Abstract

Multi-day tracking of cells in culture systems can provide valuable information in bioscience experiments. We report the development of a cell culture imaging system, named EmSight, which incorporates multiple compact Fourier ptychographic microscopes with a standard multiwell imaging plate. The system is housed in an incubator and presently incorporates six microscopes. By using the same low magnification objective lenses as the objective and the tube lens, the EmSight is configured as a 1:1 imaging system that, providing large field-of-view (FOV) imaging onto a low-cost CMOS imaging sensor. The EmSight improves the image resolution by capturing a series of images of the sample at varying illumination angles; the instrument reconstructs a higher-resolution image by using the iterative Fourier ptychographic algorithm. In addition to providing high-resolution brightfield and phase imaging, the EmSight is also capable of fluorescence imaging at the native resolution of the objectives. We characterized the system using a phase Siemens star target, and show four-fold improved coherent resolution (synthetic NA of 0.42) and a depth of field of 0.2 mm. To conduct live, long-term dopaminergic neuron imaging, we cultured ventral midbrain from mice driving eGFP from the tyrosine hydroxylase promoter. The EmSight system tracks movements of dopaminergic neurons over a 21 day period.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide-field Fourier ptychographic microscopy using laser illumination source

Jaebum Chung, Hangwen Lu, Xiaoze Ou, Haojiang Zhou, and Changhuei Yang
Biomed. Opt. Express 7(11) 4787-4802 (2016)

Computational illumination for high-speed in vitro Fourier ptychographic microscopy

Lei Tian, Ziji Liu, Li-Hao Yeh, Michael Chen, Jingshan Zhong, and Laura Waller
Optica 2(10) 904-911 (2015)

Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography

Jaebum Chung, Jinho Kim, Xiaoze Ou, Roarke Horstmeyer, and Changhuei Yang
Biomed. Opt. Express 7(2) 352-368 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A. Weitz, “Glass-like dynamics of collective cell migration,” Proc. Natl. Acad. Sci. U.S.A. 108(12), 4714–4719 (2011).
    [Crossref] [PubMed]
  2. I. Dey-Guha, A. Wolfer, A. C. Yeh, J. G Albeck, R. Darp, E. Leon, J. Wulfkuhle, E. F. Petricoin, B. S. Wittner, and S. Ramaswamy, “Asymmetric cancer cell division regulated by AKT,” Proc. Natl. Acad. Sci. U.S.A. 108(31), 12845–12850 (2011).
    [Crossref] [PubMed]
  3. M. R. Costa, F. Ortega, M. S. Brill, R. Beckervordersandforth, C. Petrone, T. Schroeder, M. Götz, and B. Berninger, “Continuous live imaging of adult neural stem cell division and lineage progression in vitro,” Development 138(6), 1057–1068 (2011).
    [Crossref] [PubMed]
  4. T. Matsui, M. Takano, K. Yoshida, S. Ono, C. Fujisaki, Y. Matsuzaki, Y. Toyama, M. Nakamura, H. Okano, and W. Akamatsu, “Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency,” Stem Cells 30(6), 1109–1119 (2012).
    [Crossref] [PubMed]
  5. S. Lin, S. Fonteno, J. H. Weng, and P. Talbot, “Comparison of the toxicity of smoke from conventional and harm reduction cigarettes using human embryonic stem cells,” Toxicol. Sci. 118(1), 202–212 (2010).
    [Crossref] [PubMed]
  6. R. Srinivasan, C. I. Richards, C. Xiao, D. Rhee, R. Pantoja, D. A. Dougherty, J. M. Miwa, and H. A. Lester, “Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response,” Mol. Pharmacol. 81(6), 759–769 (2012).
    [Crossref] [PubMed]
  7. http://www.zeiss.com/microscopy/en_us/products/microscope-components/incubation.html .
  8. http://www.nikoninstruments.com/Products/Live-Cell-Screening-Systems/BioStation-CT .
  9. http://www.essenbioscience.com/essen-products/incucyte/ .
  10. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13(3), 470–473 (1996).
    [Crossref]
  11. G. Zheng, X. Ou, and C. Yang, “0.5 gigapixel microscopy using a flatbed scanner,” Biomed. Opt. Express 5(1), 1–8 (2014).
    [Crossref] [PubMed]
  12. G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A. 108(41), 16889–16894 (2011).
    [Crossref] [PubMed]
  13. J. H. Jung, C. Han, S. A. Lee, J. Kim, and C. Yang, “Microfluidic-integrated laser-controlled microactuators with on-chip microscopy imaging functionality,” Lab Chip 14(19), 3781–3789 (2014).
    [Crossref] [PubMed]
  14. C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85(4), 2356–2360 (2013).
    [Crossref] [PubMed]
  15. W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
    [Crossref] [PubMed]
  16. W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
    [Crossref] [PubMed]
  17. A. Greenbaum, U. Sikora, and A. Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip 12(7), 1242–1245 (2012).
    [Crossref] [PubMed]
  18. A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip,” Analyst (Lond.) 136(17), 3512–3518 (2011).
    [Crossref] [PubMed]
  19. A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18(10), 10510–10523 (2010).
    [Crossref] [PubMed]
  20. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [Crossref] [PubMed]
  21. X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
    [Crossref] [PubMed]
  22. R. Horstmeyer and C. Yang, “A phase space model of Fourier ptychographic microscopy,” Opt. Express 22(1), 338–358 (2014).
    [Crossref] [PubMed]
  23. X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
    [Crossref] [PubMed]
  24. X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
    [Crossref] [PubMed]
  25. J. Chung, X. Ou, R. P. Kulkarni, and C. Yang, “Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy,” PLoS One 10(7), e0133489 (2015).
    [Crossref] [PubMed]
  26. A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
    [Crossref] [PubMed]
  27. R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with Fourier ptychography,” Comput. Med. Imaging Graph. 42, 38–43 (2015).
    [Crossref] [PubMed]
  28. S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Biomed. Opt. Express 5(10), 3305–3310 (2014).
    [Crossref] [PubMed]
  29. L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in vitro Fourier ptychographic microscopy,” Optica 2(10), 904–911 (2015).
    [Crossref]
  30. R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
    [Crossref]
  31. S. Dong, P. Nanda, R. Shiradkar, K. Guo, and G. Zheng, “High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography,” Opt. Express 22(17), 20856–20870 (2014).
    [Crossref] [PubMed]
  32. J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7(2), 352–368 (2016).
    [Crossref] [PubMed]
  33. K. Matsushima and T. Shimobaba, “Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields,” Opt. Express 17(22), 19662–19673 (2009).
    [Crossref] [PubMed]
  34. T. M. Kreis, M. Adms, and W. P. O. Jüptner, “Methods of Digital Holography: A comparison,” SPIE Proc. 3098, 224–233 (1997).
  35. S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky, U. B. Schambra, N. J. Nowak, A. Joyner, G. Leblanc, M. E. Hatten, and N. Heintz, “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature 425(6961), 917–925 (2003).
    [Crossref] [PubMed]
  36. B. M. Henley, B. A. Williams, R. Srinivasan, B. N. Cohen, C. Xiao, E. D. Mackey, B. J. Wold, and H. A. Lester, “Transcriptional regulation by nicotine in dopaminergic neurons,” Biochem. Pharmacol. 86(8), 1074–1083 (2013).
    [Crossref] [PubMed]
  37. R. Srinivasan, B. M. Henley, B. J. Henderson, T. Indersmitten, B. N. Cohen, C. H. Kim, S. McKinney, P. Deshpande, C. Xiao, and H. A. Lester, “Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons,” J. Neurosci. 36(1), 65–79 (2016).
    [Crossref] [PubMed]
  38. J. Pruszak, L. Just, O. Isacson, and G. Nikkhah, “Isolation and Culture of Ventral Mesencephalic Precursor Cells and Dopaminergic Neurons from Rodent Brains,” in Current Protocols in Stem Cell Biology. (Unit 2D.5)(2009) Chap. 2.
  39. L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier Ptychography with an LED array microscope,” Biomed. Opt. Express 5(7), 2376–2389 (2014).
    [Crossref] [PubMed]
  40. E. Hirsch, A. M. Graybiel, and Y. A. Agid, “Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease,” Nature 334(6180), 345–348 (1988).
    [Crossref] [PubMed]
  41. D. C. German, K. Manaye, W. K. Smith, D. J. Woodward, and C. B. Saper, “Midbrain dopaminergic cell loss in Parkinson’s disease: Computer visualization,” Ann. Neurol. 26(4), 507–514 (1989).
    [Crossref] [PubMed]
  42. S. Goto, A. Hirano, and S. Matsumoto, “Subdivisional involvement of nigrostriatal loop in idiopathic Parkinson’s disease and striatonigral degeneration,” Ann. Neurol. 26(6), 766–770 (1989).
    [Crossref] [PubMed]
  43. J. O. Rinne, J. Rummukainen, L. Paljärvi, and U. K. Rinne, “Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra,” Ann. Neurol. 26(1), 47–50 (1989).
    [Crossref] [PubMed]

