Abstract

Neuronal responses to infrared neural stimulation (INS) are explored at the single cell level using patch-clamp electrophysiology. We examined membrane and synaptic responses of solitary tract neurons recorded in acute slices prepared from the Sprague-Dawley rat. Neurons were stimulated using a compact 1890 nm waveguide laser with light delivered to a small target area, comparable to the size of a single cell, via a single-mode fiber. We show that infrared radiation increased spontaneous synaptic event frequency, and evoked steady-state currents and neuronal depolarization. The magnitude of the responses was proportional to laser output.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Millisecond infrared laser pulses depolarize and elicit action potentials on in-vitro dorsal root ganglion neurons

Lambert Paris, Isabelle Marc, Benoit Charlot, Michel Dumas, Jean Valmier, and Fabrice Bardin
Biomed. Opt. Express 8(10) 4568-4578 (2017)

Synergistic combination of near-infrared irradiation and targeted gold nanoheaters for enhanced photothermal neural stimulation

Kyungsik Eom, Changkyun Im, Seoyoung Hwang, Seyoung Eom, Tae-Seong Kim, Hae Sun Jeong, Kyung Hwan Kim, Kyung Min Byun, Sang Beom Jun, and Sung June Kim
Biomed. Opt. Express 7(4) 1614-1625 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Wells, C. C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett. 30(5), 504–506 (2005).
    [Crossref] [PubMed]
  2. D. Popovic, T. Gordon, V. F. Rafuse, and A. Prochazka, “Properties of implanted electrodes for functional electrical stimulation,” Ann. Biomed. Eng. 19(3), 303–316 (1991).
    [Crossref] [PubMed]
  3. L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34, 389–412 (2011).
    [Crossref] [PubMed]
  4. R. H. Kramer, D. L. Fortin, and D. Trauner, “New photochemical tools for controlling neuronal activity,” Curr. Opin. Neurobiol. 19(5), 544–552 (2009).
    [Crossref] [PubMed]
  5. J. P. Y. Kao, “Caged molecules: principles and practical considerations,” Curr. Protoc. Neurosci., Chapter 6, Unit  6620 (2006).
    [Crossref]
  6. J. M. Cayce, J. D. Wells, J. D. Malphrus, C. C. Kao, S. Thomsen, N. B. Tulipan, P. E. Konrad, E. D. Jansen, and A. Mahadevan-Jansen, “Infrared neural stimulation of human spinal nerve roots in vivo,” Neurophotonics 2(1), 015007 (2015).
    [Crossref] [PubMed]
  7. A. Fishman, P. Winkler, J. Mierzwinski, W. Beuth, A. D. Izzo, Z. Siedlecki, I. Teudt, H. Maier, and C.-P. Richter, “Stimulation of the human auditory nerve with optical radiation,” Proc. SPIE 7180, 71800M (2009).
    [Crossref]
  8. J. D. Wells, C. C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J. 93(7), 2567–2580 (2007).
    [Crossref] [PubMed]
  9. E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
    [Crossref] [PubMed]
  10. J.-M. Bec, E. S. Albert, I. Marc, G. Desmadryl, C. Travo, A. Muller, C. Chabbert, F. Bardin, and M. Dumas, “Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons,” Lasers Surg. Med. 44(9), 736–745 (2012).
    [Crossref] [PubMed]
  11. M. Shapiro, K. Homma, and S. Villarreal, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun. 3(736), 1–10 (2012).
    [Crossref]
  12. M. Schultz, P. Baumhoff, H. Maier, I. U. Teudt, A. KrÂĺuger, T. Lenarz, and A. Kral, “Nanosecond laser pulse stimulation of the inner ear-a wavelength study,” Biomed. Opt. Express 3(12), 3332–3345 (2012).
    [Crossref] [PubMed]
  13. J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
    [Crossref] [PubMed]
  14. J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” Neuroimage 84(6), 181–190 (2014).
    [Crossref]
  15. J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage 57(1), 155–166 (2011).
    [Crossref] [PubMed]
  16. Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting cell membranes with a blustering heat shock,” Biophys. J. 106(8), 1570–1577 (2014).
    [Crossref] [PubMed]
  17. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tmº⥞:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
    [Crossref] [PubMed]
  18. S. Balster, G. I. Wenzel, A. Warnecke, M. Steffens, A. Rettenmaier, K. Zhang, T. Lenarz, and G. Reuter, “Optical cochlear implant: Evaluation of insertion forces of optical fibres in a cochlear model and of traumata in human temporal bones,” Biomed. Tech. 59(1), 19–28 (2014).
    [Crossref]
  19. L. BouFarah, B. R. Bowman, P. Bokiniec, S. Karim, S. Le, A. K. Goodchild, and S. Mcmullan, “Somatostatin in the rat rostral ventrolateral medulla: Origins and mechanism of action,” J. Comp. Neurol. 524(2), 323–342 (2016).
    [Crossref]
  20. G. Paxinois and C. Watson, The Rat Brain in Stereotaxic Coordinates, 6th ed. (Academic Press, 2006).
  21. B. Sakmann, F. Edwards, A. Konnerth, and T. Takahashi, “Patch clamp techniques used for studying synaptic transmission in slices of mammalian brain,” Q. J. Exp. Physiol. 74, 1107–1118 (1989).
    [Crossref] [PubMed]
  22. A. D. Izzo, J. T. Walsh, E. D. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength,” IEEE Trans. Biomed. Eng. 54(6), 1108–1114 (2007).
    [Crossref] [PubMed]

