Abstract

We describe a multifocal Raman micro-spectroscopy detection method based on a digital micromirror device, which allows for simultaneous “power-sharing” acquisition of Raman spectra from ad hoc sampling points. As the locations of the points can be rapidly updated in real-time via software control of a liquid-crystal spatial light modulator (LC-SLM), this technique is compatible with automated adaptive- and selective-sampling Raman spectroscopy techniques, the latter of which has previously been demonstrated for fast diagnosis of skin cancer tissue resections. We describe the performance of this instrument and show examples of multiplexed measurements on a range of test samples. Following this, we show the feasibility of reducing measurement time for power-shared multifocal Raman measurements combined with confocal auto-fluorescence imaging to provide guided diagnosis of tumours in human skin samples.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of multimodal spectral imaging for assessment of resection margins during Mohs micrographic surgery for basal cell carcinoma

Sho Takamori, Kenny Kong, Sandeep Varma, Iain Leach, Hywel C. Williams, and Ioan Notingher
Biomed. Opt. Express 6(1) 98-111 (2015)

Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification

Joannie Desroches, Michael Jermyn, Kelvin Mok, Cédric Lemieux-Leduc, Jeanne Mercier, Karl St-Arnaud, Kirk Urmey, Marie-Christine Guiot, Eric Marple, Kevin Petrecca, and Frédéric Leblond
Biomed. Opt. Express 6(7) 2380-2397 (2015)

Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis

Renato Amaro Zângaro, Landulfo Silveira, Ramasamy Manoharan, George Zonios, Irving Itzkan, Ramachandra R. Dasari, Jacques Van Dam, and Michael S. Feld
Appl. Opt. 35(25) 5211-5219 (1996)

References

  • View by:
  • |
  • |
  • |

  1. N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007).
    [Crossref] [PubMed]
  2. A. Nijssen, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119(1), 64–69 (2002).
    [Crossref] [PubMed]
  3. C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
    [Crossref] [PubMed]
  4. M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt. 14(5), 054031 (2009).
    [Crossref] [PubMed]
  5. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America102(35) 12371–12376 (2005).
    [Crossref]
  6. M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
    [Crossref] [PubMed]
  7. K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
    [Crossref] [PubMed]
  8. C. Kendall, N. Stone, N. Shepherd, K. Geboes, B. Warren, R. Bennett, and H. Barr, “Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett’s oesophagus,” J. Pathol. 200(5), 602–609 (2003).
    [Crossref] [PubMed]
  9. Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
    [Crossref] [PubMed]
  10. N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
    [Crossref] [PubMed]
  11. C. J. Rowlands, S. Varma, W. Perkins, I. Leach, H. Williams, and I. Notingher, “Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging,” J. Biophotonics 5(3), 220–229 (2012).
    [Crossref] [PubMed]
  12. K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, and I. Notingher, “Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15189–15194 (2013).
    [Crossref] [PubMed]
  13. S. Takamori, K. Kong, S. Varma, I. Leach, H. C. Williams, and I. Notingher, “Optimization of multimodal spectral imaging for assessment of resection margins during Mohs micrographic surgery for basal cell carcinoma,” Biomed. Opt. Express 6(1), 98–111 (2015).
    [Crossref] [PubMed]
  14. M. Delhaye and P. Dhamelincourt, “Raman microprobe and microscope with laser excitation,” J. Raman. Spec. 3(1), 33–43 (1975).
    [Crossref]
  15. S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75(16), 4312–4318 (2003).
    [Crossref] [PubMed]
  16. M. Okuno and H. O. Hamaguchi, “Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells,” Opt. Lett. 35(24), 4096–4098 (2010).
    [Crossref] [PubMed]
  17. A. Z. Samuel, S. Yabumoto, K. Kawamura, and K. Iwata, “Rapid microstructure characterization of polymer thin films with 2D-array multifocus Raman microspectroscopy,” Analyst (Lond.) 140(6), 1847–1851 (2015).
    [Crossref] [PubMed]
  18. L. Kong and J. Chan, “A Rapidly Modulated Multifocal Detection Scheme for Parallel Acquisition of Raman Spectra from a 2-D Focal Array,” Anal. Chem. 86(13), 6604–6609 (2014).
    [Crossref] [PubMed]
  19. J. Qi and W. C. Shih, “Parallel Raman microspectroscopy using programmable multipoint illumination,” Opt. Lett. 37(8), 1289–1291 (2012).
    [Crossref] [PubMed]
  20. J. Qi, J. Li, and W. C. Shih, “High-speed hyperspectral Raman imaging for label-free compositional microanalysis,” Biomed. Opt. Express 4(11), 2376–2382 (2013).
    [Crossref] [PubMed]
  21. G. M. Gibson, M. Dienerowitz, P. A. Kelleher, A. R. Harvey, and M. J. Padgett, “A multi-object spectral imaging instrument,” J. Opt. 15(8), 085302 (2013).
    [Crossref]
  22. Z. J. Smith, S. Strombom, and S. Wachsmann-Hogiu, “Multivariate optical computing using a digital micromirror device for fluorescence and Raman spectroscopy,” Opt. Express 19(18), 16950–16962 (2011).
    [Crossref] [PubMed]
  23. Z. Liao, F. Sinjab, G. Gibson, M. Padgett, and I. Notingher, “DMD-based software-configurable spatially-offset Raman spectroscopy for spectral depth-profiling of optically turbid samples,” Opt. Express 24(12), 12701–12712 (2016).
  24. R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
    [Crossref]
  25. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45(5), 897–903 (2006).
    [Crossref] [PubMed]
  26. A. T. Tu, “Raman spectroscopy in biology: principles and applications.” (Wiley, 1982).