2016 (3)

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7(2), 352–368 (2016).
[Crossref] [PubMed]

R. Srinivasan, B. M. Henley, B. J. Henderson, T. Indersmitten, B. N. Cohen, C. H. Kim, S. McKinney, P. Deshpande, C. Xiao, and H. A. Lester, “Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons,” J. Neurosci. 36(1), 65–79 (2016).
[Crossref] [PubMed]

2015 (4)

L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in vitro Fourier ptychographic microscopy,” Optica 2(10), 904–911 (2015).
[Crossref]

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
[Crossref] [PubMed]

J. Chung, X. Ou, R. P. Kulkarni, and C. Yang, “Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy,” PLoS One 10(7), e0133489 (2015).
[Crossref] [PubMed]

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with Fourier ptychography,” Comput. Med. Imaging Graph. 42, 38–43 (2015).
[Crossref] [PubMed]

2014 (8)

S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Biomed. Opt. Express 5(10), 3305–3310 (2014).
[Crossref] [PubMed]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

S. Dong, P. Nanda, R. Shiradkar, K. Guo, and G. Zheng, “High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography,” Opt. Express 22(17), 20856–20870 (2014).
[Crossref] [PubMed]

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier Ptychography with an LED array microscope,” Biomed. Opt. Express 5(7), 2376–2389 (2014).
[Crossref] [PubMed]

G. Zheng, X. Ou, and C. Yang, “0.5 gigapixel microscopy using a flatbed scanner,” Biomed. Opt. Express 5(1), 1–8 (2014).
[Crossref] [PubMed]

J. H. Jung, C. Han, S. A. Lee, J. Kim, and C. Yang, “Microfluidic-integrated laser-controlled microactuators with on-chip microscopy imaging functionality,” Lab Chip 14(19), 3781–3789 (2014).
[Crossref] [PubMed]

R. Horstmeyer and C. Yang, “A phase space model of Fourier ptychographic microscopy,” Opt. Express 22(1), 338–358 (2014).
[Crossref] [PubMed]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[Crossref] [PubMed]

2013 (4)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[Crossref] [PubMed]

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85(4), 2356–2360 (2013).
[Crossref] [PubMed]

B. M. Henley, B. A. Williams, R. Srinivasan, B. N. Cohen, C. Xiao, E. D. Mackey, B. J. Wold, and H. A. Lester, “Transcriptional regulation by nicotine in dopaminergic neurons,” Biochem. Pharmacol. 86(8), 1074–1083 (2013).
[Crossref] [PubMed]

2012 (3)

A. Greenbaum, U. Sikora, and A. Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip 12(7), 1242–1245 (2012).
[Crossref] [PubMed]

R. Srinivasan, C. I. Richards, C. Xiao, D. Rhee, R. Pantoja, D. A. Dougherty, J. M. Miwa, and H. A. Lester, “Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response,” Mol. Pharmacol. 81(6), 759–769 (2012).
[Crossref] [PubMed]

T. Matsui, M. Takano, K. Yoshida, S. Ono, C. Fujisaki, Y. Matsuzaki, Y. Toyama, M. Nakamura, H. Okano, and W. Akamatsu, “Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency,” Stem Cells 30(6), 1109–1119 (2012).
[Crossref] [PubMed]

2011 (6)

T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A. Weitz, “Glass-like dynamics of collective cell migration,” Proc. Natl. Acad. Sci. U.S.A. 108(12), 4714–4719 (2011).
[Crossref] [PubMed]

I. Dey-Guha, A. Wolfer, A. C. Yeh, J. G Albeck, R. Darp, E. Leon, J. Wulfkuhle, E. F. Petricoin, B. S. Wittner, and S. Ramaswamy, “Asymmetric cancer cell division regulated by AKT,” Proc. Natl. Acad. Sci. U.S.A. 108(31), 12845–12850 (2011).
[Crossref] [PubMed]

M. R. Costa, F. Ortega, M. S. Brill, R. Beckervordersandforth, C. Petrone, T. Schroeder, M. Götz, and B. Berninger, “Continuous live imaging of adult neural stem cell division and lineage progression in vitro,” Development 138(6), 1057–1068 (2011).
[Crossref] [PubMed]

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A. 108(41), 16889–16894 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip,” Analyst (Lond.) 136(17), 3512–3518 (2011).
[Crossref] [PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (1)

2003 (1)

S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky, U. B. Schambra, N. J. Nowak, A. Joyner, G. Leblanc, M. E. Hatten, and N. Heintz, “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature 425(6961), 917–925 (2003).
[Crossref] [PubMed]

1996 (1)

1989 (3)

D. C. German, K. Manaye, W. K. Smith, D. J. Woodward, and C. B. Saper, “Midbrain dopaminergic cell loss in Parkinson’s disease: Computer visualization,” Ann. Neurol. 26(4), 507–514 (1989).
[Crossref] [PubMed]

S. Goto, A. Hirano, and S. Matsumoto, “Subdivisional involvement of nigrostriatal loop in idiopathic Parkinson’s disease and striatonigral degeneration,” Ann. Neurol. 26(6), 766–770 (1989).
[Crossref] [PubMed]

J. O. Rinne, J. Rummukainen, L. Paljärvi, and U. K. Rinne, “Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra,” Ann. Neurol. 26(1), 47–50 (1989).
[Crossref] [PubMed]

1988 (1)

E. Hirsch, A. M. Graybiel, and Y. A. Agid, “Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease,” Nature 334(6180), 345–348 (1988).
[Crossref] [PubMed]

Agid, Y. A.

E. Hirsch, A. M. Graybiel, and Y. A. Agid, “Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease,” Nature 334(6180), 345–348 (1988).
[Crossref] [PubMed]

Akamatsu, W.

