Abstract

Automated label-free quantitative imaging of biological samples can greatly benefit high throughput diseases diagnosis. Digital holographic microscopy (DHM) is a powerful quantitative label-free imaging tool that retrieves structural details of cellular samples non-invasively. In off-axis DHM, a proper spatial filtering window in Fourier space is crucial to the quality of reconstructed phase image. Here we describe a region-recognition approach that combines shape recognition with an iterative thresholding method to extracts the optimal shape of frequency components. The region recognition technique offers fully automated adaptive filtering that can operate with a variety of samples and imaging conditions. When imaging through optically scattering biological hydrogel matrix, the technique surpasses previous histogram thresholding techniques without requiring any manual intervention. Finally, we automate the extraction of the statistical difference of optical height between malaria parasite infected and uninfected red blood cells. The method described here paves way to greater autonomy in automated DHM imaging for imaging live cell in thick cell cultures.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Off-axis digital holographic microscopy with LED illumination based on polarization filtering

Rongli Guo, Baoli Yao, Peng Gao, Junwei Min, Meiling Zhou, Jun Han, Xun Yu, Xianghua Yu, Ming Lei, Shaohui Yan, Yanlong Yang, Dan Dan, and Tong Ye
Appl. Opt. 52(34) 8233-8238 (2013)

Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection

Thanh Nguyen, Vy Bui, Van Lam, Christopher B. Raub, Lin-Ching Chang, and George Nehmetallah
Opt. Express 25(13) 15043-15057 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
    [Crossref]
  2. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [Crossref] [PubMed]
  3. E. Cuche, Y. Emery, and F. Montfort, “Microscopy: One-shot analysis,” Nat. Photonics 3(11), 633–635 (2009).
    [Crossref]
  4. M. K. Kim, “Principles and techniques of digital holographic microscopy,” J. Photon. Energy 1, 018005 (2010).
  5. X. Yu, J. Hong, C. Liu, M. Cross, D. T. Haynie, and M. K. Kim, “Four-dimensional motility tracking of biological cells by digital holographic microscopy,” J. Biomed. Opt. 19(4), 045001 (2014).
    [Crossref] [PubMed]
  6. M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” Display Technology, Journalism 6, 490–499 (2010).
  7. P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Opt. Lett. 28(14), 1257–1259 (2003).
    [Crossref] [PubMed]
  8. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
    [Crossref] [PubMed]
  9. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41(29), 6187–6192 (2002).
    [Crossref] [PubMed]
  10. P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
  11. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
    [Crossref] [PubMed]
  12. Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
    [Crossref] [PubMed]
  13. G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
    [Crossref] [PubMed]
  14. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
    [Crossref] [PubMed]
  15. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [Crossref] [PubMed]
  16. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14(10), 4300–4306 (2006).
    [Crossref] [PubMed]
  17. J. Li, Z. Wang, J. Gao, Y. Liu, and J. Huang, “Adaptive spatial filtering based on region growing for automatic analysis in digital holographic microscopy,” Opt. Eng. 54(3), 031103 (2014).
    [Crossref]
  18. J. Weng, H. Li, Z. Zhang, and J. Zhong, “Design of adaptive spatial filter at uniform standard for automatic analysis of digital holographic microscopy,” Optik 125(11), 2633–2637 (2014).
    [Crossref]
  19. J. Hong and M. K. Kim, “Single-shot self-interference incoherent digital holography using off-axis configuration,” Opt. Lett. 38(23), 5196–5199 (2013).
    [Crossref] [PubMed]
  20. L. Xue, J. Lai, S. Wang, and Z. Li, “Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells,” Biomed. Opt. Express 2(4), 987–995 (2011).
    [Crossref] [PubMed]
  21. “A Threshold Selection Method from Gray-Level Histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979).
    [Crossref]
  22. M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41(35), 7437–7444 (2002).
    [Crossref] [PubMed]
  23. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
    [Crossref]
  24. C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, “Elimination of zero-order diffraction in digital holography,” Opt. Eng. 41(10), 2434–2437 (2002).
    [Crossref]
  25. K. Tao, A. Levin, L. Adler-Abramovich, and E. Gazit, “Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials,” Chem. Soc. Rev. 45(14), 3935–3953 (2016).
    [Crossref] [PubMed]
  26. J. Palis, “Molecular biology of erythropoiesis,” in Molecular Basis of Hematopoiesis(Springer, 2009), pp. 73–93.
  27. L. Da Costa, J. Galimand, O. Fenneteau, and N. Mohandas, “Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders,” Blood Rev. 27(4), 167–178 (2013).
    [Crossref] [PubMed]
  28. B. M. Cooke, N. Mohandas, and R. L. Coppel, “The malaria-infected red blood cell: structural and functional changes,” Adv. Parasitol. 50, 1–86 (2001).
    [Crossref] [PubMed]
  29. P. Schiantarelli, F. Peroni, P. Tirone, and G. Rosati, “Effects of Iodinated Contrast Media on Erythrocytes. I. Effects of Canine Erythrocytes on Morphology,” Invest. Radiol. 8(4), 199–204 (1973).
    [Crossref] [PubMed]
  30. N. Otsu, “A threshold selection method from gray-level histograms,” Automatica 11, 23–27 (1975).
  31. A. G. Maier, B. M. Cooke, A. F. Cowman, and L. Tilley, “Malaria parasite proteins that remodel the host erythrocyte,” Nat. Rev. Microbiol. 7(5), 341–354 (2009).
    [Crossref] [PubMed]
  32. N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
    [Crossref] [PubMed]