2016 (1)

L. BouFarah, B. R. Bowman, P. Bokiniec, S. Karim, S. Le, A. K. Goodchild, and S. Mcmullan, “Somatostatin in the rat rostral ventrolateral medulla: Origins and mechanism of action,” J. Comp. Neurol. 524(2), 323–342 (2016).
[Crossref]

2015 (1)

J. M. Cayce, J. D. Wells, J. D. Malphrus, C. C. Kao, S. Thomsen, N. B. Tulipan, P. E. Konrad, E. D. Jansen, and A. Mahadevan-Jansen, “Infrared neural stimulation of human spinal nerve roots in vivo,” Neurophotonics 2(1), 015007 (2015).
[Crossref] [PubMed]

2014 (4)

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref] [PubMed]

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” Neuroimage 84(6), 181–190 (2014).
[Crossref]

Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting cell membranes with a blustering heat shock,” Biophys. J. 106(8), 1570–1577 (2014).
[Crossref] [PubMed]

S. Balster, G. I. Wenzel, A. Warnecke, M. Steffens, A. Rettenmaier, K. Zhang, T. Lenarz, and G. Reuter, “Optical cochlear implant: Evaluation of insertion forces of optical fibres in a cochlear model and of traumata in human temporal bones,” Biomed. Tech. 59(1), 19–28 (2014).
[Crossref]

2012 (4)

E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref] [PubMed]

J.-M. Bec, E. S. Albert, I. Marc, G. Desmadryl, C. Travo, A. Muller, C. Chabbert, F. Bardin, and M. Dumas, “Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons,” Lasers Surg. Med. 44(9), 736–745 (2012).
[Crossref] [PubMed]

M. Shapiro, K. Homma, and S. Villarreal, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun. 3(736), 1–10 (2012).
[Crossref]

M. Schultz, P. Baumhoff, H. Maier, I. U. Teudt, A. KrÂĺuger, T. Lenarz, and A. Kral, “Nanosecond laser pulse stimulation of the inner ear-a wavelength study,” Biomed. Opt. Express 3(12), 3332–3345 (2012).
[Crossref] [PubMed]

2011 (3)

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34, 389–412 (2011).
[Crossref] [PubMed]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tmº⥞:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage 57(1), 155–166 (2011).
[Crossref] [PubMed]

2009 (2)

A. Fishman, P. Winkler, J. Mierzwinski, W. Beuth, A. D. Izzo, Z. Siedlecki, I. Teudt, H. Maier, and C.-P. Richter, “Stimulation of the human auditory nerve with optical radiation,” Proc. SPIE 7180, 71800M (2009).
[Crossref]

R. H. Kramer, D. L. Fortin, and D. Trauner, “New photochemical tools for controlling neuronal activity,” Curr. Opin. Neurobiol. 19(5), 544–552 (2009).
[Crossref] [PubMed]

2007 (2)

J. D. Wells, C. C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref] [PubMed]

A. D. Izzo, J. T. Walsh, E. D. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength,” IEEE Trans. Biomed. Eng. 54(6), 1108–1114 (2007).
[Crossref] [PubMed]

2006 (1)

J. P. Y. Kao, “Caged molecules: principles and practical considerations,” Curr. Protoc. Neurosci., Chapter 6, Unit  6620 (2006).
[Crossref]

2005 (1)

1991 (1)

D. Popovic, T. Gordon, V. F. Rafuse, and A. Prochazka, “Properties of implanted electrodes for functional electrical stimulation,” Ann. Biomed. Eng. 19(3), 303–316 (1991).
[Crossref] [PubMed]

1989 (1)

B. Sakmann, F. Edwards, A. Konnerth, and T. Takahashi, “Patch clamp techniques used for studying synaptic transmission in slices of mammalian brain,” Q. J. Exp. Physiol. 74, 1107–1118 (1989).
[Crossref] [PubMed]

Albea, J.

Albert, E. S.

E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref] [PubMed]

J.-M. Bec, E. S. Albert, I. Marc, G. Desmadryl, C. Travo, A. Muller, C. Chabbert, F. Bardin, and M. Dumas, “Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons,” Lasers Surg. Med. 44(9), 736–745 (2012).
[Crossref] [PubMed]

Ams, M.

Balster, S.

S. Balster, G. I. Wenzel, A. Warnecke, M. Steffens, A. Rettenmaier, K. Zhang, T. Lenarz, and G. Reuter, “Optical cochlear implant: Evaluation of insertion forces of optical fibres in a cochlear model and of traumata in human temporal bones,” Biomed. Tech. 59(1), 19–28 (2014).
[Crossref]

Bardin, F.