T. Matsui, M. Takano, K. Yoshida, S. Ono, C. Fujisaki, Y. Matsuzaki, Y. Toyama, M. Nakamura, H. Okano, and W. Akamatsu, “Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency,” Stem Cells 30(6), 1109–1119 (2012).
[Crossref] [PubMed]

Angelini, T. E.

T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A. Weitz, “Glass-like dynamics of collective cell migration,” Proc. Natl. Acad. Sci. U.S.A. 108(12), 4714–4719 (2011).
[Crossref] [PubMed]

Antebi, Y.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A. 108(41), 16889–16894 (2011).
[Crossref] [PubMed]

Ao, Z.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

Beckervordersandforth, R.

M. R. Costa, F. Ortega, M. S. Brill, R. Beckervordersandforth, C. Petrone, T. Schroeder, M. Götz, and B. Berninger, “Continuous live imaging of adult neural stem cell division and lineage progression in vitro,” Development 138(6), 1057–1068 (2011).
[Crossref] [PubMed]

Berninger, B.

M. R. Costa, F. Ortega, M. S. Brill, R. Beckervordersandforth, C. Petrone, T. Schroeder, M. Götz, and B. Berninger, “Continuous live imaging of adult neural stem cell division and lineage progression in vitro,” Development 138(6), 1057–1068 (2011).
[Crossref] [PubMed]

Bishara, W.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[Crossref] [PubMed]

Bower, D. V.

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85(4), 2356–2360 (2013).
[Crossref] [PubMed]

Brill, M. S.

M. R. Costa, F. Ortega, M. S. Brill, R. Beckervordersandforth, C. Petrone, T. Schroeder, M. Götz, and B. Berninger, “Continuous live imaging of adult neural stem cell division and lineage progression in vitro,” Development 138(6), 1057–1068 (2011).
[Crossref] [PubMed]

Chen, M.

Chung, J.

J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7(2), 352–368 (2016).
[Crossref] [PubMed]

J. Chung, X. Ou, R. P. Kulkarni, and C. Yang, “Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy,” PLoS One 10(7), e0133489 (2015).
[Crossref] [PubMed]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

Cohen, B. N.

R. Srinivasan, B. M. Henley, B. J. Henderson, T. Indersmitten, B. N. Cohen, C. H. Kim, S. McKinney, P. Deshpande, C. Xiao, and H. A. Lester, “Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons,” J. Neurosci. 36(1), 65–79 (2016).
[Crossref] [PubMed]

B. M. Henley, B. A. Williams, R. Srinivasan, B. N. Cohen, C. Xiao, E. D. Mackey, B. J. Wold, and H. A. Lester, “Transcriptional regulation by nicotine in dopaminergic neurons,” Biochem. Pharmacol. 86(8), 1074–1083 (2013).
[Crossref] [PubMed]

Coskun, A. F.

Costa, M. R.

M. R. Costa, F. Ortega, M. S. Brill, R. Beckervordersandforth, C. Petrone, T. Schroeder, M. Götz, and B. Berninger, “Continuous live imaging of adult neural stem cell division and lineage progression in vitro,” Development 138(6), 1057–1068 (2011).
[Crossref] [PubMed]

Cote, R.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

Darp, R.

I. Dey-Guha, A. Wolfer, A. C. Yeh, J. G Albeck, R. Darp, E. Leon, J. Wulfkuhle, E. F. Petricoin, B. S. Wittner, and S. Ramaswamy, “Asymmetric cancer cell division regulated by AKT,” Proc. Natl. Acad. Sci. U.S.A. 108(31), 12845–12850 (2011).
[Crossref] [PubMed]

Datar, R.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

Deshpande, P.

R. Srinivasan, B. M. Henley, B. J. Henderson, T. Indersmitten, B. N. Cohen, C. H. Kim, S. McKinney, P. Deshpande, C. Xiao, and H. A. Lester, “Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons,” J. Neurosci. 36(1), 65–79 (2016).
[Crossref] [PubMed]

Dey-Guha, I.

I. Dey-Guha, A. Wolfer, A. C. Yeh, J. G Albeck, R. Darp, E. Leon, J. Wulfkuhle, E. F. Petricoin, B. S. Wittner, and S. Ramaswamy, “Asymmetric cancer cell division regulated by AKT,” Proc. Natl. Acad. Sci. U.S.A. 108(31), 12845–12850 (2011).
[Crossref] [PubMed]

Didkovsky, N.

S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky, U. B. Schambra, N. J. Nowak, A. Joyner, G. Leblanc, M. E. Hatten, and N. Heintz, “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature 425(6961), 917–925 (2003).
[Crossref] [PubMed]

Dong, S.

Dorsch, R. G.

Dougherty, D. A.

R. Srinivasan, C. I. Richards, C. Xiao, D. Rhee, R. Pantoja, D. A. Dougherty, J. M. Miwa, and H. A. Lester, “Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response,” Mol. Pharmacol. 81(6), 759–769 (2012).
[Crossref] [PubMed]

Doughty, M. L.

S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky, U. B. Schambra, N. J. Nowak, A. Joyner, G. Leblanc, M. E. Hatten, and N. Heintz, “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature 425(6961), 917–925 (2003).
[Crossref] [PubMed]

Elowitz, M. B.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A. 108(41), 16889–16894 (2011).
[Crossref] [PubMed]

Ferreira, C.

Fonteno, S.

S. Lin, S. Fonteno, J. H. Weng, and P. Talbot, “Comparison of the toxicity of smoke from conventional and harm reduction cigarettes using human embryonic stem cells,” Toxicol. Sci. 118(1), 202–212 (2010).
[Crossref] [PubMed]

Fredberg, J. J.

T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A. Weitz, “Glass-like dynamics of collective cell migration,” Proc. Natl. Acad. Sci. U.S.A. 108(12), 4714–4719 (2011).
[Crossref] [PubMed]

Fujisaki, C.

T. Matsui, M. Takano, K. Yoshida, S. Ono, C. Fujisaki, Y. Matsuzaki, Y. Toyama, M. Nakamura, H. Okano, and W. Akamatsu, “Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency,” Stem Cells 30(6), 1109–1119 (2012).
[Crossref] [PubMed]

G Albeck, J.

I. Dey-Guha, A. Wolfer, A. C. Yeh, J. G Albeck, R. Darp, E. Leon, J. Wulfkuhle, E. F. Petricoin, B. S. Wittner, and S. Ramaswamy, “Asymmetric cancer cell division regulated by AKT,” Proc. Natl. Acad. Sci. U.S.A. 108(31), 12845–12850 (2011).
[Crossref] [PubMed]

German, D. C.

D. C. German, K. Manaye, W. K. Smith, D. J. Woodward, and C. B. Saper, “Midbrain dopaminergic cell loss in Parkinson’s disease: Computer visualization,” Ann. Neurol. 26(4), 507–514 (1989).
[Crossref] [PubMed]

Gong, S.

S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky, U. B. Schambra, N. J. Nowak, A. Joyner, G. Leblanc, M. E. Hatten, and N. Heintz, “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature 425(6961), 917–925 (2003).
[Crossref] [PubMed]

Goto, S.

S. Goto, A. Hirano, and S. Matsumoto, “Subdivisional involvement of nigrostriatal loop in idiopathic Parkinson’s disease and striatonigral degeneration,” Ann. Neurol. 26(6), 766–770 (1989).
[Crossref] [PubMed]

Götz, M.

