Abstract

This work reports on the development of an optical fiber based probe for in vivo measurements of brain temperature. By utilizing a thin layer of rare-earth doped tellurite glass on the tip of a conventional silica optical fiber a robust probe, suitable for long-term in vivo measurements of temperature can be fabricated. This probe can be interrogated using a portable optical measurement setup, allowing for measurements to be performed outside of standard optical laboratories.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
    [Crossref] [PubMed]
  2. S. J. Schiff and G. G. Somjen, “The effects of temperature on synaptic transmission in hippocampal tissue slices,” Brain Res. 345(2), 279–284 (1985).
    [Crossref] [PubMed]
  3. E. A. Kiyatkin, “Brain temperature homeostasis: physiological fluctuations and pathological shifts,” Frontiers Biosci. 15, 73 (2010).
  4. P. L. Brown and E. A. Kiyatkin, “Brain hyperthermia induced by MDMA (ecstasy): modulation by environmental conditions,” Eur. J. Neurosci. 20(1), 51–58 (2004).
    [Crossref] [PubMed]
  5. J. Weis, L. Covaciu, S. Rubertsson, M. Allers, A. Lunderquist, and H. Ahlström, “Noninvasive monitoring of brain temperature during mild hypothermia,” Magn. Reson. Imaging 27(7), 923–932 (2009).
    [Crossref] [PubMed]
  6. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  7. V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
    [Crossref]
  8. Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
    [Crossref]
  9. J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
    [Crossref]
  10. E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
    [Crossref]
  11. G. Guan, S. Arnold, and V. Otugen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA J. 44(10), 2385–2389 (2006).
    [Crossref]
  12. S. Wade, J. Muscat, S. Collins, and G. Baxter, “Nd-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279 (1999).
    [Crossref]
  13. B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature Sensing and in Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
    [Crossref] [PubMed]
  14. H. Berthou and C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett. 15(19), 1100–1102 (1990).
    [Crossref] [PubMed]
  15. V. K. Rai, D. Rai, and S. Rai, “Pr 3+ doped lithium tellurite glass as a temperature sensor,” Sens. Actuators A Phys. 128(1), 14–17 (2006).
    [Crossref]
  16. X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
    [Crossref] [PubMed]
  17. T.-Y. Sun, D.-Q. Zhang, X.-F. Yu, Y. Xiang, M. Luo, J.-H. Wang, G.-L. Tan, Q.-Q. Wang, and P. K. Chu, “Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications,” Nanoscale 5(4), 1629–1637 (2013).
    [Crossref] [PubMed]
  18. J. Jakutis, L. Gomes, C. Amancio, L. Kassab, J. Martinelli, and N. Wetter, “Increased Er 3+upconversion in tellurite fibers and glasses by co-doping with Yb 3+,” Opt. Mater. 33(1), 107–111 (2010).
    [Crossref]
  19. S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
    [Crossref] [PubMed]
  20. G. Tsiminis, T. S. Klarić, E. P. Schartner, S. C. Warren-Smith, M. D. Lewis, S. A. Koblar, and T. M. Monro, “Generating and measuring photochemical changes inside the brain using optical fibers: exploring stroke,” Biomed. Opt. Express 5(11), 3975–3980 (2014).
    [Crossref] [PubMed]
  21. P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
    [Crossref] [PubMed]
  22. E. P. Schartner and T. M. Monro, “Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings,” Sensors (Basel) 14(11), 21693–21701 (2014).
    [Crossref] [PubMed]
  23. X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett. 41(15), 835–837 (2005).
    [Crossref]
  24. P. dos Santos, M. De Araujo, A. Gouveia-Neto, J. Medeiros Neto, and A. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+ Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
    [Crossref]
  25. S. Bexis, B. D. Phillis, J. Ong, J. M. White, and R. J. Irvine, “Baclofen prevents MDMA-induced rise in core body temperature in rats,” Drug Alcohol Depend. 74(1), 89–96 (2004).
    [Crossref] [PubMed]
  26. G. Paxinos and K. B. Franklin, The mouse brain in stereotaxic coordinates (Gulf Professional Publishing, 2004).
  27. B. H. Westerink, “Analysis of biogenic amines in microdialysates of the brain,” J. Chromatogr. B Biomed. Sci. Appl. 747(1-2), 21–32 (2000).
    [Crossref] [PubMed]
  28. B. Esteban, E. O’Shea, J. Camarero, V. Sanchez, A. R. Green, and M. I. Colado, “3,4-Methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose,” Psychopharmacology (Berl.) 154(3), 251–260 (2001).
    [Crossref] [PubMed]
  29. E. O’Shea, I. Escobedo, L. Orio, V. Sanchez, M. Navarro, A. R. Green, and M. I. Colado, “Elevation of ambient room temperature has differential effects on MDMA-induced 5-HT and dopamine release in striatum and nucleus accumbens of rats,” Neuropsychopharmacology 30(7), 1312–1323 (2005).
    [Crossref] [PubMed]
  30. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
    [Crossref]