2016 (1)

2015 (2)

S. Takamori, K. Kong, S. Varma, I. Leach, H. C. Williams, and I. Notingher, “Optimization of multimodal spectral imaging for assessment of resection margins during Mohs micrographic surgery for basal cell carcinoma,” Biomed. Opt. Express 6(1), 98–111 (2015).
[Crossref] [PubMed]

A. Z. Samuel, S. Yabumoto, K. Kawamura, and K. Iwata, “Rapid microstructure characterization of polymer thin films with 2D-array multifocus Raman microspectroscopy,” Analyst (Lond.) 140(6), 1847–1851 (2015).
[Crossref] [PubMed]

2014 (2)

L. Kong and J. Chan, “A Rapidly Modulated Multifocal Detection Scheme for Parallel Acquisition of Raman Spectra from a 2-D Focal Array,” Anal. Chem. 86(13), 6604–6609 (2014).
[Crossref] [PubMed]

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

2013 (3)

K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, and I. Notingher, “Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15189–15194 (2013).
[Crossref] [PubMed]

G. M. Gibson, M. Dienerowitz, P. A. Kelleher, A. R. Harvey, and M. J. Padgett, “A multi-object spectral imaging instrument,” J. Opt. 15(8), 085302 (2013).
[Crossref]

J. Qi, J. Li, and W. C. Shih, “High-speed hyperspectral Raman imaging for label-free compositional microanalysis,” Biomed. Opt. Express 4(11), 2376–2382 (2013).
[Crossref] [PubMed]

2012 (2)

J. Qi and W. C. Shih, “Parallel Raman microspectroscopy using programmable multipoint illumination,” Opt. Lett. 37(8), 1289–1291 (2012).
[Crossref] [PubMed]

C. J. Rowlands, S. Varma, W. Perkins, I. Leach, H. Williams, and I. Notingher, “Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging,” J. Biophotonics 5(3), 220–229 (2012).
[Crossref] [PubMed]

2011 (3)

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[Crossref]

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref] [PubMed]

Z. J. Smith, S. Strombom, and S. Wachsmann-Hogiu, “Multivariate optical computing using a digital micromirror device for fluorescence and Raman spectroscopy,” Opt. Express 19(18), 16950–16962 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt. 14(5), 054031 (2009).
[Crossref] [PubMed]

2008 (1)

C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
[Crossref] [PubMed]

2007 (1)

N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007).
[Crossref] [PubMed]

2006 (1)

2003 (3)

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75(16), 4312–4318 (2003).
[Crossref] [PubMed]

C. Kendall, N. Stone, N. Shepherd, K. Geboes, B. Warren, R. Bennett, and H. Barr, “Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett’s oesophagus,” J. Pathol. 200(5), 602–609 (2003).
[Crossref] [PubMed]

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

2002 (1)

A. Nijssen, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119(1), 64–69 (2002).
[Crossref] [PubMed]

1975 (1)

M. Delhaye and P. Dhamelincourt, “Raman microprobe and microscope with laser excitation,” J. Raman. Spec. 3(1), 33–43 (1975).
[Crossref]

Ames, F. C.

N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007).
[Crossref] [PubMed]

Babiera, G. V.

N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007).
[Crossref] [PubMed]

Bakker Schut, T. C.