M. R. Costa, F. Ortega, M. S. Brill, R. Beckervordersandforth, C. Petrone, T. Schroeder, M. Götz, and B. Berninger, “Continuous live imaging of adult neural stem cell division and lineage progression in vitro,” Development 138(6), 1057–1068 (2011).
[Crossref] [PubMed]

Graybiel, A. M.

E. Hirsch, A. M. Graybiel, and Y. A. Agid, “Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease,” Nature 334(6180), 345–348 (1988).
[Crossref] [PubMed]

Greenbaum, A.

A. Greenbaum, U. Sikora, and A. Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip 12(7), 1242–1245 (2012).
[Crossref] [PubMed]

Guo, K.

Han, C.

J. H. Jung, C. Han, S. A. Lee, J. Kim, and C. Yang, “Microfluidic-integrated laser-controlled microactuators with on-chip microscopy imaging functionality,” Lab Chip 14(19), 3781–3789 (2014).
[Crossref] [PubMed]

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85(4), 2356–2360 (2013).
[Crossref] [PubMed]

Hannezo, E.

T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A. Weitz, “Glass-like dynamics of collective cell migration,” Proc. Natl. Acad. Sci. U.S.A. 108(12), 4714–4719 (2011).
[Crossref] [PubMed]

Hatten, M. E.

S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky, U. B. Schambra, N. J. Nowak, A. Joyner, G. Leblanc, M. E. Hatten, and N. Heintz, “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature 425(6961), 917–925 (2003).
[Crossref] [PubMed]

Heintz, N.

S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky, U. B. Schambra, N. J. Nowak, A. Joyner, G. Leblanc, M. E. Hatten, and N. Heintz, “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature 425(6961), 917–925 (2003).
[Crossref] [PubMed]

Heintzmann, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Henderson, B. J.

R. Srinivasan, B. M. Henley, B. J. Henderson, T. Indersmitten, B. N. Cohen, C. H. Kim, S. McKinney, P. Deshpande, C. Xiao, and H. A. Lester, “Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons,” J. Neurosci. 36(1), 65–79 (2016).
[Crossref] [PubMed]

Henley, B. M.

R. Srinivasan, B. M. Henley, B. J. Henderson, T. Indersmitten, B. N. Cohen, C. H. Kim, S. McKinney, P. Deshpande, C. Xiao, and H. A. Lester, “Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons,” J. Neurosci. 36(1), 65–79 (2016).
[Crossref] [PubMed]

B. M. Henley, B. A. Williams, R. Srinivasan, B. N. Cohen, C. Xiao, E. D. Mackey, B. J. Wold, and H. A. Lester, “Transcriptional regulation by nicotine in dopaminergic neurons,” Biochem. Pharmacol. 86(8), 1074–1083 (2013).
[Crossref] [PubMed]

Hirano, A.

S. Goto, A. Hirano, and S. Matsumoto, “Subdivisional involvement of nigrostriatal loop in idiopathic Parkinson’s disease and striatonigral degeneration,” Ann. Neurol. 26(6), 766–770 (1989).
[Crossref] [PubMed]

Hirsch, E.

E. Hirsch, A. M. Graybiel, and Y. A. Agid, “Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease,” Nature 334(6180), 345–348 (1988).
[Crossref] [PubMed]

Horstmeyer, R.

Indersmitten, T.

R. Srinivasan, B. M. Henley, B. J. Henderson, T. Indersmitten, B. N. Cohen, C. H. Kim, S. McKinney, P. Deshpande, C. Xiao, and H. A. Lester, “Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons,” J. Neurosci. 36(1), 65–79 (2016).
[Crossref] [PubMed]

Joyner, A.

S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky, U. B. Schambra, N. J. Nowak, A. Joyner, G. Leblanc, M. E. Hatten, and N. Heintz, “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature 425(6961), 917–925 (2003).
[Crossref] [PubMed]

Jung, J. H.

J. H. Jung, C. Han, S. A. Lee, J. Kim, and C. Yang, “Microfluidic-integrated laser-controlled microactuators with on-chip microscopy imaging functionality,” Lab Chip 14(19), 3781–3789 (2014).
[Crossref] [PubMed]

Kim, C. H.

R. Srinivasan, B. M. Henley, B. J. Henderson, T. Indersmitten, B. N. Cohen, C. H. Kim, S. McKinney, P. Deshpande, C. Xiao, and H. A. Lester, “Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons,” J. Neurosci. 36(1), 65–79 (2016).
[Crossref] [PubMed]

Kim, J.

J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7(2), 352–368 (2016).
[Crossref] [PubMed]

J. H. Jung, C. Han, S. A. Lee, J. Kim, and C. Yang, “Microfluidic-integrated laser-controlled microactuators with on-chip microscopy imaging functionality,” Lab Chip 14(19), 3781–3789 (2014).
[Crossref] [PubMed]

Kulkarni, R. P.

J. Chung, X. Ou, R. P. Kulkarni, and C. Yang, “Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy,” PLoS One 10(7), e0133489 (2015).
[Crossref] [PubMed]

Leblanc, G.

S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky, U. B. Schambra, N. J. Nowak, A. Joyner, G. Leblanc, M. E. Hatten, and N. Heintz, “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature 425(6961), 917–925 (2003).
[Crossref] [PubMed]

Lee, S. A.

J. H. Jung, C. Han, S. A. Lee, J. Kim, and C. Yang, “Microfluidic-integrated laser-controlled microactuators with on-chip microscopy imaging functionality,” Lab Chip 14(19), 3781–3789 (2014).
[Crossref] [PubMed]

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A. 108(41), 16889–16894 (2011).
[Crossref] [PubMed]

Leon, E.

I. Dey-Guha, A. Wolfer, A. C. Yeh, J. G Albeck, R. Darp, E. Leon, J. Wulfkuhle, E. F. Petricoin, B. S. Wittner, and S. Ramaswamy, “Asymmetric cancer cell division regulated by AKT,” Proc. Natl. Acad. Sci. U.S.A. 108(31), 12845–12850 (2011).
[Crossref] [PubMed]

Lester, H. A.

R. Srinivasan, B. M. Henley, B. J. Henderson, T. Indersmitten, B. N. Cohen, C. H. Kim, S. McKinney, P. Deshpande, C. Xiao, and H. A. Lester, “Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons,” J. Neurosci. 36(1), 65–79 (2016).
[Crossref] [PubMed]

B. M. Henley, B. A. Williams, R. Srinivasan, B. N. Cohen, C. Xiao, E. D. Mackey, B. J. Wold, and H. A. Lester, “Transcriptional regulation by nicotine in dopaminergic neurons,” Biochem. Pharmacol. 86(8), 1074–1083 (2013).
[Crossref] [PubMed]

R. Srinivasan, C. I. Richards, C. Xiao, D. Rhee, R. Pantoja, D. A. Dougherty, J. M. Miwa, and H. A. Lester, “Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response,” Mol. Pharmacol. 81(6), 759–769 (2012).
[Crossref] [PubMed]

Li, X.

Lin, S.

S. Lin, S. Fonteno, J. H. Weng, and P. Talbot, “Comparison of the toxicity of smoke from conventional and harm reduction cigarettes using human embryonic stem cells,” Toxicol. Sci. 118(1), 202–212 (2010).
[Crossref] [PubMed]

Liu, Z.