2015 (1)

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

2014 (2)

2013 (3)

S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref] [PubMed]

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

T.-Y. Sun, D.-Q. Zhang, X.-F. Yu, Y. Xiang, M. Luo, J.-H. Wang, G.-L. Tan, Q.-Q. Wang, and P. K. Chu, “Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications,” Nanoscale 5(4), 1629–1637 (2013).
[Crossref] [PubMed]

2012 (1)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature Sensing and in Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

2011 (1)

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[Crossref]

2010 (2)

J. Jakutis, L. Gomes, C. Amancio, L. Kassab, J. Martinelli, and N. Wetter, “Increased Er 3+upconversion in tellurite fibers and glasses by co-doping with Yb 3+,” Opt. Mater. 33(1), 107–111 (2010).
[Crossref]

E. A. Kiyatkin, “Brain temperature homeostasis: physiological fluctuations and pathological shifts,” Frontiers Biosci. 15, 73 (2010).

2009 (1)

J. Weis, L. Covaciu, S. Rubertsson, M. Allers, A. Lunderquist, and H. Ahlström, “Noninvasive monitoring of brain temperature during mild hypothermia,” Magn. Reson. Imaging 27(7), 923–932 (2009).
[Crossref] [PubMed]

2007 (2)

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[Crossref]

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[Crossref]

2006 (2)

V. K. Rai, D. Rai, and S. Rai, “Pr 3+ doped lithium tellurite glass as a temperature sensor,” Sens. Actuators A Phys. 128(1), 14–17 (2006).
[Crossref]

G. Guan, S. Arnold, and V. Otugen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA J. 44(10), 2385–2389 (2006).
[Crossref]

2005 (2)

E. O’Shea, I. Escobedo, L. Orio, V. Sanchez, M. Navarro, A. R. Green, and M. I. Colado, “Elevation of ambient room temperature has differential effects on MDMA-induced 5-HT and dopamine release in striatum and nucleus accumbens of rats,” Neuropsychopharmacology 30(7), 1312–1323 (2005).
[Crossref] [PubMed]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett. 41(15), 835–837 (2005).
[Crossref]

2004 (2)

S. Bexis, B. D. Phillis, J. Ong, J. M. White, and R. J. Irvine, “Baclofen prevents MDMA-induced rise in core body temperature in rats,” Drug Alcohol Depend. 74(1), 89–96 (2004).
[Crossref] [PubMed]

P. L. Brown and E. A. Kiyatkin, “Brain hyperthermia induced by MDMA (ecstasy): modulation by environmental conditions,” Eur. J. Neurosci. 20(1), 51–58 (2004).
[Crossref] [PubMed]

2003 (1)

M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
[Crossref] [PubMed]

2001 (1)

B. Esteban, E. O’Shea, J. Camarero, V. Sanchez, A. R. Green, and M. I. Colado, “3,4-Methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose,” Psychopharmacology (Berl.) 154(3), 251–260 (2001).
[Crossref] [PubMed]

2000 (2)

B. H. Westerink, “Analysis of biogenic amines in microdialysates of the brain,” J. Chromatogr. B Biomed. Sci. Appl. 747(1-2), 21–32 (2000).
[Crossref] [PubMed]

P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

1999 (1)

S. Wade, J. Muscat, S. Collins, and G. Baxter, “Nd-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279 (1999).
[Crossref]

1998 (1)

P. dos Santos, M. De Araujo, A. Gouveia-Neto, J. Medeiros Neto, and A. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+ Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

1997 (2)

Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

1990 (1)

1985 (1)

S. J. Schiff and G. G. Somjen, “The effects of temperature on synaptic transmission in hippocampal tissue slices,” Brain Res. 345(2), 279–284 (1985).
[Crossref] [PubMed]

Abell, A. D.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Ahlström, H.