E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref] [PubMed]

J.-M. Bec, E. S. Albert, I. Marc, G. Desmadryl, C. Travo, A. Muller, C. Chabbert, F. Bardin, and M. Dumas, “Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons,” Lasers Surg. Med. 44(9), 736–745 (2012).
[Crossref] [PubMed]

Baumhoff, P.

Bec, J.-M.

E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref] [PubMed]

J.-M. Bec, E. S. Albert, I. Marc, G. Desmadryl, C. Travo, A. Muller, C. Chabbert, F. Bardin, and M. Dumas, “Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons,” Lasers Surg. Med. 44(9), 736–745 (2012).
[Crossref] [PubMed]

Bendett, M.

A. D. Izzo, J. T. Walsh, E. D. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength,” IEEE Trans. Biomed. Eng. 54(6), 1108–1114 (2007).
[Crossref] [PubMed]

Beuth, W.

A. Fishman, P. Winkler, J. Mierzwinski, W. Beuth, A. D. Izzo, Z. Siedlecki, I. Teudt, H. Maier, and C.-P. Richter, “Stimulation of the human auditory nerve with optical radiation,” Proc. SPIE 7180, 71800M (2009).
[Crossref]

Bokiniec, P.

L. BouFarah, B. R. Bowman, P. Bokiniec, S. Karim, S. Le, A. K. Goodchild, and S. Mcmullan, “Somatostatin in the rat rostral ventrolateral medulla: Origins and mechanism of action,” J. Comp. Neurol. 524(2), 323–342 (2016).
[Crossref]

Bouchard, M. B.

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref] [PubMed]

BouFarah, L.

L. BouFarah, B. R. Bowman, P. Bokiniec, S. Karim, S. Le, A. K. Goodchild, and S. Mcmullan, “Somatostatin in the rat rostral ventrolateral medulla: Origins and mechanism of action,” J. Comp. Neurol. 524(2), 323–342 (2016).
[Crossref]

Bowman, B. R.

L. BouFarah, B. R. Bowman, P. Bokiniec, S. Karim, S. Le, A. K. Goodchild, and S. Mcmullan, “Somatostatin in the rat rostral ventrolateral medulla: Origins and mechanism of action,” J. Comp. Neurol. 524(2), 323–342 (2016).
[Crossref]

Cayce, J. M.

J. M. Cayce, J. D. Wells, J. D. Malphrus, C. C. Kao, S. Thomsen, N. B. Tulipan, P. E. Konrad, E. D. Jansen, and A. Mahadevan-Jansen, “Infrared neural stimulation of human spinal nerve roots in vivo,” Neurophotonics 2(1), 015007 (2015).
[Crossref] [PubMed]

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” Neuroimage 84(6), 181–190 (2014).
[Crossref]

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref] [PubMed]

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage 57(1), 155–166 (2011).
[Crossref] [PubMed]

Chabbert, C.

J.-M. Bec, E. S. Albert, I. Marc, G. Desmadryl, C. Travo, A. Muller, C. Chabbert, F. Bardin, and M. Dumas, “Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons,” Lasers Surg. Med. 44(9), 736–745 (2012).
[Crossref] [PubMed]

E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref] [PubMed]

Chekroud, K.

E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref] [PubMed]

Chen, B. R.

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref] [PubMed]

Chen, G.

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” Neuroimage 84(6), 181–190 (2014).
[Crossref]

Chernov, M. M.

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref] [PubMed]

Deisseroth, K.

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34, 389–412 (2011).
[Crossref] [PubMed]

Desmadryl, G.

J.-M. Bec, E. S. Albert, I. Marc, G. Desmadryl, C. Travo, A. Muller, C. Chabbert, F. Bardin, and M. Dumas, “Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons,” Lasers Surg. Med. 44(9), 736–745 (2012).
[Crossref] [PubMed]

E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref] [PubMed]

Dumas, M.

E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref] [PubMed]

J.-M. Bec, E. S. Albert, I. Marc, G. Desmadryl, C. Travo, A. Muller, C. Chabbert, F. Bardin, and M. Dumas, “Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons,” Lasers Surg. Med. 44(9), 736–745 (2012).
[Crossref] [PubMed]

Ebendorff-Heidepriem, H.

Edwards, F.

B. Sakmann, F. Edwards, A. Konnerth, and T. Takahashi, “Patch clamp techniques used for studying synaptic transmission in slices of mammalian brain,” Q. J. Exp. Physiol. 74, 1107–1118 (1989).
[Crossref] [PubMed]

Fenno, L.

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34, 389–412 (2011).
[Crossref] [PubMed]

Fishman, A.