2016 (1)

K. Tao, A. Levin, L. Adler-Abramovich, and E. Gazit, “Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials,” Chem. Soc. Rev. 45(14), 3935–3953 (2016).
[Crossref] [PubMed]

2014 (3)

J. Li, Z. Wang, J. Gao, Y. Liu, and J. Huang, “Adaptive spatial filtering based on region growing for automatic analysis in digital holographic microscopy,” Opt. Eng. 54(3), 031103 (2014).
[Crossref]

J. Weng, H. Li, Z. Zhang, and J. Zhong, “Design of adaptive spatial filter at uniform standard for automatic analysis of digital holographic microscopy,” Optik 125(11), 2633–2637 (2014).
[Crossref]

X. Yu, J. Hong, C. Liu, M. Cross, D. T. Haynie, and M. K. Kim, “Four-dimensional motility tracking of biological cells by digital holographic microscopy,” J. Biomed. Opt. 19(4), 045001 (2014).
[Crossref] [PubMed]

2013 (2)

L. Da Costa, J. Galimand, O. Fenneteau, and N. Mohandas, “Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders,” Blood Rev. 27(4), 167–178 (2013).
[Crossref] [PubMed]

J. Hong and M. K. Kim, “Single-shot self-interference incoherent digital holography using off-axis configuration,” Opt. Lett. 38(23), 5196–5199 (2013).
[Crossref] [PubMed]

2012 (1)

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” Display Technology, Journalism 6, 490–499 (2010).

M. K. Kim, “Principles and techniques of digital holographic microscopy,” J. Photon. Energy 1, 018005 (2010).

2009 (3)

E. Cuche, Y. Emery, and F. Montfort, “Microscopy: One-shot analysis,” Nat. Photonics 3(11), 633–635 (2009).
[Crossref]

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).

A. G. Maier, B. M. Cooke, A. F. Cowman, and L. Tilley, “Malaria parasite proteins that remodel the host erythrocyte,” Nat. Rev. Microbiol. 7(5), 341–354 (2009).
[Crossref] [PubMed]

2008 (2)

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

2007 (2)

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

2003 (1)

2002 (3)

2001 (1)

B. M. Cooke, N. Mohandas, and R. L. Coppel, “The malaria-infected red blood cell: structural and functional changes,” Adv. Parasitol. 50, 1–86 (2001).
[Crossref] [PubMed]

2000 (1)

1975 (1)

N. Otsu, “A threshold selection method from gray-level histograms,” Automatica 11, 23–27 (1975).

1973 (1)

P. Schiantarelli, F. Peroni, P. Tirone, and G. Rosati, “Effects of Iodinated Contrast Media on Erythrocytes. I. Effects of Canine Erythrocytes on Morphology,” Invest. Radiol. 8(4), 199–204 (1973).
[Crossref] [PubMed]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

1942 (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
[Crossref]

Adler-Abramovich, L.

K. Tao, A. Levin, L. Adler-Abramovich, and E. Gazit, “Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials,” Chem. Soc. Rev. 45(14), 3935–3953 (2016).
[Crossref] [PubMed]

Alfieri, D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

Aspert, N.

Badizadegan, K.

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Bernhardt, I.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).

Bertaux, N.