A. Nijssen, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119(1), 64–69 (2002).
[Crossref] [PubMed]

Barr, H.

C. Kendall, N. Stone, N. Shepherd, K. Geboes, B. Warren, R. Bennett, and H. Barr, “Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett’s oesophagus,” J. Pathol. 200(5), 602–609 (2003).
[Crossref] [PubMed]

Bennett, R.

C. Kendall, N. Stone, N. Shepherd, K. Geboes, B. Warren, R. Bennett, and H. Barr, “Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett’s oesophagus,” J. Pathol. 200(5), 602–609 (2003).
[Crossref] [PubMed]

Billheimer, D. D.

C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
[Crossref] [PubMed]

Bowman, R.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[Crossref]

Buchholz, T. A.

N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007).
[Crossref] [PubMed]

Cabioglu, N.

N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007).
[Crossref] [PubMed]

Caspers, P. J.

A. Nijssen, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119(1), 64–69 (2002).
[Crossref] [PubMed]

Chan, J.

L. Kong and J. Chan, “A Rapidly Modulated Multifocal Detection Scheme for Parallel Acquisition of Raman Spectra from a 2-D Focal Array,” Anal. Chem. 86(13), 6604–6609 (2014).
[Crossref] [PubMed]

Cooper, J.

Courtial, J.

Crowe, J.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America102(35) 12371–12376 (2005).
[Crossref]

D’Ambrosio, V.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[Crossref]

Dasari, R. R.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America102(35) 12371–12376 (2005).
[Crossref]

de Matos Granja, N.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref] [PubMed]

Delhaye, M.

M. Delhaye and P. Dhamelincourt, “Raman microprobe and microscope with laser excitation,” J. Raman. Spec. 3(1), 33–43 (1975).
[Crossref]

Dhamelincourt, P.

M. Delhaye and P. Dhamelincourt, “Raman microprobe and microscope with laser excitation,” J. Raman. Spec. 3(1), 33–43 (1975).
[Crossref]

Di Trapani, P.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[Crossref]

Dienerowitz, M.

G. M. Gibson, M. Dienerowitz, P. A. Kelleher, A. R. Harvey, and M. J. Padgett, “A multi-object spectral imaging instrument,” J. Opt. 15(8), 085302 (2013).
[Crossref]

Elborn, J. S.

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

Ellis, D. L.

C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
[Crossref] [PubMed]

Ellis, I.

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

Ennis, M.

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

Feig, B. W.

N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007).
[Crossref] [PubMed]

Feld, M. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America102(35) 12371–12376 (2005).
[Crossref]

Fitzmaurice, M.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America102(35) 12371–12376 (2005).
[Crossref]

Geboes, K.

C. Kendall, N. Stone, N. Shepherd, K. Geboes, B. Warren, R. Bennett, and H. Barr, “Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett’s oesophagus,” J. Pathol. 200(5), 602–609 (2003).
[Crossref] [PubMed]

Ghita, A.

M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt. 14(5), 054031 (2009).
[Crossref] [PubMed]

Gibson, G.

Gibson, G. M.

G. M. Gibson, M. Dienerowitz, P. A. Kelleher, A. R. Harvey, and M. J. Padgett, “A multi-object spectral imaging instrument,” J. Opt. 15(8), 085302 (2013).
[Crossref]

Haka, A. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America102(35) 12371–12376 (2005).
[Crossref]

Hamaguchi, H. O.

Harvey, A. R.

G. M. Gibson, M. Dienerowitz, P. A. Kelleher, A. R. Harvey, and M. J. Padgett, “A multi-object spectral imaging instrument,” J. Opt. 15(8), 085302 (2013).
[Crossref]

Hayes, D. P.

A. Nijssen, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119(1), 64–69 (2002).
[Crossref] [PubMed]

Heule, F.

A. Nijssen, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119(1), 64–69 (2002).
[Crossref] [PubMed]

Huang, Z.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Huffman, S. W.

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75(16), 4312–4318 (2003).
[Crossref] [PubMed]

Hunt, K. K.

N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007).
[Crossref] [PubMed]

Iwata, K.

A. Z. Samuel, S. Yabumoto, K. Kawamura, and K. Iwata, “Rapid microstructure characterization of polymer thin films with 2D-array multifocus Raman microspectroscopy,” Analyst (Lond.) 140(6), 1847–1851 (2015).
[Crossref] [PubMed]

Jedrkiewicz, O.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[Crossref]

Jordan, P.

Karunwi, K.