A. Fishman, P. Winkler, J. Mierzwinski, W. Beuth, A. D. Izzo, Z. Siedlecki, I. Teudt, H. Maier, and C.-P. Richter, “Stimulation of the human auditory nerve with optical radiation,” Proc. SPIE 7180, 71800M (2009).
[Crossref]

Fortin, D. L.

R. H. Kramer, D. L. Fortin, and D. Trauner, “New photochemical tools for controlling neuronal activity,” Curr. Opin. Neurobiol. 19(5), 544–552 (2009).
[Crossref] [PubMed]

Frerck, M. J.

Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting cell membranes with a blustering heat shock,” Biophys. J. 106(8), 1570–1577 (2014).
[Crossref] [PubMed]

Friedman, R. M.

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” Neuroimage 84(6), 181–190 (2014).
[Crossref]

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage 57(1), 155–166 (2011).
[Crossref] [PubMed]

Fuerbach, A.

Gaboyard, S.

E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref] [PubMed]

Goodchild, A. K.

L. BouFarah, B. R. Bowman, P. Bokiniec, S. Karim, S. Le, A. K. Goodchild, and S. Mcmullan, “Somatostatin in the rat rostral ventrolateral medulla: Origins and mechanism of action,” J. Comp. Neurol. 524(2), 323–342 (2016).
[Crossref]

Gordon, T.

D. Popovic, T. Gordon, V. F. Rafuse, and A. Prochazka, “Properties of implanted electrodes for functional electrical stimulation,” Ann. Biomed. Eng. 19(3), 303–316 (1991).
[Crossref] [PubMed]

Grosberg, L. E.

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref] [PubMed]

Gross, S.

Hamel, C.

E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref] [PubMed]

Hillman, E. M. C.

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref] [PubMed]

Holman, H. A.

Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting cell membranes with a blustering heat shock,” Biophys. J. 106(8), 1570–1577 (2014).
[Crossref] [PubMed]

Homma, K.

M. Shapiro, K. Homma, and S. Villarreal, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun. 3(736), 1–10 (2012).
[Crossref]

Izzo, A. D.

A. Fishman, P. Winkler, J. Mierzwinski, W. Beuth, A. D. Izzo, Z. Siedlecki, I. Teudt, H. Maier, and C.-P. Richter, “Stimulation of the human auditory nerve with optical radiation,” Proc. SPIE 7180, 71800M (2009).
[Crossref]

A. D. Izzo, J. T. Walsh, E. D. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength,” IEEE Trans. Biomed. Eng. 54(6), 1108–1114 (2007).
[Crossref] [PubMed]

Jansen, E. D.

J. M. Cayce, J. D. Wells, J. D. Malphrus, C. C. Kao, S. Thomsen, N. B. Tulipan, P. E. Konrad, E. D. Jansen, and A. Mahadevan-Jansen, “Infrared neural stimulation of human spinal nerve roots in vivo,” Neurophotonics 2(1), 015007 (2015).
[Crossref] [PubMed]

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref] [PubMed]

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” Neuroimage 84(6), 181–190 (2014).
[Crossref]

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage 57(1), 155–166 (2011).
[Crossref] [PubMed]

A. D. Izzo, J. T. Walsh, E. D. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength,” IEEE Trans. Biomed. Eng. 54(6), 1108–1114 (2007).
[Crossref] [PubMed]

J. D. Wells, C. C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref] [PubMed]

J. D. Wells, C. C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett. 30(5), 504–506 (2005).
[Crossref] [PubMed]

Jorgensen, E. M.

Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting cell membranes with a blustering heat shock,” Biophys. J. 106(8), 1570–1577 (2014).
[Crossref] [PubMed]

Kao, C. C.

J. M. Cayce, J. D. Wells, J. D. Malphrus, C. C. Kao, S. Thomsen, N. B. Tulipan, P. E. Konrad, E. D. Jansen, and A. Mahadevan-Jansen, “Infrared neural stimulation of human spinal nerve roots in vivo,” Neurophotonics 2(1), 015007 (2015).
[Crossref] [PubMed]

J. D. Wells, C. C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref] [PubMed]

J. D. Wells, C. C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett. 30(5), 504–506 (2005).
[Crossref] [PubMed]

Kao, J. P. Y.

J. P. Y. Kao, “Caged molecules: principles and practical considerations,” Curr. Protoc. Neurosci., Chapter 6, Unit  6620 (2006).
[Crossref]

Karim, S.

L. BouFarah, B. R. Bowman, P. Bokiniec, S. Karim, S. Le, A. K. Goodchild, and S. Mcmullan, “Somatostatin in the rat rostral ventrolateral medulla: Origins and mechanism of action,” J. Comp. Neurol. 524(2), 323–342 (2016).
[Crossref]

Kim, J.

J. D. Wells, C. C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref] [PubMed]

Konnerth, A.

B. Sakmann, F. Edwards, A. Konnerth, and T. Takahashi, “Patch clamp techniques used for studying synaptic transmission in slices of mammalian brain,” Q. J. Exp. Physiol. 74, 1107–1118 (1989).
[Crossref] [PubMed]

Konrad, P.