Bo, F.

C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, “Elimination of zero-order diffraction in digital holography,” Opt. Eng. 41(10), 2434–2437 (2002).
[Crossref]

Burton, D. R.

Charrière, F.

Cheng, X.

C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, “Elimination of zero-order diffraction in digital holography,” Opt. Eng. 41(10), 2434–2437 (2002).
[Crossref]

Choi, W.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Colomb, T.

Cooke, B. M.

A. G. Maier, B. M. Cooke, A. F. Cowman, and L. Tilley, “Malaria parasite proteins that remodel the host erythrocyte,” Nat. Rev. Microbiol. 7(5), 341–354 (2009).
[Crossref] [PubMed]

B. M. Cooke, N. Mohandas, and R. L. Coppel, “The malaria-infected red blood cell: structural and functional changes,” Adv. Parasitol. 50, 1–86 (2001).
[Crossref] [PubMed]

Coppel, R. L.

B. M. Cooke, N. Mohandas, and R. L. Coppel, “The malaria-infected red blood cell: structural and functional changes,” Adv. Parasitol. 50, 1–86 (2001).
[Crossref] [PubMed]

Coppola, G.

Cowman, A. F.

A. G. Maier, B. M. Cooke, A. F. Cowman, and L. Tilley, “Malaria parasite proteins that remodel the host erythrocyte,” Nat. Rev. Microbiol. 7(5), 341–354 (2009).
[Crossref] [PubMed]

Cross, M.

X. Yu, J. Hong, C. Liu, M. Cross, D. T. Haynie, and M. K. Kim, “Four-dimensional motility tracking of biological cells by digital holographic microscopy,” J. Biomed. Opt. 19(4), 045001 (2014).
[Crossref] [PubMed]

Cuche, E.

Da Costa, L.

L. Da Costa, J. Galimand, O. Fenneteau, and N. Mohandas, “Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders,” Blood Rev. 27(4), 167–178 (2013).
[Crossref] [PubMed]

DaneshPanah, M.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” Display Technology, Journalism 6, 490–499 (2010).

Dasari, R. R.

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

De Nicola, S.

De Petrocellis, L.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

Depeursinge, C.

Diez-Silva, M.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Dirksen, D.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).

Emery, Y.

Feld, M. S.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Fenneteau, O.

L. Da Costa, J. Galimand, O. Fenneteau, and N. Mohandas, “Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders,” Blood Rev. 27(4), 167–178 (2013).
[Crossref] [PubMed]

Ferraro, P.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Opt. Lett. 28(14), 1257–1259 (2003).
[Crossref] [PubMed]

Finizio, A.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Opt. Lett. 28(14), 1257–1259 (2003).
[Crossref] [PubMed]

Frauel, Y.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Galimand, J.

L. Da Costa, J. Galimand, O. Fenneteau, and N. Mohandas, “Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders,” Blood Rev. 27(4), 167–178 (2013).
[Crossref] [PubMed]

Gao, J.

J. Li, Z. Wang, J. Gao, Y. Liu, and J. Huang, “Adaptive spatial filtering based on region growing for automatic analysis in digital holographic microscopy,” Opt. Eng. 54(3), 031103 (2014).
[Crossref]

Gazit, E.

K. Tao, A. Levin, L. Adler-Abramovich, and E. Gazit, “Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials,” Chem. Soc. Rev. 45(14), 3935–3953 (2016).
[Crossref] [PubMed]

Gdeisat, M. A.

Georgiev, G.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).

Grilli, S.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

Haynie, D. T.

X. Yu, J. Hong, C. Liu, M. Cross, D. T. Haynie, and M. K. Kim, “Four-dimensional motility tracking of biological cells by digital holographic microscopy,” J. Biomed. Opt. 19(4), 045001 (2014).
[Crossref] [PubMed]

Herráez, M. A.

Hong, J.

X. Yu, J. Hong, C. Liu, M. Cross, D. T. Haynie, and M. K. Kim, “Four-dimensional motility tracking of biological cells by digital holographic microscopy,” J. Biomed. Opt. 19(4), 045001 (2014).
[Crossref] [PubMed]

J. Hong and M. K. Kim, “Single-shot self-interference incoherent digital holography using off-axis configuration,” Opt. Lett. 38(23), 5196–5199 (2013).
[Crossref] [PubMed]

Huang, J.