J. Weis, L. Covaciu, S. Rubertsson, M. Allers, A. Lunderquist, and H. Ahlström, “Noninvasive monitoring of brain temperature during mild hypothermia,” Magn. Reson. Imaging 27(7), 923–932 (2009).
[Crossref] [PubMed]

Allers, M.

J. Weis, L. Covaciu, S. Rubertsson, M. Allers, A. Lunderquist, and H. Ahlström, “Noninvasive monitoring of brain temperature during mild hypothermia,” Magn. Reson. Imaging 27(7), 923–932 (2009).
[Crossref] [PubMed]

Amancio, C.

J. Jakutis, L. Gomes, C. Amancio, L. Kassab, J. Martinelli, and N. Wetter, “Increased Er 3+upconversion in tellurite fibers and glasses by co-doping with Yb 3+,” Opt. Mater. 33(1), 107–111 (2010).
[Crossref]

Arnold, S.

G. Guan, S. Arnold, and V. Otugen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA J. 44(10), 2385–2389 (2006).
[Crossref]

Baxter, G.

S. Wade, J. Muscat, S. Collins, and G. Baxter, “Nd-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279 (1999).
[Crossref]

Berland, K. M.

P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Berthou, H.

Bexis, S.

S. Bexis, B. D. Phillis, J. Ong, J. M. White, and R. J. Irvine, “Baclofen prevents MDMA-induced rise in core body temperature in rats,” Drug Alcohol Depend. 74(1), 89–96 (2004).
[Crossref] [PubMed]

Brown, P. L.

P. L. Brown and E. A. Kiyatkin, “Brain hyperthermia induced by MDMA (ecstasy): modulation by environmental conditions,” Eur. J. Neurosci. 20(1), 51–58 (2004).
[Crossref] [PubMed]

Camarero, J.

B. Esteban, E. O’Shea, J. Camarero, V. Sanchez, A. R. Green, and M. I. Colado, “3,4-Methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose,” Psychopharmacology (Berl.) 154(3), 251–260 (2001).
[Crossref] [PubMed]

Cao, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature Sensing and in Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Chen, G.

S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref] [PubMed]

Chu, P. K.

T.-Y. Sun, D.-Q. Zhang, X.-F. Yu, Y. Xiang, M. Luo, J.-H. Wang, G.-L. Tan, Q.-Q. Wang, and P. K. Chu, “Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications,” Nanoscale 5(4), 1629–1637 (2013).
[Crossref] [PubMed]

Colado, M. I.

E. O’Shea, I. Escobedo, L. Orio, V. Sanchez, M. Navarro, A. R. Green, and M. I. Colado, “Elevation of ambient room temperature has differential effects on MDMA-induced 5-HT and dopamine release in striatum and nucleus accumbens of rats,” Neuropsychopharmacology 30(7), 1312–1323 (2005).
[Crossref] [PubMed]

B. Esteban, E. O’Shea, J. Camarero, V. Sanchez, A. R. Green, and M. I. Colado, “3,4-Methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose,” Psychopharmacology (Berl.) 154(3), 251–260 (2001).
[Crossref] [PubMed]

Collins, S.

S. Wade, J. Muscat, S. Collins, and G. Baxter, “Nd-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279 (1999).
[Crossref]

Covaciu, L.

J. Weis, L. Covaciu, S. Rubertsson, M. Allers, A. Lunderquist, and H. Ahlström, “Noninvasive monitoring of brain temperature during mild hypothermia,” Magn. Reson. Imaging 27(7), 923–932 (2009).
[Crossref] [PubMed]

De Araujo, M.

P. dos Santos, M. De Araujo, A. Gouveia-Neto, J. Medeiros Neto, and A. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+ Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Dewhirst, M. W.

M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
[Crossref] [PubMed]

Ding, M.

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[Crossref]

Dong, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature Sensing and in Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Dong, C. Y.

P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

dos Santos, P.

P. dos Santos, M. De Araujo, A. Gouveia-Neto, J. Medeiros Neto, and A. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+ Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Ebendorff-Heidepriem, H.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Escobedo, I.