Lohmann, A. W.

Losos, K.

S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky, U. B. Schambra, N. J. Nowak, A. Joyner, G. Leblanc, M. E. Hatten, and N. Heintz, “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature 425(6961), 917–925 (2003).
[Crossref] [PubMed]

Luckhart, S.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

Mackey, E. D.

B. M. Henley, B. A. Williams, R. Srinivasan, B. N. Cohen, C. Xiao, E. D. Mackey, B. J. Wold, and H. A. Lester, “Transcriptional regulation by nicotine in dopaminergic neurons,” Biochem. Pharmacol. 86(8), 1074–1083 (2013).
[Crossref] [PubMed]

Manaye, K.

D. C. German, K. Manaye, W. K. Smith, D. J. Woodward, and C. B. Saper, “Midbrain dopaminergic cell loss in Parkinson’s disease: Computer visualization,” Ann. Neurol. 26(4), 507–514 (1989).
[Crossref] [PubMed]

Marquez, M.

T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A. Weitz, “Glass-like dynamics of collective cell migration,” Proc. Natl. Acad. Sci. U.S.A. 108(12), 4714–4719 (2011).
[Crossref] [PubMed]

Matsui, T.

T. Matsui, M. Takano, K. Yoshida, S. Ono, C. Fujisaki, Y. Matsuzaki, Y. Toyama, M. Nakamura, H. Okano, and W. Akamatsu, “Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency,” Stem Cells 30(6), 1109–1119 (2012).
[Crossref] [PubMed]

Matsumoto, S.

S. Goto, A. Hirano, and S. Matsumoto, “Subdivisional involvement of nigrostriatal loop in idiopathic Parkinson’s disease and striatonigral degeneration,” Ann. Neurol. 26(6), 766–770 (1989).
[Crossref] [PubMed]

Matsushima, K.

Matsuzaki, Y.

T. Matsui, M. Takano, K. Yoshida, S. Ono, C. Fujisaki, Y. Matsuzaki, Y. Toyama, M. Nakamura, H. Okano, and W. Akamatsu, “Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency,” Stem Cells 30(6), 1109–1119 (2012).
[Crossref] [PubMed]

McKinney, S.

R. Srinivasan, B. M. Henley, B. J. Henderson, T. Indersmitten, B. N. Cohen, C. H. Kim, S. McKinney, P. Deshpande, C. Xiao, and H. A. Lester, “Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons,” J. Neurosci. 36(1), 65–79 (2016).
[Crossref] [PubMed]

Mendlovic, D.

Miwa, J. M.

R. Srinivasan, C. I. Richards, C. Xiao, D. Rhee, R. Pantoja, D. A. Dougherty, J. M. Miwa, and H. A. Lester, “Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response,” Mol. Pharmacol. 81(6), 759–769 (2012).
[Crossref] [PubMed]

Mudanyali, O.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

Nakamura, M.

T. Matsui, M. Takano, K. Yoshida, S. Ono, C. Fujisaki, Y. Matsuzaki, Y. Toyama, M. Nakamura, H. Okano, and W. Akamatsu, “Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency,” Stem Cells 30(6), 1109–1119 (2012).
[Crossref] [PubMed]

Nanda, P.

Nowak, N. J.

S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky, U. B. Schambra, N. J. Nowak, A. Joyner, G. Leblanc, M. E. Hatten, and N. Heintz, “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature 425(6961), 917–925 (2003).
[Crossref] [PubMed]

Okano, H.

T. Matsui, M. Takano, K. Yoshida, S. Ono, C. Fujisaki, Y. Matsuzaki, Y. Toyama, M. Nakamura, H. Okano, and W. Akamatsu, “Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency,” Stem Cells 30(6), 1109–1119 (2012).
[Crossref] [PubMed]

Ono, S.

T. Matsui, M. Takano, K. Yoshida, S. Ono, C. Fujisaki, Y. Matsuzaki, Y. Toyama, M. Nakamura, H. Okano, and W. Akamatsu, “Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency,” Stem Cells 30(6), 1109–1119 (2012).
[Crossref] [PubMed]

Ortega, F.

M. R. Costa, F. Ortega, M. S. Brill, R. Beckervordersandforth, C. Petrone, T. Schroeder, M. Götz, and B. Berninger, “Continuous live imaging of adult neural stem cell division and lineage progression in vitro,” Development 138(6), 1057–1068 (2011).
[Crossref] [PubMed]

Ou, X.

J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7(2), 352–368 (2016).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
[Crossref] [PubMed]

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with Fourier ptychography,” Comput. Med. Imaging Graph. 42, 38–43 (2015).
[Crossref] [PubMed]

J. Chung, X. Ou, R. P. Kulkarni, and C. Yang, “Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy,” PLoS One 10(7), e0133489 (2015).
[Crossref] [PubMed]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[Crossref] [PubMed]

G. Zheng, X. Ou, and C. Yang, “0.5 gigapixel microscopy using a flatbed scanner,” Biomed. Opt. Express 5(1), 1–8 (2014).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[Crossref] [PubMed]

Ozcan, A.

A. Greenbaum, U. Sikora, and A. Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip 12(7), 1242–1245 (2012).
[Crossref] [PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip,” Analyst (Lond.) 136(17), 3512–3518 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18(10), 10510–10523 (2010).
[Crossref] [PubMed]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[Crossref] [PubMed]

Paljärvi, L.

J. O. Rinne, J. Rummukainen, L. Paljärvi, and U. K. Rinne, “Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra,” Ann. Neurol. 26(1), 47–50 (1989).
[Crossref] [PubMed]

Pang, S.

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85(4), 2356–2360 (2013).
[Crossref] [PubMed]

Pantoja, R.

R. Srinivasan, C. I. Richards, C. Xiao, D. Rhee, R. Pantoja, D. A. Dougherty, J. M. Miwa, and H. A. Lester, “Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response,” Mol. Pharmacol. 81(6), 759–769 (2012).
[Crossref] [PubMed]

Petricoin, E. F.

I. Dey-Guha, A. Wolfer, A. C. Yeh, J. G Albeck, R. Darp, E. Leon, J. Wulfkuhle, E. F. Petricoin, B. S. Wittner, and S. Ramaswamy, “Asymmetric cancer cell division regulated by AKT,” Proc. Natl. Acad. Sci. U.S.A. 108(31), 12845–12850 (2011).
[Crossref] [PubMed]

Petrone, C.

M. R. Costa, F. Ortega, M. S. Brill, R. Beckervordersandforth, C. Petrone, T. Schroeder, M. Götz, and B. Berninger, “Continuous live imaging of adult neural stem cell division and lineage progression in vitro,” Development 138(6), 1057–1068 (2011).
[Crossref] [PubMed]

Popescu, G.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Ramaswamy, S.

I. Dey-Guha, A. Wolfer, A. C. Yeh, J. G Albeck, R. Darp, E. Leon, J. Wulfkuhle, E. F. Petricoin, B. S. Wittner, and S. Ramaswamy, “Asymmetric cancer cell division regulated by AKT,” Proc. Natl. Acad. Sci. U.S.A. 108(31), 12845–12850 (2011).
[Crossref] [PubMed]

Ramchandran, K.

Rawal, S.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

Rhee, D.