Kawamura, K.

A. Z. Samuel, S. Yabumoto, K. Kawamura, and K. Iwata, “Rapid microstructure characterization of polymer thin films with 2D-array multifocus Raman microspectroscopy,” Analyst (Lond.) 140(6), 1847–1851 (2015).
[Crossref] [PubMed]

Kelleher, P. A.

G. M. Gibson, M. Dienerowitz, P. A. Kelleher, A. R. Harvey, and M. J. Padgett, “A multi-object spectral imaging instrument,” J. Opt. 15(8), 085302 (2013).
[Crossref]

Keller, M. D.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref] [PubMed]

Kelley, M. C.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref] [PubMed]

Kendall, C.

C. Kendall, N. Stone, N. Shepherd, K. Geboes, B. Warren, R. Bennett, and H. Barr, “Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett’s oesophagus,” J. Pathol. 200(5), 602–609 (2003).
[Crossref] [PubMed]

Koloydenko, A.

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

Koloydenko, A. A.

K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, and I. Notingher, “Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15189–15194 (2013).
[Crossref] [PubMed]

M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt. 14(5), 054031 (2009).
[Crossref] [PubMed]

Kong, K.

S. Takamori, K. Kong, S. Varma, I. Leach, H. C. Williams, and I. Notingher, “Optimization of multimodal spectral imaging for assessment of resection margins during Mohs micrographic surgery for basal cell carcinoma,” Biomed. Opt. Express 6(1), 98–111 (2015).
[Crossref] [PubMed]

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, and I. Notingher, “Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15189–15194 (2013).
[Crossref] [PubMed]

Kong, L.

L. Kong and J. Chan, “A Rapidly Modulated Multifocal Detection Scheme for Parallel Acquisition of Raman Spectra from a 2-D Focal Array,” Anal. Chem. 86(13), 6604–6609 (2014).
[Crossref] [PubMed]

Kuerer, H. M.

N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007).
[Crossref] [PubMed]

Laczik, Z. J.

Lam, S.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Larraona-Puy, M.

M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt. 14(5), 054031 (2009).
[Crossref] [PubMed]

Leach, I.

S. Takamori, K. Kong, S. Varma, I. Leach, H. C. Williams, and I. Notingher, “Optimization of multimodal spectral imaging for assessment of resection margins during Mohs micrographic surgery for basal cell carcinoma,” Biomed. Opt. Express 6(1), 98–111 (2015).
[Crossref] [PubMed]

C. J. Rowlands, S. Varma, W. Perkins, I. Leach, H. Williams, and I. Notingher, “Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging,” J. Biophotonics 5(3), 220–229 (2012).
[Crossref] [PubMed]

Leach, I. H.

K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, and I. Notingher, “Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15189–15194 (2013).
[Crossref] [PubMed]

M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt. 14(5), 054031 (2009).
[Crossref] [PubMed]

Leach, J.

Levin, I. W.

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75(16), 4312–4318 (2003).
[Crossref] [PubMed]

Li, J.

Liao, Z.

Lieber, C. A.

C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
[Crossref] [PubMed]

Lui, H.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Magee, N. D.

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref] [PubMed]

C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
[Crossref] [PubMed]

Majumder, S. K.

C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
[Crossref] [PubMed]

Marple, E. T.

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

McGarvey, J. J.

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

McLean, D. I.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

McWilliams, A.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Meric-Bernstam, F.

N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007).
[Crossref] [PubMed]

Mycek, M. A.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref] [PubMed]

Neumann, M. H.

A. Nijssen, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119(1), 64–69 (2002).
[Crossref] [PubMed]

Nijssen, A.

A. Nijssen, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119(1), 64–69 (2002).
[Crossref] [PubMed]

Notingher, I.

Z. Liao, F. Sinjab, G. Gibson, M. Padgett, and I. Notingher, “DMD-based software-configurable spatially-offset Raman spectroscopy for spectral depth-profiling of optically turbid samples,” Opt. Express 24(12), 12701–12712 (2016).

S. Takamori, K. Kong, S. Varma, I. Leach, H. C. Williams, and I. Notingher, “Optimization of multimodal spectral imaging for assessment of resection margins during Mohs micrographic surgery for basal cell carcinoma,” Biomed. Opt. Express 6(1), 98–111 (2015).
[Crossref] [PubMed]

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, and I. Notingher, “Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15189–15194 (2013).
[Crossref] [PubMed]

C. J. Rowlands, S. Varma, W. Perkins, I. Leach, H. Williams, and I. Notingher, “Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging,” J. Biophotonics 5(3), 220–229 (2012).
[Crossref] [PubMed]

M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt. 14(5), 054031 (2009).
[Crossref] [PubMed]

Okuno, M.