J. Li, Z. Wang, J. Gao, Y. Liu, and J. Huang, “Adaptive spatial filtering based on region growing for automatic analysis in digital holographic microscopy,” Opt. Eng. 54(3), 031103 (2014).
[Crossref]

Ivanova, L.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).

Javidi, B.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” Display Technology, Journalism 6, 490–499 (2010).

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41(29), 6187–6192 (2002).
[Crossref] [PubMed]

Jourdain, P.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
[Crossref] [PubMed]

Kemper, B.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).

Ketelhut, S.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).

Kim, M. K.

X. Yu, J. Hong, C. Liu, M. Cross, D. T. Haynie, and M. K. Kim, “Four-dimensional motility tracking of biological cells by digital holographic microscopy,” J. Biomed. Opt. 19(4), 045001 (2014).
[Crossref] [PubMed]

J. Hong and M. K. Kim, “Single-shot self-interference incoherent digital holography using off-axis configuration,” Opt. Lett. 38(23), 5196–5199 (2013).
[Crossref] [PubMed]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” J. Photon. Energy 1, 018005 (2010).

Kühn, J.

Lai, J.

Lalor, M. J.

Langehanenberg, P.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).

Levin, A.

K. Tao, A. Levin, L. Adler-Abramovich, and E. Gazit, “Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials,” Chem. Soc. Rev. 45(14), 3935–3953 (2016).
[Crossref] [PubMed]

Li, H.

J. Weng, H. Li, Z. Zhang, and J. Zhong, “Design of adaptive spatial filter at uniform standard for automatic analysis of digital holographic microscopy,” Optik 125(11), 2633–2637 (2014).
[Crossref]

Li, J.

J. Li, Z. Wang, J. Gao, Y. Liu, and J. Huang, “Adaptive spatial filtering based on region growing for automatic analysis in digital holographic microscopy,” Opt. Eng. 54(3), 031103 (2014).
[Crossref]

Li, Y.

C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, “Elimination of zero-order diffraction in digital holography,” Opt. Eng. 41(10), 2434–2437 (2002).
[Crossref]

Li, Z.

Liu, C.

X. Yu, J. Hong, C. Liu, M. Cross, D. T. Haynie, and M. K. Kim, “Four-dimensional motility tracking of biological cells by digital holographic microscopy,” J. Biomed. Opt. 19(4), 045001 (2014).
[Crossref] [PubMed]

C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, “Elimination of zero-order diffraction in digital holography,” Opt. Eng. 41(10), 2434–2437 (2002).
[Crossref]

Liu, Y.

J. Li, Z. Wang, J. Gao, Y. Liu, and J. Huang, “Adaptive spatial filtering based on region growing for automatic analysis in digital holographic microscopy,” Opt. Eng. 54(3), 031103 (2014).
[Crossref]

Liu, Z.

C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, “Elimination of zero-order diffraction in digital holography,” Opt. Eng. 41(10), 2434–2437 (2002).
[Crossref]

Lykotrafitis, G.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Magistretti, P.

Magistretti, P. J.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
[Crossref] [PubMed]

Maier, A. G.

A. G. Maier, B. M. Cooke, A. F. Cowman, and L. Tilley, “Malaria parasite proteins that remodel the host erythrocyte,” Nat. Rev. Microbiol. 7(5), 341–354 (2009).
[Crossref] [PubMed]

Marquet, P.

Matoba, O.

Miccio, L.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

Mohandas, N.

L. Da Costa, J. Galimand, O. Fenneteau, and N. Mohandas, “Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders,” Blood Rev. 27(4), 167–178 (2013).
[Crossref] [PubMed]

B. M. Cooke, N. Mohandas, and R. L. Coppel, “The malaria-infected red blood cell: structural and functional changes,” Adv. Parasitol. 50, 1–86 (2001).
[Crossref] [PubMed]

Montfort, F.

Moratal, C.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
[Crossref] [PubMed]

Naughton, T. J.

Nicola, S.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

Osten, W.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” Display Technology, Journalism 6, 490–499 (2010).

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histograms,” Automatica 11, 23–27 (1975).

Park, Y.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Pavillon, N.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
[Crossref] [PubMed]

Peroni, F.

P. Schiantarelli, F. Peroni, P. Tirone, and G. Rosati, “Effects of Iodinated Contrast Media on Erythrocytes. I. Effects of Canine Erythrocytes on Morphology,” Invest. Radiol. 8(4), 199–204 (1973).
[Crossref] [PubMed]

Pierattini, G.