E. O’Shea, I. Escobedo, L. Orio, V. Sanchez, M. Navarro, A. R. Green, and M. I. Colado, “Elevation of ambient room temperature has differential effects on MDMA-induced 5-HT and dopamine release in striatum and nucleus accumbens of rats,” Neuropsychopharmacology 30(7), 1312–1323 (2005).
[Crossref] [PubMed]

Esteban, B.

B. Esteban, E. O’Shea, J. Camarero, V. Sanchez, A. R. Green, and M. I. Colado, “3,4-Methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose,” Psychopharmacology (Berl.) 154(3), 251–260 (2001).
[Crossref] [PubMed]

Feng, J.

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[Crossref]

Feng, X.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett. 41(15), 835–837 (2005).
[Crossref]

Feng, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature Sensing and in Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Finazzi, V.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett. 41(15), 835–837 (2005).
[Crossref]

Frampton, K.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett. 41(15), 835–837 (2005).
[Crossref]

François, A.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Gomes, L.

J. Jakutis, L. Gomes, C. Amancio, L. Kassab, J. Martinelli, and N. Wetter, “Increased Er 3+upconversion in tellurite fibers and glasses by co-doping with Yb 3+,” Opt. Mater. 33(1), 107–111 (2010).
[Crossref]

Gouveia-Neto, A.

P. dos Santos, M. De Araujo, A. Gouveia-Neto, J. Medeiros Neto, and A. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+ Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Green, A. R.

E. O’Shea, I. Escobedo, L. Orio, V. Sanchez, M. Navarro, A. R. Green, and M. I. Colado, “Elevation of ambient room temperature has differential effects on MDMA-induced 5-HT and dopamine release in striatum and nucleus accumbens of rats,” Neuropsychopharmacology 30(7), 1312–1323 (2005).
[Crossref] [PubMed]

B. Esteban, E. O’Shea, J. Camarero, V. Sanchez, A. R. Green, and M. I. Colado, “3,4-Methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose,” Psychopharmacology (Berl.) 154(3), 251–260 (2001).
[Crossref] [PubMed]

Guan, G.

G. Guan, S. Arnold, and V. Otugen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA J. 44(10), 2385–2389 (2006).
[Crossref]

Hanson, M.

M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
[Crossref] [PubMed]

Hao, S.

S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref] [PubMed]

He, Y.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature Sensing and in Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Heng, S.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Hoopes, P. J.

M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
[Crossref] [PubMed]

Irvine, R. J.

S. Bexis, B. D. Phillis, J. Ong, J. M. White, and R. J. Irvine, “Baclofen prevents MDMA-induced rise in core body temperature in rats,” Drug Alcohol Depend. 74(1), 89–96 (2004).
[Crossref] [PubMed]

Jakutis, J.

J. Jakutis, L. Gomes, C. Amancio, L. Kassab, J. Martinelli, and N. Wetter, “Increased Er 3+upconversion in tellurite fibers and glasses by co-doping with Yb 3+,” Opt. Mater. 33(1), 107–111 (2010).
[Crossref]

Jörgensen, C. K.

Kassab, L.

J. Jakutis, L. Gomes, C. Amancio, L. Kassab, J. Martinelli, and N. Wetter, “Increased Er 3+upconversion in tellurite fibers and glasses by co-doping with Yb 3+,” Opt. Mater. 33(1), 107–111 (2010).
[Crossref]

Kiyatkin, E. A.

E. A. Kiyatkin, “Brain temperature homeostasis: physiological fluctuations and pathological shifts,” Frontiers Biosci. 15, 73 (2010).

P. L. Brown and E. A. Kiyatkin, “Brain hyperthermia induced by MDMA (ecstasy): modulation by environmental conditions,” Eur. J. Neurosci. 20(1), 51–58 (2004).
[Crossref] [PubMed]

Klantsataya, E.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Klaric, T. S.

Koblar, S. A.

Kostecki, R.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Kou, J.-L.

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[Crossref]

Leung, A.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[Crossref]

Lewis, M. D.

Li, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature Sensing and in Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Liu, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature Sensing and in Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Lora-Michiels, M.

M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
[Crossref] [PubMed]

Lu, Y.-Q.

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[Crossref]

Lunderquist, A.

J. Weis, L. Covaciu, S. Rubertsson, M. Allers, A. Lunderquist, and H. Ahlström, “Noninvasive monitoring of brain temperature during mild hypothermia,” Magn. Reson. Imaging 27(7), 923–932 (2009).
[Crossref] [PubMed]

Luo, M.