J. D. Wells, C. C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref] [PubMed]

J. D. Wells, C. C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett. 30(5), 504–506 (2005).
[Crossref] [PubMed]

Konrad, P. E.

J. M. Cayce, J. D. Wells, J. D. Malphrus, C. C. Kao, S. Thomsen, N. B. Tulipan, P. E. Konrad, E. D. Jansen, and A. Mahadevan-Jansen, “Infrared neural stimulation of human spinal nerve roots in vivo,” Neurophotonics 2(1), 015007 (2015).
[Crossref] [PubMed]

Kral, A.

KrÂluger, A.

Kramer, R. H.

R. H. Kramer, D. L. Fortin, and D. Trauner, “New photochemical tools for controlling neuronal activity,” Curr. Opin. Neurobiol. 19(5), 544–552 (2009).
[Crossref] [PubMed]

Kuan, K.

Lancaster, D. G.

Le, S.

L. BouFarah, B. R. Bowman, P. Bokiniec, S. Karim, S. Le, A. K. Goodchild, and S. Mcmullan, “Somatostatin in the rat rostral ventrolateral medulla: Origins and mechanism of action,” J. Comp. Neurol. 524(2), 323–342 (2016).
[Crossref]

Lenaers, G.

E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref] [PubMed]

Lenarz, T.

S. Balster, G. I. Wenzel, A. Warnecke, M. Steffens, A. Rettenmaier, K. Zhang, T. Lenarz, and G. Reuter, “Optical cochlear implant: Evaluation of insertion forces of optical fibres in a cochlear model and of traumata in human temporal bones,” Biomed. Tech. 59(1), 19–28 (2014).
[Crossref]

M. Schultz, P. Baumhoff, H. Maier, I. U. Teudt, A. KrÂĺuger, T. Lenarz, and A. Kral, “Nanosecond laser pulse stimulation of the inner ear-a wavelength study,” Biomed. Opt. Express 3(12), 3332–3345 (2012).
[Crossref] [PubMed]

Liu, Q.

Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting cell membranes with a blustering heat shock,” Biophys. J. 106(8), 1570–1577 (2014).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

J. M. Cayce, J. D. Wells, J. D. Malphrus, C. C. Kao, S. Thomsen, N. B. Tulipan, P. E. Konrad, E. D. Jansen, and A. Mahadevan-Jansen, “Infrared neural stimulation of human spinal nerve roots in vivo,” Neurophotonics 2(1), 015007 (2015).
[Crossref] [PubMed]

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref] [PubMed]

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” Neuroimage 84(6), 181–190 (2014).
[Crossref]

J. D. Wells, C. C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref] [PubMed]

J. D. Wells, C. C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett. 30(5), 504–506 (2005).
[Crossref] [PubMed]

Mahavaden-Jansen, A.

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage 57(1), 155–166 (2011).
[Crossref] [PubMed]

Maier, H.

M. Schultz, P. Baumhoff, H. Maier, I. U. Teudt, A. KrÂĺuger, T. Lenarz, and A. Kral, “Nanosecond laser pulse stimulation of the inner ear-a wavelength study,” Biomed. Opt. Express 3(12), 3332–3345 (2012).
[Crossref] [PubMed]

A. Fishman, P. Winkler, J. Mierzwinski, W. Beuth, A. D. Izzo, Z. Siedlecki, I. Teudt, H. Maier, and C.-P. Richter, “Stimulation of the human auditory nerve with optical radiation,” Proc. SPIE 7180, 71800M (2009).
[Crossref]

Malphrus, J. D.

J. M. Cayce, J. D. Wells, J. D. Malphrus, C. C. Kao, S. Thomsen, N. B. Tulipan, P. E. Konrad, E. D. Jansen, and A. Mahadevan-Jansen, “Infrared neural stimulation of human spinal nerve roots in vivo,” Neurophotonics 2(1), 015007 (2015).
[Crossref] [PubMed]

Marc, I.

J.-M. Bec, E. S. Albert, I. Marc, G. Desmadryl, C. Travo, A. Muller, C. Chabbert, F. Bardin, and M. Dumas, “Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons,” Lasers Surg. Med. 44(9), 736–745 (2012).
[Crossref] [PubMed]

E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref] [PubMed]

Mariappan, K.

Mcmullan, S.

L. BouFarah, B. R. Bowman, P. Bokiniec, S. Karim, S. Le, A. K. Goodchild, and S. Mcmullan, “Somatostatin in the rat rostral ventrolateral medulla: Origins and mechanism of action,” J. Comp. Neurol. 524(2), 323–342 (2016).
[Crossref]

Mierzwinski, J.

A. Fishman, P. Winkler, J. Mierzwinski, W. Beuth, A. D. Izzo, Z. Siedlecki, I. Teudt, H. Maier, and C.-P. Richter, “Stimulation of the human auditory nerve with optical radiation,” Proc. SPIE 7180, 71800M (2009).
[Crossref]

Milner, T.