Padgett, M.

Padgett, M. J.

G. M. Gibson, M. Dienerowitz, P. A. Kelleher, A. R. Harvey, and M. J. Padgett, “A multi-object spectral imaging instrument,” J. Opt. 15(8), 085302 (2013).
[Crossref]

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[Crossref]

Perkins, W.

K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, and I. Notingher, “Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15189–15194 (2013).
[Crossref] [PubMed]

C. J. Rowlands, S. Varma, W. Perkins, I. Leach, H. Williams, and I. Notingher, “Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging,” J. Biophotonics 5(3), 220–229 (2012).
[Crossref] [PubMed]

M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt. 14(5), 054031 (2009).
[Crossref] [PubMed]

Puppels, G. J.

A. Nijssen, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119(1), 64–69 (2002).
[Crossref] [PubMed]

Qi, J.

Rakha, E.

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

Ross, M. I.

N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007).
[Crossref] [PubMed]

Rowlands, C. J.

K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, and I. Notingher, “Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15189–15194 (2013).
[Crossref] [PubMed]

C. J. Rowlands, S. Varma, W. Perkins, I. Leach, H. Williams, and I. Notingher, “Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging,” J. Biophotonics 5(3), 220–229 (2012).
[Crossref] [PubMed]

Rubino, E.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[Crossref]

Sahin, A. A.

N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007).
[Crossref] [PubMed]

Samuel, A. Z.

A. Z. Samuel, S. Yabumoto, K. Kawamura, and K. Iwata, “Rapid microstructure characterization of polymer thin films with 2D-array multifocus Raman microspectroscopy,” Analyst (Lond.) 140(6), 1847–1851 (2015).
[Crossref] [PubMed]

Schaeberle, M. D.

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75(16), 4312–4318 (2003).
[Crossref] [PubMed]

Schlücker, S.

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75(16), 4312–4318 (2003).
[Crossref] [PubMed]

Shafer-Peltier, K. E.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America102(35) 12371–12376 (2005).
[Crossref]

Shepherd, N.

C. Kendall, N. Stone, N. Shepherd, K. Geboes, B. Warren, R. Bennett, and H. Barr, “Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett’s oesophagus,” J. Pathol. 200(5), 602–609 (2003).
[Crossref] [PubMed]

Shih, W. C.

Sinclair, G.

Singletary, S. E.

N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007).
[Crossref] [PubMed]

Sinjab, F.

Smith, Z. J.

Stone, N.

C. Kendall, N. Stone, N. Shepherd, K. Geboes, B. Warren, R. Bennett, and H. Barr, “Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett’s oesophagus,” J. Pathol. 200(5), 602–609 (2003).
[Crossref] [PubMed]

Strombom, S.

Takamori, S.

Thomson, L.

Vargis, E.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref] [PubMed]

Varma, S.

S. Takamori, K. Kong, S. Varma, I. Leach, H. C. Williams, and I. Notingher, “Optimization of multimodal spectral imaging for assessment of resection margins during Mohs micrographic surgery for basal cell carcinoma,” Biomed. Opt. Express 6(1), 98–111 (2015).
[Crossref] [PubMed]

K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, and I. Notingher, “Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15189–15194 (2013).
[Crossref] [PubMed]

C. J. Rowlands, S. Varma, W. Perkins, I. Leach, H. Williams, and I. Notingher, “Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging,” J. Biophotonics 5(3), 220–229 (2012).
[Crossref] [PubMed]

M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt. 14(5), 054031 (2009).
[Crossref] [PubMed]

Villaumie, J. S.

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

Wachsmann-Hogiu, S.

Warren, B.

C. Kendall, N. Stone, N. Shepherd, K. Geboes, B. Warren, R. Bennett, and H. Barr, “Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett’s oesophagus,” J. Pathol. 200(5), 602–609 (2003).
[Crossref] [PubMed]

Whitman, G. J.

N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007).
[Crossref] [PubMed]

Williams, H.

C. J. Rowlands, S. Varma, W. Perkins, I. Leach, H. Williams, and I. Notingher, “Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging,” J. Biophotonics 5(3), 220–229 (2012).
[Crossref] [PubMed]

M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt. 14(5), 054031 (2009).
[Crossref] [PubMed]

Williams, H. C.