T.-Y. Sun, D.-Q. Zhang, X.-F. Yu, Y. Xiang, M. Luo, J.-H. Wang, G.-L. Tan, Q.-Q. Wang, and P. K. Chu, “Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications,” Nanoscale 5(4), 1629–1637 (2013).
[Crossref] [PubMed]

Martinelli, J.

J. Jakutis, L. Gomes, C. Amancio, L. Kassab, J. Martinelli, and N. Wetter, “Increased Er 3+upconversion in tellurite fibers and glasses by co-doping with Yb 3+,” Opt. Mater. 33(1), 107–111 (2010).
[Crossref]

Masters, B. R.

P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Medeiros Neto, J.

P. dos Santos, M. De Araujo, A. Gouveia-Neto, J. Medeiros Neto, and A. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+ Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Meier, R. J.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Monro, T. M.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

E. P. Schartner and T. M. Monro, “Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings,” Sensors (Basel) 14(11), 21693–21701 (2014).
[Crossref] [PubMed]

G. Tsiminis, T. S. Klarić, E. P. Schartner, S. C. Warren-Smith, M. D. Lewis, S. A. Koblar, and T. M. Monro, “Generating and measuring photochemical changes inside the brain using optical fibers: exploring stroke,” Biomed. Opt. Express 5(11), 3975–3980 (2014).
[Crossref] [PubMed]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett. 41(15), 835–837 (2005).
[Crossref]

Moore, R. C.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett. 41(15), 835–837 (2005).
[Crossref]

Muscat, J.

S. Wade, J. Muscat, S. Collins, and G. Baxter, “Nd-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279 (1999).
[Crossref]

Mutharasan, R.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[Crossref]

Navarro, M.

E. O’Shea, I. Escobedo, L. Orio, V. Sanchez, M. Navarro, A. R. Green, and M. I. Colado, “Elevation of ambient room temperature has differential effects on MDMA-induced 5-HT and dopamine release in striatum and nucleus accumbens of rats,” Neuropsychopharmacology 30(7), 1312–1323 (2005).
[Crossref] [PubMed]

Nguyen, L. V.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

O’Shea, E.

E. O’Shea, I. Escobedo, L. Orio, V. Sanchez, M. Navarro, A. R. Green, and M. I. Colado, “Elevation of ambient room temperature has differential effects on MDMA-induced 5-HT and dopamine release in striatum and nucleus accumbens of rats,” Neuropsychopharmacology 30(7), 1312–1323 (2005).
[Crossref] [PubMed]

B. Esteban, E. O’Shea, J. Camarero, V. Sanchez, A. R. Green, and M. I. Colado, “3,4-Methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose,” Psychopharmacology (Berl.) 154(3), 251–260 (2001).
[Crossref] [PubMed]

Ong, J.

S. Bexis, B. D. Phillis, J. Ong, J. M. White, and R. J. Irvine, “Baclofen prevents MDMA-induced rise in core body temperature in rats,” Drug Alcohol Depend. 74(1), 89–96 (2004).
[Crossref] [PubMed]

Orio, L.

E. O’Shea, I. Escobedo, L. Orio, V. Sanchez, M. Navarro, A. R. Green, and M. I. Colado, “Elevation of ambient room temperature has differential effects on MDMA-induced 5-HT and dopamine release in striatum and nucleus accumbens of rats,” Neuropsychopharmacology 30(7), 1312–1323 (2005).
[Crossref] [PubMed]

Otugen, V.

G. Guan, S. Arnold, and V. Otugen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA J. 44(10), 2385–2389 (2006).
[Crossref]

Petropoulos, P.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett. 41(15), 835–837 (2005).
[Crossref]

Phillis, B. D.

S. Bexis, B. D. Phillis, J. Ong, J. M. White, and R. J. Irvine, “Baclofen prevents MDMA-induced rise in core body temperature in rats,” Drug Alcohol Depend. 74(1), 89–96 (2004).
[Crossref] [PubMed]

Rai, D.

V. K. Rai, D. Rai, and S. Rai, “Pr 3+ doped lithium tellurite glass as a temperature sensor,” Sens. Actuators A Phys. 128(1), 14–17 (2006).
[Crossref]

Rai, S.