J. D. Wells, C. C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref] [PubMed]

Monro, T. M.

Muller, A.

E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref] [PubMed]

J.-M. Bec, E. S. Albert, I. Marc, G. Desmadryl, C. Travo, A. Muller, C. Chabbert, F. Bardin, and M. Dumas, “Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons,” Lasers Surg. Med. 44(9), 736–745 (2012).
[Crossref] [PubMed]

Paxinois, G.

G. Paxinois and C. Watson, The Rat Brain in Stereotaxic Coordinates, 6th ed. (Academic Press, 2006).

Popovic, D.

D. Popovic, T. Gordon, V. F. Rafuse, and A. Prochazka, “Properties of implanted electrodes for functional electrical stimulation,” Ann. Biomed. Eng. 19(3), 303–316 (1991).
[Crossref] [PubMed]

Prochazka, A.

D. Popovic, T. Gordon, V. F. Rafuse, and A. Prochazka, “Properties of implanted electrodes for functional electrical stimulation,” Ann. Biomed. Eng. 19(3), 303–316 (1991).
[Crossref] [PubMed]

Rabbitt, R. D.

Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting cell membranes with a blustering heat shock,” Biophys. J. 106(8), 1570–1577 (2014).
[Crossref] [PubMed]

Rafuse, V. F.

D. Popovic, T. Gordon, V. F. Rafuse, and A. Prochazka, “Properties of implanted electrodes for functional electrical stimulation,” Ann. Biomed. Eng. 19(3), 303–316 (1991).
[Crossref] [PubMed]

Ralph, H.

A. D. Izzo, J. T. Walsh, E. D. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength,” IEEE Trans. Biomed. Eng. 54(6), 1108–1114 (2007).
[Crossref] [PubMed]

Rettenmaier, A.

S. Balster, G. I. Wenzel, A. Warnecke, M. Steffens, A. Rettenmaier, K. Zhang, T. Lenarz, and G. Reuter, “Optical cochlear implant: Evaluation of insertion forces of optical fibres in a cochlear model and of traumata in human temporal bones,” Biomed. Tech. 59(1), 19–28 (2014).
[Crossref]

Reuter, G.

S. Balster, G. I. Wenzel, A. Warnecke, M. Steffens, A. Rettenmaier, K. Zhang, T. Lenarz, and G. Reuter, “Optical cochlear implant: Evaluation of insertion forces of optical fibres in a cochlear model and of traumata in human temporal bones,” Biomed. Tech. 59(1), 19–28 (2014).
[Crossref]

Richter, C.-P.

A. Fishman, P. Winkler, J. Mierzwinski, W. Beuth, A. D. Izzo, Z. Siedlecki, I. Teudt, H. Maier, and C.-P. Richter, “Stimulation of the human auditory nerve with optical radiation,” Proc. SPIE 7180, 71800M (2009).
[Crossref]

A. D. Izzo, J. T. Walsh, E. D. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength,” IEEE Trans. Biomed. Eng. 54(6), 1108–1114 (2007).
[Crossref] [PubMed]

Roe, A. W.

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” Neuroimage 84(6), 181–190 (2014).
[Crossref]

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage 57(1), 155–166 (2011).
[Crossref] [PubMed]

Sakmann, B.

B. Sakmann, F. Edwards, A. Konnerth, and T. Takahashi, “Patch clamp techniques used for studying synaptic transmission in slices of mammalian brain,” Q. J. Exp. Physiol. 74, 1107–1118 (1989).
[Crossref] [PubMed]

Schultz, M.

Shapiro, M.

M. Shapiro, K. Homma, and S. Villarreal, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun. 3(736), 1–10 (2012).
[Crossref]

Siedlecki, Z.

A. Fishman, P. Winkler, J. Mierzwinski, W. Beuth, A. D. Izzo, Z. Siedlecki, I. Teudt, H. Maier, and C.-P. Richter, “Stimulation of the human auditory nerve with optical radiation,” Proc. SPIE 7180, 71800M (2009).
[Crossref]

Steffens, M.

S. Balster, G. I. Wenzel, A. Warnecke, M. Steffens, A. Rettenmaier, K. Zhang, T. Lenarz, and G. Reuter, “Optical cochlear implant: Evaluation of insertion forces of optical fibres in a cochlear model and of traumata in human temporal bones,” Biomed. Tech. 59(1), 19–28 (2014).
[Crossref]

Takahashi, T.

B. Sakmann, F. Edwards, A. Konnerth, and T. Takahashi, “Patch clamp techniques used for studying synaptic transmission in slices of mammalian brain,” Q. J. Exp. Physiol. 74, 1107–1118 (1989).
[Crossref] [PubMed]

Teudt, I.

A. Fishman, P. Winkler, J. Mierzwinski, W. Beuth, A. D. Izzo, Z. Siedlecki, I. Teudt, H. Maier, and C.-P. Richter, “Stimulation of the human auditory nerve with optical radiation,” Proc. SPIE 7180, 71800M (2009).
[Crossref]

Teudt, I. U.