Popescu, G.

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Rappaz, B.

Rosati, G.

P. Schiantarelli, F. Peroni, P. Tirone, and G. Rosati, “Effects of Iodinated Contrast Media on Erythrocytes. I. Effects of Canine Erythrocytes on Morphology,” Invest. Radiol. 8(4), 199–204 (1973).
[Crossref] [PubMed]

Schaal, F.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” Display Technology, Journalism 6, 490–499 (2010).

Schiantarelli, P.

P. Schiantarelli, F. Peroni, P. Tirone, and G. Rosati, “Effects of Iodinated Contrast Media on Erythrocytes. I. Effects of Canine Erythrocytes on Morphology,” Invest. Radiol. 8(4), 199–204 (1973).
[Crossref] [PubMed]

Suresh, S.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Tao, K.

K. Tao, A. Levin, L. Adler-Abramovich, and E. Gazit, “Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials,” Chem. Soc. Rev. 45(14), 3935–3953 (2016).
[Crossref] [PubMed]

Tilley, L.

A. G. Maier, B. M. Cooke, A. F. Cowman, and L. Tilley, “Malaria parasite proteins that remodel the host erythrocyte,” Nat. Rev. Microbiol. 7(5), 341–354 (2009).
[Crossref] [PubMed]

Tirone, P.

P. Schiantarelli, F. Peroni, P. Tirone, and G. Rosati, “Effects of Iodinated Contrast Media on Erythrocytes. I. Effects of Canine Erythrocytes on Morphology,” Invest. Radiol. 8(4), 199–204 (1973).
[Crossref] [PubMed]

Vollmer, A.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).

von Bally, G.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).

Wang, S.

Wang, Z.

J. Li, Z. Wang, J. Gao, Y. Liu, and J. Huang, “Adaptive spatial filtering based on region growing for automatic analysis in digital holographic microscopy,” Opt. Eng. 54(3), 031103 (2014).
[Crossref]

Warber, M.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” Display Technology, Journalism 6, 490–499 (2010).

Weng, J.

J. Weng, H. Li, Z. Zhang, and J. Zhong, “Design of adaptive spatial filter at uniform standard for automatic analysis of digital holographic microscopy,” Optik 125(11), 2633–2637 (2014).
[Crossref]

Xue, L.

Yu, X.

X. Yu, J. Hong, C. Liu, M. Cross, D. T. Haynie, and M. K. Kim, “Four-dimensional motility tracking of biological cells by digital holographic microscopy,” J. Biomed. Opt. 19(4), 045001 (2014).
[Crossref] [PubMed]

Zernike, F.

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
[Crossref]

Zhang, Z.

J. Weng, H. Li, Z. Zhang, and J. Zhong, “Design of adaptive spatial filter at uniform standard for automatic analysis of digital holographic microscopy,” Optik 125(11), 2633–2637 (2014).
[Crossref]

Zhong, J.

J. Weng, H. Li, Z. Zhang, and J. Zhong, “Design of adaptive spatial filter at uniform standard for automatic analysis of digital holographic microscopy,” Optik 125(11), 2633–2637 (2014).
[Crossref]

Zhu, J.

C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, “Elimination of zero-order diffraction in digital holography,” Opt. Eng. 41(10), 2434–2437 (2002).
[Crossref]

Zwick, S.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” Display Technology, Journalism 6, 490–499 (2010).

Adv. Parasitol. (1)

B. M. Cooke, N. Mohandas, and R. L. Coppel, “The malaria-infected red blood cell: structural and functional changes,” Adv. Parasitol. 50, 1–86 (2001).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

Automatica (1)

N. Otsu, “A threshold selection method from gray-level histograms,” Automatica 11, 23–27 (1975).

Biomed. Opt. Express (1)

Blood Cells Mol. Dis. (1)

G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[Crossref] [PubMed]

Blood Rev. (1)

L. Da Costa, J. Galimand, O. Fenneteau, and N. Mohandas, “Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders,” Blood Rev. 27(4), 167–178 (2013).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

K. Tao, A. Levin, L. Adler-Abramovich, and E. Gazit, “Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials,” Chem. Soc. Rev. 45(14), 3935–3953 (2016).
[Crossref] [PubMed]

Display Technology, Journalism (1)

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” Display Technology, Journalism 6, 490–499 (2010).

