood pressure sensor based on pulse transit time,” Biomed. Microdevices 15, 73–81 (2013).
[Crossref]

J. A. Potkay, “Long term, implantable blood pressure monitoring systems,” Biomed. Microdevices 10, 379–392 (2008).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (1)

R. H. Cox, “Wave propagation through a Newtonian fluid contained within a thick-walled, viscoelastic tube,” Biophys. J. 8, 691 (1968).
[Crossref]

Catheter Cardiovasc. Interv. (1)

A. Lotfi, A. Jeremias, W. F. Fearon, M. D. Feldman, R. Mehran, J. C. Messenger, C. L. Grines, L. S. Dean, M. J. Kern, and L. W. Klein, “Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography,” Catheter Cardiovasc. Interv. 83, 509–518 (2014).
[Crossref]

Circ. Res. (2)

R. L. Armentano, J. G. Barra, J. Levenson, A. Simon, and R. H. Pichel, “Arterial wall mechanics in conscious dogs: Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior,” Circ. Res. 76, 468–478 (1995).
[Crossref] [PubMed]

L. H. Peterson, R. E. Jensen, and J. Parnell, “Mechanical properties of arteries in vivo,” Circ. Res. 8, 622–639 (1960).
[Crossref]

Computers in Cardiology (1)

F. A. Lupotti, F. Mastik, S. G. Carlier, E. I. Cespedes, and A. F. W. van der Steen, “Quantitative IVUS blood flow using an array catheter,” Computers in Cardiology 2001, 5–8 (2001).

Eur. Heart. J. (1)

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” Eur. Heart. J. 27, 2588–2605 (2006).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

W. Kong, D. Rollins, R. Ideker, and W. Smith, “Design and initial evaluation of an implantable sonomicrometer and cw doppler flowmeter for simultaneous recordings with a multichannel telemetry system,” IEEE Trans. Biomed. Eng. 52, 1365–1367 (2005).
[Crossref] [PubMed]

J. Neural. Eng. (1)

B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, and T. Stieglitz, “A MEMS-based flexible multichannel ECoG-electrode array,” J. Neural. Eng. 6, 036003 (2009).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

M. Keijzer, S. L. Jacques, S. A. Prahl, and A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[Crossref] [PubMed]

Nat. Mater. (1)

D. H. Kim, N. Lu, R. Ghaffari, Y.-S. Kim, S. P. Lee, L. Xu, J. Wu, R.-H. Kim, J. Song, and Z. Liu, and others, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy,” Nat. Mater. 10, 316–323 (2011).
[Crossref] [PubMed]

PLOS one (1)

L. Wolff, P. Fernandez, and K. Kroy, “Resolving the Stiffening-Softening Paradox in Cell Mechanics,” PLOS one 7, e40063 (2012).
[Crossref] [PubMed]

Proceedings of the National Academy of Sciences USA (1)

D.-H. Kim, R. Ghaffari, N. Lu, S. Wang, S.P. Leeb, H. Keume, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y.-S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y.-Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F.G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J.A. Rogers, “Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy,” Proceedings of the National Academy of Sciences USA 10919910–19915 (2012).
[Crossref]

Progress in Biophysics and Molecular Biology (1)

S.R. Gutbrod, M.S. Sulkin, J.A. Rogers, and I.R. Efimov, “Patient-Specific Flexible and Stretchable Devices for Cardiac Diagnostics and Therapy,” Progress in Biophysics and Molecular Biology 115, 244–251 (2014).
[Crossref] [PubMed]

Science (1)

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
[Crossref] [PubMed]

Sensors and Actuators A: Physical (1)

M. Theodor, J. Fiala, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, Y. Manoli, H. Zappe, and A. Seifert, “Implantable Accelerometer System for the Determination of Blood Pressure Using Reflected Wave Transit Time,” Sensors and Actuators A: Physical 206, 151–158 (2014).
[Crossref]

Ultrasound Med. Biol. (3)

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol. 36, 1662–1676 (1936).
[Crossref]

P. Tortoli, T. Morganti, G. Bambi, C. Palombo, and K. V. Ramnarine, “Noninvasive simultaneous assessment of wall shear rate and wall distension in carotid arteries,” Ultrasound Med. Biol. 32, 1661–1670 (2006).
[Crossref] [PubMed]

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound Med. Biol. 40, 2392–2403 (2014).
[Crossref] [PubMed]

Other (2)

W. W. Nichols, M. F. O’Rourke, and C. Vlachopoulos, McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles (Hodder Arnold, 2011).