Thomsen, S.

J. M. Cayce, J. D. Wells, J. D. Malphrus, C. C. Kao, S. Thomsen, N. B. Tulipan, P. E. Konrad, E. D. Jansen, and A. Mahadevan-Jansen, “Infrared neural stimulation of human spinal nerve roots in vivo,” Neurophotonics 2(1), 015007 (2015).
[Crossref] [PubMed]

Trauner, D.

R. H. Kramer, D. L. Fortin, and D. Trauner, “New photochemical tools for controlling neuronal activity,” Curr. Opin. Neurobiol. 19(5), 544–552 (2009).
[Crossref] [PubMed]

Travo, C.

J.-M. Bec, E. S. Albert, I. Marc, G. Desmadryl, C. Travo, A. Muller, C. Chabbert, F. Bardin, and M. Dumas, “Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons,” Lasers Surg. Med. 44(9), 736–745 (2012).
[Crossref] [PubMed]

E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref] [PubMed]

Tulipan, N. B.

J. M. Cayce, J. D. Wells, J. D. Malphrus, C. C. Kao, S. Thomsen, N. B. Tulipan, P. E. Konrad, E. D. Jansen, and A. Mahadevan-Jansen, “Infrared neural stimulation of human spinal nerve roots in vivo,” Neurophotonics 2(1), 015007 (2015).
[Crossref] [PubMed]

Villarreal, S.

M. Shapiro, K. Homma, and S. Villarreal, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun. 3(736), 1–10 (2012).
[Crossref]

Walsh, J. T.

A. D. Izzo, J. T. Walsh, E. D. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength,” IEEE Trans. Biomed. Eng. 54(6), 1108–1114 (2007).
[Crossref] [PubMed]

Warnecke, A.

S. Balster, G. I. Wenzel, A. Warnecke, M. Steffens, A. Rettenmaier, K. Zhang, T. Lenarz, and G. Reuter, “Optical cochlear implant: Evaluation of insertion forces of optical fibres in a cochlear model and of traumata in human temporal bones,” Biomed. Tech. 59(1), 19–28 (2014).
[Crossref]

Watson, C.

G. Paxinois and C. Watson, The Rat Brain in Stereotaxic Coordinates, 6th ed. (Academic Press, 2006).

Webb, J.

A. D. Izzo, J. T. Walsh, E. D. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength,” IEEE Trans. Biomed. Eng. 54(6), 1108–1114 (2007).
[Crossref] [PubMed]

Wells, J. D.

J. M. Cayce, J. D. Wells, J. D. Malphrus, C. C. Kao, S. Thomsen, N. B. Tulipan, P. E. Konrad, E. D. Jansen, and A. Mahadevan-Jansen, “Infrared neural stimulation of human spinal nerve roots in vivo,” Neurophotonics 2(1), 015007 (2015).
[Crossref] [PubMed]

J. D. Wells, C. C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref] [PubMed]

J. D. Wells, C. C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett. 30(5), 504–506 (2005).
[Crossref] [PubMed]

Wenzel, G. I.

S. Balster, G. I. Wenzel, A. Warnecke, M. Steffens, A. Rettenmaier, K. Zhang, T. Lenarz, and G. Reuter, “Optical cochlear implant: Evaluation of insertion forces of optical fibres in a cochlear model and of traumata in human temporal bones,” Biomed. Tech. 59(1), 19–28 (2014).
[Crossref]

Winkler, P.

A. Fishman, P. Winkler, J. Mierzwinski, W. Beuth, A. D. Izzo, Z. Siedlecki, I. Teudt, H. Maier, and C.-P. Richter, “Stimulation of the human auditory nerve with optical radiation,” Proc. SPIE 7180, 71800M (2009).
[Crossref]

Withford, M. J.

Yizhar, O.

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34, 389–412 (2011).
[Crossref] [PubMed]

Zhang, K.

S. Balster, G. I. Wenzel, A. Warnecke, M. Steffens, A. Rettenmaier, K. Zhang, T. Lenarz, and G. Reuter, “Optical cochlear implant: Evaluation of insertion forces of optical fibres in a cochlear model and of traumata in human temporal bones,” Biomed. Tech. 59(1), 19–28 (2014).
[Crossref]

Ann. Biomed. Eng. (1)

D. Popovic, T. Gordon, V. F. Rafuse, and A. Prochazka, “Properties of implanted electrodes for functional electrical stimulation,” Ann. Biomed. Eng. 19(3), 303–316 (1991).
[Crossref] [PubMed]

Annu. Rev. Neurosci. (1)

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34, 389–412 (2011).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biomed. Tech. (1)

S. Balster, G. I. Wenzel, A. Warnecke, M. Steffens, A. Rettenmaier, K. Zhang, T. Lenarz, and G. Reuter, “Optical cochlear implant: Evaluation of insertion forces of optical fibres in a cochlear model and of traumata in human temporal bones,” Biomed. Tech. 59(1), 19–28 (2014).
[Crossref]