Invest. Radiol. (1)

P. Schiantarelli, F. Peroni, P. Tirone, and G. Rosati, “Effects of Iodinated Contrast Media on Erythrocytes. I. Effects of Canine Erythrocytes on Morphology,” Invest. Radiol. 8(4), 199–204 (1973).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

X. Yu, J. Hong, C. Liu, M. Cross, D. T. Haynie, and M. K. Kim, “Four-dimensional motility tracking of biological cells by digital holographic microscopy,” J. Biomed. Opt. 19(4), 045001 (2014).
[Crossref] [PubMed]

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).

J. Photon. Energy (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” J. Photon. Energy 1, 018005 (2010).

Nat. Photonics (1)

E. Cuche, Y. Emery, and F. Montfort, “Microscopy: One-shot analysis,” Nat. Photonics 3(11), 633–635 (2009).
[Crossref]

Nat. Rev. Microbiol. (1)

A. G. Maier, B. M. Cooke, A. F. Cowman, and L. Tilley, “Malaria parasite proteins that remodel the host erythrocyte,” Nat. Rev. Microbiol. 7(5), 341–354 (2009).
[Crossref] [PubMed]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Opt. Eng. (2)

C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, “Elimination of zero-order diffraction in digital holography,” Opt. Eng. 41(10), 2434–2437 (2002).
[Crossref]

J. Li, Z. Wang, J. Gao, Y. Liu, and J. Huang, “Adaptive spatial filtering based on region growing for automatic analysis in digital holographic microscopy,” Opt. Eng. 54(3), 031103 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optik (1)

J. Weng, H. Li, Z. Zhang, and J. Zhong, “Design of adaptive spatial filter at uniform standard for automatic analysis of digital holographic microscopy,” Optik 125(11), 2633–2637 (2014).
[Crossref]

Physica (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
[Crossref]

PLoS One (1)

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Other (2)

“A Threshold Selection Method from Gray-Level Histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979).
[Crossref]