J. Ruhhammer, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, A. Barker, B. Jung, A. Seifert, F. Goldschmidtboeing, and P. Woias, “Arterial strain measurement by implantable capacitive sensor without vessel constriction,” In Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBC), 535–538 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Simulated light propagation in an artery. a) 3-dimensional radiant flux distribution in an arterial segment. The contours depict the decay of the radiant flux from maximum (red) at the point of input to the least (blue) at the far end of the segment. The reddish pattern depicts the arterial wall. b) Calculated optical output normalized with respect to the output at zero distension as a function of arterial distension for three different initial arterial diameters of 2.4, 3.3, and 4.8 mm; red circles at a wavelength of 660 nm and blue crosses at 880 nm; lines show the linear fits to the underlying data. c) Simulated photocurrent for the photodetector with a responsitvity of 0.5 A/W from a 5 mW light source for different arterial diameters. The green dashed line shows the photodetector dark current of a standard photodiode. The markers hold the same meaning as described in b).
Fig. 2
Fig. 2 Sensor design and realization. a) 3D model of the photonic sensor system wrapped around an arterial segment. b) Photo of a fully functional sensor wrapped around a glass tube. c) Sensor applied to the carotid artery of a sheep.
Fig. 3
Fig. 3 In vitro results. a) Comparison of reference optical micrometer (blue) and scaled sensor (red) signals. The shaded areas represent the unfiltered signals, and the lines show filtered forms of the signals as guide to the eye. b) Scaled sensor signal plotted against the optical micrometer data (blue); the black line gives the linear fit with R2 = 0.9980; the black dots show the simulation output. c) Deviation in distension between reference and sensor signals. The standard deviation of the gaussian fit (red) is 4.5 µm d) Power spectral density (blue) of the distension signal ũ(t). The red circles depict the detected overtones and the black circle represents the fundamental frequency.
Fig. 4
Fig. 4 In vivo results in time and frequency domain. a) Top left: Mean pressure p ¯ ( t ) (blue) and rest diameter u0(t) (red) over time during injection 1, activation 2, and relaxation 3 of dopamine. Colored boxes: Single pressure pulses (blue) and measured distension (red) in the three different phases of the dopamine experiment. b) Top: Power spectrum (blue) of the distension signal. The red circles indicate the detectable overtones in the distension signal. Bottom: Spectrogram showing the logarithmic power as a function of frequency and time over the entire experiment.
Fig. 5
Fig. 5 Arterial stiffness. a) Measurement of local arterial stiffness Stress-strain-plots (blue shaded) and corresponsing linear fits (black) that provide Peterson’s modulus. The three subplots from left to right correspond to stress-strain plots evaluated from the signals from phases 1, 2 and 3 of Fig. 4, respectively. b) Measurement of regional arterial stiffness. Pulse arrival time (PAT) and systolic pressure psys over measurement time. The inset on the top left shows ECG and sensor signal to gain PAT. c) Pulse contour-based arterial stiffness. Plots show the arterial distension waveform u, the velocity v and acceleration waveform a, all obtained from the derivatives of the arterial distension waveform.
Fig. 6
Fig. 6 Assembly and packaging. a) Polyimide sensor foil with an electrically interconnected infrared LED. The bottom side contact of the LED is interconnected to the substrate via an Araldite 2020 (Huntsman Advanced Materials, Germany) based conductive glue. The top side contact, shown in both insets, is connected by MFI technology [20]. b) Silicone strips with ripple structures adjust the two diametrically opposed polyimide foils by self-alignment around the blood vessel. For better visualization during in vivo experiments, blue pigment (NEUKASIL SN2490, Altropol Kunststoff GmbH, Germany) was added to the silicone. The picture on the bottom highlights the principle of the mechanical interlock between the silicone ripples and the polyimide sensor foil.
Fig. 7
Fig. 7 Stress-strain plot of silicone RTV23. The material employed in our sensor strips was measured in accordance with DIN 53504 with an experimental setup from Zwick GmbH & Co. KG. The inset zooms into the stress response between 0 – 20 % strain. The shaded area reflects the minimum and maximum values of three measurements.
Fig. 8
Fig. 8 Schematic of the artificial circulatory system. The figure shows the placement of the sensors and the optical micrometer, as well as various peripheral devices.

Tables (10)

Tables Icon

Table 1 Sensitivities for three different rest diameters at two wavelengths calculated as per Eq. (2) from the simulation data plotted in Fig. 1 (b).

Tables Icon

Table 2 Comparison of sensitivities. Experimental cλ,exp and corresponding simulation cλ,sim sensitivities obtained from Fig. 3 (b). The last column gives the deviation δ between simulated and experimental sensitivities.

Tables Icon

Table 3 Simulation geometry. The radii of each artery were chosen to maintain a ratio of about 1.2 between outer and inner radius as found in most large arteries [24]. Furthermore, YoungâǍŹs modulus was chosen to achieve large arterial strains in the range of 6.5 to 10 %.

Tables Icon

Table 4 Intrinsic optical parameters of blood and arterial wall layers for λ = 660 nm. The optical parameters of blood were interpolated using the data and formulae given by Meinke [27] at a wall shear rate of 600 s−1. The optical parameters of arterial wall layers are from Keizjer et al. [28]

Tables Icon

Table 5 Intrinsic optical parameters of blood and arterial wall layers for λ = 880 nm. The optical parameters of blood were interpolated using the data and formulae given by Meinke [27] at a wall shear rate of 600 s−1. The optical parameters of arterial wall layers are from Keizjer et al. [28].

Tables Icon

Table 6 Physiological parameters of erythrocytes in buffer used for in vitro experiments.

Tables Icon

Table 7 Intrinsic optical parameters of the various layers of the in vitro experiments. The intrinsic optical parameters of erythrocytes in buffer were extracted from Meinke [27] according to the physiological conditions provided in Table 6.

Tables Icon

Table 8 Simulation geometry extracted from the optical micrometer data used for modeling the in vitro experiments.

Tables Icon

Table 9 Simulation geometry of the femoral artery for modeling the in vivo conditions.

Tables Icon

Table 10 Intrinsic optical parameters of the various layers of the femoral artery to model the in vivo physiological conditions.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Φ n o r m ( z ) = Φ ( z ) Φ ( z 0 ) = 1 + 1 Φ ( z 0 ) δ Φ ( z ) δ z | z = z 0 ( z z 0 ) + R ( z ) ,
c λ = 1 Φ ( z 0 ) δ Φ ( z ) δ z | z = z 0 .
c λ u ˜ ( t ) = U P D ( t ) max [ U P D ( t ) ] 1 ,
Δ u ˜ ( t ) = S u ˜ ( f L ) n = 1 N S u ˜ ( f n ) × max [ u ˜ ( t ) ] ,

Metrics