V. K. Rai, D. Rai, and S. Rai, “Pr 3+ doped lithium tellurite glass as a temperature sensor,” Sens. Actuators A Phys. 128(1), 14–17 (2006).
[Crossref]

Rai, V. K.

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[Crossref]

V. K. Rai, D. Rai, and S. Rai, “Pr 3+ doped lithium tellurite glass as a temperature sensor,” Sens. Actuators A Phys. 128(1), 14–17 (2006).
[Crossref]

Rao, Y.-J.

Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

Reynolds, T.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Richardson, D. J.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett. 41(15), 835–837 (2005).
[Crossref]

Rowland, K. J.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Rubertsson, S.

J. Weis, L. Covaciu, S. Rubertsson, M. Allers, A. Lunderquist, and H. Ahlström, “Noninvasive monitoring of brain temperature during mild hypothermia,” Magn. Reson. Imaging 27(7), 923–932 (2009).
[Crossref] [PubMed]

Sanchez, V.

E. O’Shea, I. Escobedo, L. Orio, V. Sanchez, M. Navarro, A. R. Green, and M. I. Colado, “Elevation of ambient room temperature has differential effects on MDMA-induced 5-HT and dopamine release in striatum and nucleus accumbens of rats,” Neuropsychopharmacology 30(7), 1312–1323 (2005).
[Crossref] [PubMed]

B. Esteban, E. O’Shea, J. Camarero, V. Sanchez, A. R. Green, and M. I. Colado, “3,4-Methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose,” Psychopharmacology (Berl.) 154(3), 251–260 (2001).
[Crossref] [PubMed]

Schartner, E. P.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

E. P. Schartner and T. M. Monro, “Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings,” Sensors (Basel) 14(11), 21693–21701 (2014).
[Crossref] [PubMed]

G. Tsiminis, T. S. Klarić, E. P. Schartner, S. C. Warren-Smith, M. D. Lewis, S. A. Koblar, and T. M. Monro, “Generating and measuring photochemical changes inside the brain using optical fibers: exploring stroke,” Biomed. Opt. Express 5(11), 3975–3980 (2014).
[Crossref] [PubMed]

Schiff, S. J.

S. J. Schiff and G. G. Somjen, “The effects of temperature on synaptic transmission in hippocampal tissue slices,” Brain Res. 345(2), 279–284 (1985).
[Crossref] [PubMed]

Shankar, P. M.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[Crossref]

So, P. T.

P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Sombra, A.

P. dos Santos, M. De Araujo, A. Gouveia-Neto, J. Medeiros Neto, and A. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+ Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Somjen, G. G.

S. J. Schiff and G. G. Somjen, “The effects of temperature on synaptic transmission in hippocampal tissue slices,” Brain Res. 345(2), 279–284 (1985).
[Crossref] [PubMed]

Sun, T.-Y.

T.-Y. Sun, D.-Q. Zhang, X.-F. Yu, Y. Xiang, M. Luo, J.-H. Wang, G.-L. Tan, Q.-Q. Wang, and P. K. Chu, “Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications,” Nanoscale 5(4), 1629–1637 (2013).
[Crossref] [PubMed]

Tan, G.-L.

T.-Y. Sun, D.-Q. Zhang, X.-F. Yu, Y. Xiang, M. Luo, J.-H. Wang, G.-L. Tan, Q.-Q. Wang, and P. K. Chu, “Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications,” Nanoscale 5(4), 1629–1637 (2013).
[Crossref] [PubMed]

Tsiminis, G.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

G. Tsiminis, T. S. Klarić, E. P. Schartner, S. C. Warren-Smith, M. D. Lewis, S. A. Koblar, and T. M. Monro, “Generating and measuring photochemical changes inside the brain using optical fibers: exploring stroke,” Biomed. Opt. Express 5(11), 3975–3980 (2014).
[Crossref] [PubMed]

Viglianti, B. L.

M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
[Crossref] [PubMed]

Wade, S.

S. Wade, J. Muscat, S. Collins, and G. Baxter, “Nd-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279 (1999).
[Crossref]

Wang, J.-H.

T.-Y. Sun, D.-Q. Zhang, X.-F. Yu, Y. Xiang, M. Luo, J.-H. Wang, G.-L. Tan, Q.-Q. Wang, and P. K. Chu, “Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications,” Nanoscale 5(4), 1629–1637 (2013).
[Crossref] [PubMed]

Wang, Q.-Q.