J. Palis, “Molecular biology of erythropoiesis,” in Molecular Basis of Hematopoiesis(Springer, 2009), pp. 73–93.

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (4540 KB)      Visualization 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 DHM Imaging setup. (a) L1 and L2 expand the reference beam. L3 focuses object beam onto the back focal plane of a second microscope objective MO3. L4 is a tube lens. M are sliver-coated reflective mirrors to fold the beam along the imaging system. FS is fiber splitter and BS is the beam splitter for splitting and recombining the sample and reference beam. MO1 is the fiber coupling objective, MO2 is the illuminating objective and MO3 is the imaging objective (inset shows is an example of a recorded hologram (scale bar = 5 µm). (b) Image showing the sample placed between the two objective lenses in the setup.
Fig. 2
Fig. 2 The region-recognition method. (a) Recorded hologram of RBCs (b) Spatial frequency of the hologram after fast Fourier transform (FFT). (c), (d) and (e), shows intermediate iterative thresholding process with incremental threshold level. (f) Optimised spatial filter window (g) Final filtered and centred spatial frequency area. (h) Reconstructed phase image. The color bar gives the phase values by unit of radian. (i) Calculated time with different pixel size by this region-recognition method. (j) Overview of the flow chart of iterative thresholding and region-recognition program.
Fig. 3
Fig. 3 Comparison of histogram analysis filtering technique [18] with region-recognition method under different sample conditions. (a), (i) and (ii) are the holograms of a 6 µm diameter microsphere through water and two 50 µm diameter microspheres through opaque peptide hydrogel. (iii) and (iv) are the FFT holograms of (i) and (ii) respectively. In (iii) and (iv), the red outlines represent the best filters from region recognition method and blue circles represent manual pre-cropping area used for histogram analysis. Reconstructed phase image with histogram analysis are shown in (b) and region recognition method (c) .Color bar h1 = 6.7 µm Color bar h2 = 50 µm Color bar h3 = 6.7 µm, Color bar h4 = 50 µm.
Fig. 4
Fig. 4 Application of the region-recognition method under different experimental conditions. The first row depicts neuronal cortical cells (hologram (a), FFT image (b) and phase reconstruction (c)). The second row shows a single RBC as hologram (d), FFT image (e) and phase reconstruction (f). The last row presents C17.2 neural stem cell as hologram (g), FFT image (h) and phase reconstruction (i). The color bars in all phase reconstructions indicate h1 = 10 µm, h2 = 2.9 µm, h3 = 13.3µm.
Fig. 5
Fig. 5 Layout of graphical user interface: red blood cells recorded with 10X NA 0.25 microscope objective (Visualization 1).
Fig. 6
Fig. 6 Region-recognition to extract individual RBCs. (a) load and (b) apply a Gaussian filter for thresholding. (c) voids are filled, small objects removed and perimeter pixels extracted. (d) maxima transform performed and apply step (e) combined the (c) and (d), (f) Invert image intensity and set local maximum in mask. (g) separate objects using watershed transform and (h) measure the pixel areas of each object in the combined binary image. (h) The final step is to label cell regions and remove false cell detections based on the pixel areas of objects.
Fig. 7
Fig. 7 Example images of red blood cells taken with scanning electron microscope (a), (b) and DHM (c), (d). Infected (a),(c) and non-infected (b) and (d). h = 2.77 µm.
Fig. 8
Fig. 8 Phase distribution analysis of malaria infected RBCs versus uninfected RBCs. (a)Histogram of phase value over an infected RBC surface shown in inset 2µm scale bar. (b)Histogram of phase value over an uninfected RBC surface, which is shown as thumbnail with 2µm scale bar. (c) Histograms of FWHMs of 12 uninfected RBCs’ phase distribution (red) and the histogram of FWHMs of 12 infected RBCs’ phase distribution (blue). This shift between two histograms indicates that uninfected RBCs have broader height (phase) distribution.
Fig. 9
Fig. 9 shows the detailed comparison of the phase retrieval process of microsphere embedded n a scattering medium (a) – (i) schematic, (ii) image of scattering medium taken from plan view with grid (iii) acquired hologram. b (i) shows the circle binary filter applied to FFT holograms of the sample. (ii) the histogram of intensity distribution after manually filtering the spatial frequency and Red curve show a Gaussian fit (sum of two Gaussians functions) of the distribution. (iii) and (vi) are 1st and 2nd derivative of the fitting curve in (ii). Inflexion point (intensity = 0.67) in iv is used to retrieve the threshold level to obtain the filter in (v) and (vi) and the reconstruction, which insufficiently retrieves the microsphere. (c) increment determination process in automated region recognition method. Figures c(i), (iii), (v) show the different filter windows and (ii),(iv),(vi) are the corresponding reconstructed phase of the microsphere. The threshold windows are created by setting different threshold increment in step (2), Fig. 2 (j). Each threshold increments goes from 20% - (i), (ii), 5% - (iii), (iv) and 1% - (v), (vi) of GTL. The results show that 1% of GTL achieves an optimal filter window to retrieve an accurate reconstruction of the microsphere through a diffusive medium. Color bar h1 = h2 = 50 µm
Fig. 10
Fig. 10 shows the detailed comparison of the phase retrieval process of the same sample in Fig. 3. The detailed histogram analysis in the previous technique [18] are shown in the top: (a) and (e) are the processed spectrums, in which the red rectangles are the filter windows based on histogram analysis. (b) and (f) are the histograms of (a) and (e) respectively. (c) and (d) are the phase and amplitude reconstructions of (a). (g) and (h) are the phase and amplitude reconstructions of (e). The manual determination of threshold is shown downside: (i) shows the filter window when threshold is 0.79 and (j) is the phase reconstruction of it. (k) shows the filter window when threshold is 0.67 and (l) is the phase reconstruction of it. Color bar h1 = 50 µm. Color bar h2 = 6.7 µm. Color bar p1 = 1.0e-4 rad. Colorbar p2 = 0.01 rad.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

O ( r , t ) = | O | exp [ j ( ω t + ( k r ) + φ ) ] .
R ( r , t ) = | R 0 | exp [ j ( ω t + ( k r ) ) ] .
I = | O + R | 2 = | R | 2 + | O | 2 + OR * + RO * .
I = O 0 2 + R 0 2 + | OR | exp ( j φ ) + | OR | exp ( j φ ) . |
R ( r , t ) = | R 0 | e x p [ j ( ω t + ( k r r ) ) ] ,
O ( r , t ) = | O | e x p [ j ( ω t + ( k o r ) + φ ) ] .
I = O 0 2 + R 0 2 + | OR | e x p ( j( φ +( k o k r ) r ) ) +   | RO | e x p ( j( φ +( k r k r ) r ) )
h ( x , y ) = φ ( x , y ) λ 0 2 π Δ n

Metrics