R. Srinivasan, C. I. Richards, C. Xiao, D. Rhee, R. Pantoja, D. A. Dougherty, J. M. Miwa, and H. A. Lester, “Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response,” Mol. Pharmacol. 81(6), 759–769 (2012).
[Crossref] [PubMed]

Richards, C. I.

R. Srinivasan, C. I. Richards, C. Xiao, D. Rhee, R. Pantoja, D. A. Dougherty, J. M. Miwa, and H. A. Lester, “Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response,” Mol. Pharmacol. 81(6), 759–769 (2012).
[Crossref] [PubMed]

Rinne, J. O.

J. O. Rinne, J. Rummukainen, L. Paljärvi, and U. K. Rinne, “Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra,” Ann. Neurol. 26(1), 47–50 (1989).
[Crossref] [PubMed]

Rinne, U. K.

J. O. Rinne, J. Rummukainen, L. Paljärvi, and U. K. Rinne, “Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra,” Ann. Neurol. 26(1), 47–50 (1989).
[Crossref] [PubMed]

Rummukainen, J.

J. O. Rinne, J. Rummukainen, L. Paljärvi, and U. K. Rinne, “Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra,” Ann. Neurol. 26(1), 47–50 (1989).
[Crossref] [PubMed]

Saper, C. B.

D. C. German, K. Manaye, W. K. Smith, D. J. Woodward, and C. B. Saper, “Midbrain dopaminergic cell loss in Parkinson’s disease: Computer visualization,” Ann. Neurol. 26(4), 507–514 (1989).
[Crossref] [PubMed]

Schambra, U. B.

S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky, U. B. Schambra, N. J. Nowak, A. Joyner, G. Leblanc, M. E. Hatten, and N. Heintz, “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature 425(6961), 917–925 (2003).
[Crossref] [PubMed]

Schroeder, T.

M. R. Costa, F. Ortega, M. S. Brill, R. Beckervordersandforth, C. Petrone, T. Schroeder, M. Götz, and B. Berninger, “Continuous live imaging of adult neural stem cell division and lineage progression in vitro,” Development 138(6), 1057–1068 (2011).
[Crossref] [PubMed]

Sencan, I.

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip,” Analyst (Lond.) 136(17), 3512–3518 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18(10), 10510–10523 (2010).
[Crossref] [PubMed]

Shimobaba, T.

Shiradkar, R.

Sikora, U.

A. Greenbaum, U. Sikora, and A. Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip 12(7), 1242–1245 (2012).
[Crossref] [PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

Smith, W. K.

D. C. German, K. Manaye, W. K. Smith, D. J. Woodward, and C. B. Saper, “Midbrain dopaminergic cell loss in Parkinson’s disease: Computer visualization,” Ann. Neurol. 26(4), 507–514 (1989).
[Crossref] [PubMed]

Srinivasan, R.

R. Srinivasan, B. M. Henley, B. J. Henderson, T. Indersmitten, B. N. Cohen, C. H. Kim, S. McKinney, P. Deshpande, C. Xiao, and H. A. Lester, “Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons,” J. Neurosci. 36(1), 65–79 (2016).
[Crossref] [PubMed]

B. M. Henley, B. A. Williams, R. Srinivasan, B. N. Cohen, C. Xiao, E. D. Mackey, B. J. Wold, and H. A. Lester, “Transcriptional regulation by nicotine in dopaminergic neurons,” Biochem. Pharmacol. 86(8), 1074–1083 (2013).
[Crossref] [PubMed]

R. Srinivasan, C. I. Richards, C. Xiao, D. Rhee, R. Pantoja, D. A. Dougherty, J. M. Miwa, and H. A. Lester, “Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response,” Mol. Pharmacol. 81(6), 759–769 (2012).
[Crossref] [PubMed]

Su, T. W.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip,” Analyst (Lond.) 136(17), 3512–3518 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18(10), 10510–10523 (2010).
[Crossref] [PubMed]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[Crossref] [PubMed]

Takano, M.

T. Matsui, M. Takano, K. Yoshida, S. Ono, C. Fujisaki, Y. Matsuzaki, Y. Toyama, M. Nakamura, H. Okano, and W. Akamatsu, “Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency,” Stem Cells 30(6), 1109–1119 (2012).
[Crossref] [PubMed]

Talbot, P.

S. Lin, S. Fonteno, J. H. Weng, and P. Talbot, “Comparison of the toxicity of smoke from conventional and harm reduction cigarettes using human embryonic stem cells,” Toxicol. Sci. 118(1), 202–212 (2010).
[Crossref] [PubMed]

Tian, L.

Toyama, Y.

T. Matsui, M. Takano, K. Yoshida, S. Ono, C. Fujisaki, Y. Matsuzaki, Y. Toyama, M. Nakamura, H. Okano, and W. Akamatsu, “Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency,” Stem Cells 30(6), 1109–1119 (2012).
[Crossref] [PubMed]

Trepat, X.

T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A. Weitz, “Glass-like dynamics of collective cell migration,” Proc. Natl. Acad. Sci. U.S.A. 108(12), 4714–4719 (2011).
[Crossref] [PubMed]

Waller, L.

Weitz, D. A.

T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A. Weitz, “Glass-like dynamics of collective cell migration,” Proc. Natl. Acad. Sci. U.S.A. 108(12), 4714–4719 (2011).
[Crossref] [PubMed]

Weng, J. H.

S. Lin, S. Fonteno, J. H. Weng, and P. Talbot, “Comparison of the toxicity of smoke from conventional and harm reduction cigarettes using human embryonic stem cells,” Toxicol. Sci. 118(1), 202–212 (2010).
[Crossref] [PubMed]

Willems, P.

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with Fourier ptychography,” Comput. Med. Imaging Graph. 42, 38–43 (2015).
[Crossref] [PubMed]

Williams, A.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

Williams, B. A.

B. M. Henley, B. A. Williams, R. Srinivasan, B. N. Cohen, C. Xiao, E. D. Mackey, B. J. Wold, and H. A. Lester, “Transcriptional regulation by nicotine in dopaminergic neurons,” Biochem. Pharmacol. 86(8), 1074–1083 (2013).
[Crossref] [PubMed]

Wittner, B. S.

I. Dey-Guha, A. Wolfer, A. C. Yeh, J. G Albeck, R. Darp, E. Leon, J. Wulfkuhle, E. F. Petricoin, B. S. Wittner, and S. Ramaswamy, “Asymmetric cancer cell division regulated by AKT,” Proc. Natl. Acad. Sci. U.S.A. 108(31), 12845–12850 (2011).
[Crossref] [PubMed]

Wold, B. J.

B. M. Henley, B. A. Williams, R. Srinivasan, B. N. Cohen, C. Xiao, E. D. Mackey, B. J. Wold, and H. A. Lester, “Transcriptional regulation by nicotine in dopaminergic neurons,” Biochem. Pharmacol. 86(8), 1074–1083 (2013).
[Crossref] [PubMed]

Wolfer, A.

I. Dey-Guha, A. Wolfer, A. C. Yeh, J. G Albeck, R. Darp, E. Leon, J. Wulfkuhle, E. F. Petricoin, B. S. Wittner, and S. Ramaswamy, “Asymmetric cancer cell division regulated by AKT,” Proc. Natl. Acad. Sci. U.S.A. 108(31), 12845–12850 (2011).
[Crossref] [PubMed]

Woodward, D. J.