Biophys. J. (2)

Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting cell membranes with a blustering heat shock,” Biophys. J. 106(8), 1570–1577 (2014).
[Crossref] [PubMed]

J. D. Wells, C. C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref] [PubMed]

Cell Calcium (1)

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref] [PubMed]

Curr. Opin. Neurobiol. (1)

R. H. Kramer, D. L. Fortin, and D. Trauner, “New photochemical tools for controlling neuronal activity,” Curr. Opin. Neurobiol. 19(5), 544–552 (2009).
[Crossref] [PubMed]

Curr. Protoc. Neurosci. (1)

J. P. Y. Kao, “Caged molecules: principles and practical considerations,” Curr. Protoc. Neurosci., Chapter 6, Unit  6620 (2006).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

A. D. Izzo, J. T. Walsh, E. D. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength,” IEEE Trans. Biomed. Eng. 54(6), 1108–1114 (2007).
[Crossref] [PubMed]

J. Comp. Neurol. (1)

L. BouFarah, B. R. Bowman, P. Bokiniec, S. Karim, S. Le, A. K. Goodchild, and S. Mcmullan, “Somatostatin in the rat rostral ventrolateral medulla: Origins and mechanism of action,” J. Comp. Neurol. 524(2), 323–342 (2016).
[Crossref]

J. Neurophysiol. (1)

E. S. Albert, J.-M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

J.-M. Bec, E. S. Albert, I. Marc, G. Desmadryl, C. Travo, A. Muller, C. Chabbert, F. Bardin, and M. Dumas, “Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons,” Lasers Surg. Med. 44(9), 736–745 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

M. Shapiro, K. Homma, and S. Villarreal, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun. 3(736), 1–10 (2012).
[Crossref]

Neuroimage (2)

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” Neuroimage 84(6), 181–190 (2014).
[Crossref]

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage 57(1), 155–166 (2011).
[Crossref] [PubMed]

Neurophotonics (1)

J. M. Cayce, J. D. Wells, J. D. Malphrus, C. C. Kao, S. Thomsen, N. B. Tulipan, P. E. Konrad, E. D. Jansen, and A. Mahadevan-Jansen, “Infrared neural stimulation of human spinal nerve roots in vivo,” Neurophotonics 2(1), 015007 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (1)

A. Fishman, P. Winkler, J. Mierzwinski, W. Beuth, A. D. Izzo, Z. Siedlecki, I. Teudt, H. Maier, and C.-P. Richter, “Stimulation of the human auditory nerve with optical radiation,” Proc. SPIE 7180, 71800M (2009).
[Crossref]

Q. J. Exp. Physiol. (1)

B. Sakmann, F. Edwards, A. Konnerth, and T. Takahashi, “Patch clamp techniques used for studying synaptic transmission in slices of mammalian brain,” Q. J. Exp. Physiol. 74, 1107–1118 (1989).
[Crossref] [PubMed]

Other (1)

G. Paxinois and C. Watson, The Rat Brain in Stereotaxic Coordinates, 6th ed. (Academic Press, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Inward current flow in response to increasing laser power. (a) Raw data from the first cell interrogated illustrates inward currents evoked by infrared neural stimulation at ascending intensities in a single neuron. (b) Combined data from five neurons showing laser-evoked changes in holding current at ascending laser power.
Fig. 2
Fig. 2 Change in membrane potential in response to INS. (a) Raw data from the first cell interrogated illustrates depolarization evoked by irradiation at ascending intensities in a single neuron. (b) Combined data from four neurons showing laser-evoked changes in membrane potential at ascending laser power.
Fig. 3
Fig. 3 Reversal potential of INS-evoked currents (a) Raw data from a single trial illustrates influence of holding potential on polarity and amplitude of INS-evoked currents. (b) Averaged data from three neurons each with two replicate trials indicating reversal potential. Linear regression has R2 = 0.99, p < 0.001.
Fig. 4
Fig. 4 Section of the 30 minute exposure to INS at maximum power output. The top trace is a rolling time average of the lower raw data trace, with a 100 ms time constant. The laser pulse occurred during the blue regions and was one second in duration. The beam was blocked before entering the fiber during the indicated shaded region, with arrows indicating inward currents coinciding with unblocked laser pulses. The entire trace duration shown is 3 minutes.
Fig. 5
Fig. 5 Increased synaptic response due to INS. (a) A typical single trace of raw data of a single cell with indicated one second laser pulse. (b) Quantitative change in the number of synaptic events during a one second laser exposure of five cells, with error bars calculated as s.e.m. (c) Average synaptic response of 60 individual, 5 second, raw data traces of a single cell. Mean, s.d. and 2 s.d. indicate the baseline mean synaptic response and the 65% and 95% confidence intervals respectively.

Tables (1)

Tables Icon

Table 1 Experimental parameters of studies examining INS mechanism. [Compound action potential (CAP), whole cell patch-clamp (WCPC), signal optical imaging (SOI)]

Metrics