T.-Y. Sun, D.-Q. Zhang, X.-F. Yu, Y. Xiang, M. Luo, J.-H. Wang, G.-L. Tan, Q.-Q. Wang, and P. K. Chu, “Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications,” Nanoscale 5(4), 1629–1637 (2013).
[Crossref] [PubMed]

Wang, X. D.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Warren-Smith, S. C.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

G. Tsiminis, T. S. Klarić, E. P. Schartner, S. C. Warren-Smith, M. D. Lewis, S. A. Koblar, and T. M. Monro, “Generating and measuring photochemical changes inside the brain using optical fibers: exploring stroke,” Biomed. Opt. Express 5(11), 3975–3980 (2014).
[Crossref] [PubMed]

Weis, J.

J. Weis, L. Covaciu, S. Rubertsson, M. Allers, A. Lunderquist, and H. Ahlström, “Noninvasive monitoring of brain temperature during mild hypothermia,” Magn. Reson. Imaging 27(7), 923–932 (2009).
[Crossref] [PubMed]

Westerink, B. H.

B. H. Westerink, “Analysis of biogenic amines in microdialysates of the brain,” J. Chromatogr. B Biomed. Sci. Appl. 747(1-2), 21–32 (2000).
[Crossref] [PubMed]

Wetter, N.

J. Jakutis, L. Gomes, C. Amancio, L. Kassab, J. Martinelli, and N. Wetter, “Increased Er 3+upconversion in tellurite fibers and glasses by co-doping with Yb 3+,” Opt. Mater. 33(1), 107–111 (2010).
[Crossref]

White, J. M.

S. Bexis, B. D. Phillis, J. Ong, J. M. White, and R. J. Irvine, “Baclofen prevents MDMA-induced rise in core body temperature in rats,” Drug Alcohol Depend. 74(1), 89–96 (2004).
[Crossref] [PubMed]

Wolfbeis, O. S.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Xiang, Y.

T.-Y. Sun, D.-Q. Zhang, X.-F. Yu, Y. Xiang, M. Luo, J.-H. Wang, G.-L. Tan, Q.-Q. Wang, and P. K. Chu, “Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications,” Nanoscale 5(4), 1629–1637 (2013).
[Crossref] [PubMed]

Xu, F.

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[Crossref]

Yang, C.

S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref] [PubMed]

Yu, X.-F.

T.-Y. Sun, D.-Q. Zhang, X.-F. Yu, Y. Xiang, M. Luo, J.-H. Wang, G.-L. Tan, Q.-Q. Wang, and P. K. Chu, “Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications,” Nanoscale 5(4), 1629–1637 (2013).
[Crossref] [PubMed]

Zhang, D.-Q.

T.-Y. Sun, D.-Q. Zhang, X.-F. Yu, Y. Xiang, M. Luo, J.-H. Wang, G.-L. Tan, Q.-Q. Wang, and P. K. Chu, “Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications,” Nanoscale 5(4), 1629–1637 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature Sensing and in Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

AIAA J. (1)

G. Guan, S. Arnold, and V. Otugen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA J. 44(10), 2385–2389 (2006).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Appl. Phys. B (1)

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[Crossref]

Appl. Phys. Lett. (1)

P. dos Santos, M. De Araujo, A. Gouveia-Neto, J. Medeiros Neto, and A. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+ Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Biomed. Opt. Express (1)

Brain Res. (1)

S. J. Schiff and G. G. Somjen, “The effects of temperature on synaptic transmission in hippocampal tissue slices,” Brain Res. 345(2), 279–284 (1985).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Drug Alcohol Depend. (1)

S. Bexis, B. D. Phillis, J. Ong, J. M. White, and R. J. Irvine, “Baclofen prevents MDMA-induced rise in core body temperature in rats,” Drug Alcohol Depend. 74(1), 89–96 (2004).
[Crossref] [PubMed]

Electron. Lett. (1)

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett. 41(15), 835–837 (2005).
[Crossref]

Eur. J. Neurosci. (1)

P. L. Brown and E. A. Kiyatkin, “Brain hyperthermia induced by MDMA (ecstasy): modulation by environmental conditions,” Eur. J. Neurosci. 20(1), 51–58 (2004).
[Crossref] [PubMed]

Frontiers Biosci. (1)

E. A. Kiyatkin, “Brain temperature homeostasis: physiological fluctuations and pathological shifts,” Frontiers Biosci. 15, 73 (2010).