D. C. German, K. Manaye, W. K. Smith, D. J. Woodward, and C. B. Saper, “Midbrain dopaminergic cell loss in Parkinson’s disease: Computer visualization,” Ann. Neurol. 26(4), 507–514 (1989).
[Crossref] [PubMed]

Wulfkuhle, J.

I. Dey-Guha, A. Wolfer, A. C. Yeh, J. G Albeck, R. Darp, E. Leon, J. Wulfkuhle, E. F. Petricoin, B. S. Wittner, and S. Ramaswamy, “Asymmetric cancer cell division regulated by AKT,” Proc. Natl. Acad. Sci. U.S.A. 108(31), 12845–12850 (2011).
[Crossref] [PubMed]

Xiao, C.

R. Srinivasan, B. M. Henley, B. J. Henderson, T. Indersmitten, B. N. Cohen, C. H. Kim, S. McKinney, P. Deshpande, C. Xiao, and H. A. Lester, “Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons,” J. Neurosci. 36(1), 65–79 (2016).
[Crossref] [PubMed]

B. M. Henley, B. A. Williams, R. Srinivasan, B. N. Cohen, C. Xiao, E. D. Mackey, B. J. Wold, and H. A. Lester, “Transcriptional regulation by nicotine in dopaminergic neurons,” Biochem. Pharmacol. 86(8), 1074–1083 (2013).
[Crossref] [PubMed]

R. Srinivasan, C. I. Richards, C. Xiao, D. Rhee, R. Pantoja, D. A. Dougherty, J. M. Miwa, and H. A. Lester, “Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response,” Mol. Pharmacol. 81(6), 759–769 (2012).
[Crossref] [PubMed]

Yaglidere, O.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

Yang, C.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7(2), 352–368 (2016).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
[Crossref] [PubMed]

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with Fourier ptychography,” Comput. Med. Imaging Graph. 42, 38–43 (2015).
[Crossref] [PubMed]

J. Chung, X. Ou, R. P. Kulkarni, and C. Yang, “Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy,” PLoS One 10(7), e0133489 (2015).
[Crossref] [PubMed]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

J. H. Jung, C. Han, S. A. Lee, J. Kim, and C. Yang, “Microfluidic-integrated laser-controlled microactuators with on-chip microscopy imaging functionality,” Lab Chip 14(19), 3781–3789 (2014).
[Crossref] [PubMed]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[Crossref] [PubMed]

G. Zheng, X. Ou, and C. Yang, “0.5 gigapixel microscopy using a flatbed scanner,” Biomed. Opt. Express 5(1), 1–8 (2014).
[Crossref] [PubMed]

R. Horstmeyer and C. Yang, “A phase space model of Fourier ptychographic microscopy,” Opt. Express 22(1), 338–358 (2014).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[Crossref] [PubMed]

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85(4), 2356–2360 (2013).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A. 108(41), 16889–16894 (2011).
[Crossref] [PubMed]

Yeh, A. C.

I. Dey-Guha, A. Wolfer, A. C. Yeh, J. G Albeck, R. Darp, E. Leon, J. Wulfkuhle, E. F. Petricoin, B. S. Wittner, and S. Ramaswamy, “Asymmetric cancer cell division regulated by AKT,” Proc. Natl. Acad. Sci. U.S.A. 108(31), 12845–12850 (2011).
[Crossref] [PubMed]

Yeh, L.-H.

Yiu, P.

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85(4), 2356–2360 (2013).
[Crossref] [PubMed]

Yoshida, K.

T. Matsui, M. Takano, K. Yoshida, S. Ono, C. Fujisaki, Y. Matsuzaki, Y. Toyama, M. Nakamura, H. Okano, and W. Akamatsu, “Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency,” Stem Cells 30(6), 1109–1119 (2012).
[Crossref] [PubMed]

Zalevsky, Z.

Zheng, C.

S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky, U. B. Schambra, N. J. Nowak, A. Joyner, G. Leblanc, M. E. Hatten, and N. Heintz, “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature 425(6961), 917–925 (2003).
[Crossref] [PubMed]

Zheng, G.

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with Fourier ptychography,” Comput. Med. Imaging Graph. 42, 38–43 (2015).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
[Crossref] [PubMed]

S. Dong, P. Nanda, R. Shiradkar, K. Guo, and G. Zheng, “High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography,” Opt. Express 22(17), 20856–20870 (2014).
[Crossref] [PubMed]

S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Biomed. Opt. Express 5(10), 3305–3310 (2014).
[Crossref] [PubMed]

G. Zheng, X. Ou, and C. Yang, “0.5 gigapixel microscopy using a flatbed scanner,” Biomed. Opt. Express 5(1), 1–8 (2014).
[Crossref] [PubMed]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[Crossref] [PubMed]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[Crossref] [PubMed]

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A. 108(41), 16889–16894 (2011).
[Crossref] [PubMed]

Zhong, J.

Anal. Chem. (1)

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85(4), 2356–2360 (2013).
[Crossref] [PubMed]

Analyst (Lond.) (1)

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip,” Analyst (Lond.) 136(17), 3512–3518 (2011).
[Crossref] [PubMed]

Ann. Neurol. (3)

D. C. German, K. Manaye, W. K. Smith, D. J. Woodward, and C. B. Saper, “Midbrain dopaminergic cell loss in Parkinson’s disease: Computer visualization,” Ann. Neurol. 26(4), 507–514 (1989).
[Crossref] [PubMed]

S. Goto, A. Hirano, and S. Matsumoto, “Subdivisional involvement of nigrostriatal loop in idiopathic Parkinson’s disease and striatonigral degeneration,” Ann. Neurol. 26(6), 766–770 (1989).
[Crossref] [PubMed]

J. O. Rinne, J. Rummukainen, L. Paljärvi, and U. K. Rinne, “Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra,” Ann. Neurol. 26(1), 47–50 (1989).
[Crossref] [PubMed]

Biochem. Pharmacol. (1)

B. M. Henley, B. A. Williams, R. Srinivasan, B. N. Cohen, C. Xiao, E. D. Mackey, B. J. Wold, and H. A. Lester, “Transcriptional regulation by nicotine in dopaminergic neurons,” Biochem. Pharmacol. 86(8), 1074–1083 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Comput. Med. Imaging Graph. (1)

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with Fourier ptychography,” Comput. Med. Imaging Graph. 42, 38–43 (2015).
[Crossref] [PubMed]

Development (1)

M. R. Costa, F. Ortega, M. S. Brill, R. Beckervordersandforth, C. Petrone, T. Schroeder, M. Götz, and B. Berninger, “Continuous live imaging of adult neural stem cell division and lineage progression in vitro,” Development 138(6), 1057–1068 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19(6), 066007 (2014).
[Crossref] [PubMed]

J. Neurosci. (1)

R. Srinivasan, B. M. Henley, B. J. Henderson, T. Indersmitten, B. N. Cohen, C. H. Kim, S. McKinney, P. Deshpande, C. Xiao, and H. A. Lester, “Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons,” J. Neurosci. 36(1), 65–79 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Lab Chip (3)

J. H. Jung, C. Han, S. A. Lee, J. Kim, and C. Yang, “Microfluidic-integrated laser-controlled microactuators with on-chip microscopy imaging functionality,” Lab Chip 14(19), 3781–3789 (2014).
[Crossref] [PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

A. Greenbaum, U. Sikora, and A. Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip 12(7), 1242–1245 (2012).
[Crossref] [PubMed]