IEEE Photonics J. (1)

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y.-Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[Crossref]

Int. J. Appl. Glass Sci. (1)

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the Light in Microstructured Optical Fibers for Sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Int. J. Hyperthermia (1)

M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
[Crossref] [PubMed]

J. Chromatogr. B Biomed. Sci. Appl. (1)

B. H. Westerink, “Analysis of biogenic amines in microdialysates of the brain,” J. Chromatogr. B Biomed. Sci. Appl. 747(1-2), 21–32 (2000).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Magn. Reson. Imaging (1)

J. Weis, L. Covaciu, S. Rubertsson, M. Allers, A. Lunderquist, and H. Ahlström, “Noninvasive monitoring of brain temperature during mild hypothermia,” Magn. Reson. Imaging 27(7), 923–932 (2009).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

Nanoscale (1)

T.-Y. Sun, D.-Q. Zhang, X.-F. Yu, Y. Xiang, M. Luo, J.-H. Wang, G.-L. Tan, Q.-Q. Wang, and P. K. Chu, “Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications,” Nanoscale 5(4), 1629–1637 (2013).
[Crossref] [PubMed]

Neuropsychopharmacology (1)

E. O’Shea, I. Escobedo, L. Orio, V. Sanchez, M. Navarro, A. R. Green, and M. I. Colado, “Elevation of ambient room temperature has differential effects on MDMA-induced 5-HT and dopamine release in striatum and nucleus accumbens of rats,” Neuropsychopharmacology 30(7), 1312–1323 (2005).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. (1)

J. Jakutis, L. Gomes, C. Amancio, L. Kassab, J. Martinelli, and N. Wetter, “Increased Er 3+upconversion in tellurite fibers and glasses by co-doping with Yb 3+,” Opt. Mater. 33(1), 107–111 (2010).
[Crossref]

Psychopharmacology (Berl.) (1)

B. Esteban, E. O’Shea, J. Camarero, V. Sanchez, A. R. Green, and M. I. Colado, “3,4-Methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose,” Psychopharmacology (Berl.) 154(3), 251–260 (2001).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

S. Wade, J. Muscat, S. Collins, and G. Baxter, “Nd-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279 (1999).
[Crossref]

Sens. Actuators A Phys. (1)

V. K. Rai, D. Rai, and S. Rai, “Pr 3+ doped lithium tellurite glass as a temperature sensor,” Sens. Actuators A Phys. 128(1), 14–17 (2006).
[Crossref]

Sens. Actuators B Chem. (1)

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[Crossref]

Sensors (Basel) (1)

E. P. Schartner and T. M. Monro, “Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings,” Sensors (Basel) 14(11), 21693–21701 (2014).
[Crossref] [PubMed]

Theranostics (1)

S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref] [PubMed]

Other (1)

G. Paxinos and K. B. Franklin, The mouse brain in stereotaxic coordinates (Gulf Professional Publishing, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Method for fabrication of temperature sensitive optical fiber tips. The fibers are cleaved and mounted within needles, and encased within a protective buffer jacket. The assembly is then dipped into erbium:ytterbium doped tellurite glass to rapidly functionalize the tip.

Fig. 2
Fig. 2

Optical configuration for experimental setups to minimize the requirement for bulk optics. The short-pass filter is required to prevent backscattered pump light from saturating the detector on the spectrometer.

Fig. 3
Fig. 3

Experimental set up for in vivo measurements to compare brain and body temperature recordings in an ambulatory animal.

Fig. 4
Fig. 4

In vitro fluorescence ratio vs. reference temperature for increasing temperature, R2 = 0.9994 and a sensitivity of 0.005258K−1

Fig. 5
Fig. 5

(a) - In vivo results for fluorescence brain temperature probe, implanted body temperature monitor, and RTD ambient temperature monitor for an example saline treated rat (n = 1). Time and temperature are shown relative to the second saline injection time. The brain and ambient temperature are recorded at 10 second intervals and body temperature at 120 second intervals. (b) – In vivo results for fluorescence brain temperature probes, and implanted body temperature monitors (n = 4), averaged across all trials at 6 minute intervals. Error bars show the standard error in the mean.

Metrics