Mol. Pharmacol. (1)

R. Srinivasan, C. I. Richards, C. Xiao, D. Rhee, R. Pantoja, D. A. Dougherty, J. M. Miwa, and H. A. Lester, “Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response,” Mol. Pharmacol. 81(6), 759–769 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Nature (2)

E. Hirsch, A. M. Graybiel, and Y. A. Agid, “Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease,” Nature 334(6180), 345–348 (1988).
[Crossref] [PubMed]

S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky, U. B. Schambra, N. J. Nowak, A. Joyner, G. Leblanc, M. E. Hatten, and N. Heintz, “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature 425(6961), 917–925 (2003).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (1)

Optica (1)

PLoS One (1)

J. Chung, X. Ou, R. P. Kulkarni, and C. Yang, “Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy,” PLoS One 10(7), e0133489 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A. 108(41), 16889–16894 (2011).
[Crossref] [PubMed]

T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A. Weitz, “Glass-like dynamics of collective cell migration,” Proc. Natl. Acad. Sci. U.S.A. 108(12), 4714–4719 (2011).
[Crossref] [PubMed]

I. Dey-Guha, A. Wolfer, A. C. Yeh, J. G Albeck, R. Darp, E. Leon, J. Wulfkuhle, E. F. Petricoin, B. S. Wittner, and S. Ramaswamy, “Asymmetric cancer cell division regulated by AKT,” Proc. Natl. Acad. Sci. U.S.A. 108(31), 12845–12850 (2011).
[Crossref] [PubMed]

Stem Cells (1)

T. Matsui, M. Takano, K. Yoshida, S. Ono, C. Fujisaki, Y. Matsuzaki, Y. Toyama, M. Nakamura, H. Okano, and W. Akamatsu, “Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency,” Stem Cells 30(6), 1109–1119 (2012).
[Crossref] [PubMed]

Toxicol. Sci. (1)

S. Lin, S. Fonteno, J. H. Weng, and P. Talbot, “Comparison of the toxicity of smoke from conventional and harm reduction cigarettes using human embryonic stem cells,” Toxicol. Sci. 118(1), 202–212 (2010).
[Crossref] [PubMed]

Other (5)

http://www.zeiss.com/microscopy/en_us/products/microscope-components/incubation.html .

http://www.nikoninstruments.com/Products/Live-Cell-Screening-Systems/BioStation-CT .

http://www.essenbioscience.com/essen-products/incucyte/ .

T. M. Kreis, M. Adms, and W. P. O. Jüptner, “Methods of Digital Holography: A comparison,” SPIE Proc. 3098, 224–233 (1997).

J. Pruszak, L. Just, O. Isacson, and G. Nikkhah, “Isolation and Culture of Ventral Mesencephalic Precursor Cells and Dopaminergic Neurons from Rodent Brains,” in Current Protocols in Stem Cell Biology. (Unit 2D.5)(2009) Chap. 2.

Supplementary Material (2)

NameDescription
» Visualization 1: AVI (15637 KB)      Time-lapse imaging of the mouse ventral midbrain culture
» Visualization 2: AVI (2465 KB)      Time-lapse imaging of the dividing cells

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

System configuration and imaging method of the EmSight. (A) Conceptual design of the EmSight system, attached to two adjacent shelves in an incubator. An LED matrix is attached to the bottom surface of the upper shelf for the FPM illumination, and EmSight modules are attached on the next shelf for the cell culture imaging. (B) The EmSight is designed for the 6-well plate format. Six units of the same 1:1 imaging system shown in (D) are built into an EmSight and a 6-well ANSI standard plate is loaded on top of the EmSight. Six high power LEDs and excitation filters are installed into the side of the plate holders, providing fluorescence illumination. (C) The EmSight prototype. The size of the EmSight is 125 mm (W) × 133 mm (L) × 170 mm(H) including a 6-well plate and a high power LED module. (D) EmSight uses the identical objective lenses for the objective and the tube lens, configuring a 1:1 imaging system. The LED matrix turns on one by one sequentially for the FPM illumination; and high power LEDs provide the fluorescence excitation.

Fig. 2
Fig. 2

Resolution of the EmSight. (A and B) Siemens star intensity target. (A1) Conventional microscope image using a 4X/NA 0.1 objective lens. (B1) Raw image from EmSight. (A2 and B2) Profile of the smallest resolved lines through a red line indicated in (A1) and (B1), respectively. (C) Siemens star phase target. (C1) Raw image from EmSight. (C2) FPM reconstructed phase image from EmSight. (C3) Profile of the resolved lines through red and blue lines indicated in (C2). (D) Mixture of 4.5 µm green fluorescence beads and non-fluorescent beads. (D1) Overlay image of the raw bright field image and the fluorescence image (Green color). (D2) FPM reconstructed intensity image from EmSight. (D3) FPM reconstructed phase image. (D4) Thickness profile of a bead, based on the reconstructed phase through a line indicated in (D3).

Fig. 3
Fig. 3

Digital refocusing of the EmSight. (A) Z = + 100 µm, and (B) Z = −100 µm defocused Siemens star phase target. (A1 and B1) Raw image. (A2 and B2) Digitally refocused FPM phase image. (A3 and B3) Line profile of the smallest resolved lines along a red line indicated in (A2) and (B2), respectively. (C1) A defocused mouse midbrain culture. (C2) Digitally refocused FPM phase image.

Fig. 4
Fig. 4

Large FOV imaging of the EmSight. The sample is mouse ventral midbrain cultures. (A) Full FOV FPM reconstructed phase image. The size of FOV is 5.7 mm × 4.3 mm. (B) Images of a dopaminergic neuron (DA neuron) from conventional microscope (20X/NA0.4). (B1) Fluorescence image, and (B2) phase contrast image. (C-E) Enlarged images at a distance of 1.8 mm, 2.2 mm, and 3.4 mm away from the center of the FOV, respectively. (C1-E1) Raw images overlaid with fluorescence images (Green color). In this GENSAT strain, dopaminergic neurons produce the eGFP signal. (C2-E2) The reconstructed phase images. Neurites of the neuron which are not distinguished in the raw images are clearly visible in the reconstructed phase images (red arrows).

Fig. 5
Fig. 5

Time-lapse imaging of the mouse ventral midbrain culture. (A) FPM phase images overlaid with fluorescence image (Green color) of a tracked dopaminergic neuron (see Visualization 1). (B) Positional trace of the dopaminergic neuron marked in (A).

Fig. 6
Fig. 6

6-well plate imaging of the mouse ventral midbrain culture. (A-F) Full FOV images and FPM phase images overlaid with fluorescence image (Green color) from Well 1 to Well 6, respectively (Culture day 7).

Fig. 7
Fig. 7

Time-lapse imaging of the dividing cells. Two mother cells marked in red and blue arrows divided into daughter cells (see Visualization 2).

Fig. 8
Fig. 8

LED position calibration. (A) Vignette image from the center LED. (B) BW image of well aligned vignette image. Center of BW image (blue dot) is located at the center of imaging sensor (red dot) (C) Black and white image of misaligned vignette image. Center of vignette image (blue dot) is shifted from the center of imaging sensor (red dot) (D) Lookup table for the LED displacement to the camera.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T= λ 2π Δϕ Δn ,
zΔ u 1 λ 2 u 2 v 2 2u ,zΔ v 1 λ 2 u 2 v 2 2v ,

Metrics