S. Takamori, K. Kong, S. Varma, I. Leach, H. C. Williams, and I. Notingher, “Optimization of multimodal spectral imaging for assessment of resection margins during Mohs micrographic surgery for basal cell carcinoma,” Biomed. Opt. Express 6(1), 98–111 (2015).
[Crossref] [PubMed]

K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, and I. Notingher, “Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15189–15194 (2013).
[Crossref] [PubMed]

Wilson, R. H.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref] [PubMed]

Wulff, K.

Yabumoto, S.

A. Z. Samuel, S. Yabumoto, K. Kawamura, and K. Iwata, “Rapid microstructure characterization of polymer thin films with 2D-array multifocus Raman microspectroscopy,” Analyst (Lond.) 140(6), 1847–1851 (2015).
[Crossref] [PubMed]

Zaabar, F.

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

Zeng, H.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

Zoladek, A.

M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt. 14(5), 054031 (2009).
[Crossref] [PubMed]

Anal. Chem. (2)

L. Kong and J. Chan, “A Rapidly Modulated Multifocal Detection Scheme for Parallel Acquisition of Raman Spectra from a 2-D Focal Array,” Anal. Chem. 86(13), 6604–6609 (2014).
[Crossref] [PubMed]

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75(16), 4312–4318 (2003).
[Crossref] [PubMed]

Analyst (Lond.) (1)

A. Z. Samuel, S. Yabumoto, K. Kawamura, and K. Iwata, “Rapid microstructure characterization of polymer thin films with 2D-array multifocus Raman microspectroscopy,” Analyst (Lond.) 140(6), 1847–1851 (2015).
[Crossref] [PubMed]

Ann. Surg. Oncol. (1)

N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Eur. Phys. J. Spec. Top. (1)

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[Crossref]

Int. J. Cancer (1)

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref] [PubMed]

M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt. 14(5), 054031 (2009).
[Crossref] [PubMed]

J. Biophotonics (1)

C. J. Rowlands, S. Varma, W. Perkins, I. Leach, H. Williams, and I. Notingher, “Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging,” J. Biophotonics 5(3), 220–229 (2012).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

A. Nijssen, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119(1), 64–69 (2002).
[Crossref] [PubMed]

J. Opt. (1)

G. M. Gibson, M. Dienerowitz, P. A. Kelleher, A. R. Harvey, and M. J. Padgett, “A multi-object spectral imaging instrument,” J. Opt. 15(8), 085302 (2013).
[Crossref]

J. Pathol. (1)

C. Kendall, N. Stone, N. Shepherd, K. Geboes, B. Warren, R. Bennett, and H. Barr, “Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett’s oesophagus,” J. Pathol. 200(5), 602–609 (2003).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

J. Raman. Spec. (1)

M. Delhaye and P. Dhamelincourt, “Raman microprobe and microscope with laser excitation,” J. Raman. Spec. 3(1), 33–43 (1975).
[Crossref]

Lasers Surg. Med. (1)

C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Med. Biol. (1)

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Biol. 59(20), 6141–6152 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, and I. Notingher, “Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15189–15194 (2013).
[Crossref] [PubMed]

Other (2)

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America102(35) 12371–12376 (2005).
[Crossref]

A. T. Tu, “Raman spectroscopy in biology: principles and applications.” (Wiley, 1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic description of the multifocal RMS instrument. An LC-SLM phase hologram modulates the laser (1) creating an arbitrary excitation pattern in the sample plane shown in (2) (blue circle: 0th order beam on optical axis, red: 1st order reconfigurable off-axis beam). The sampling positions are synchronized with reflective slits on a DMD to spatially filter the Raman light (3) before dispersion onto a CCD inside the spectrometer (4). Glossary: Ti:sapphire laser (TSL), laser clean-up filter (LCF), half-wave plate (HWP), beam expander (BE), liquid-crystal spatial light modulator (LC-SLM), telescope (TEL), dichroic mirror (DCM), inverted optical microscope (IOM), microscope objective (OBJ), digital micro-mirror device (DMD), notch filter (NF) imaging spectrometer (IS), Raman CCD detector (CCD), microscope side-port camera (MSC), DMD inspection camera (DRC).

Fig. 2
Fig. 2

Testing the efficacy of a DMD as a pseudo-slit for Raman micro-spectroscopy: (a) Raman CCD image for a two-point system. (b) Image of the corresponding sample illumination, and (c) the DMD indicator camera (with mirrors inverted to direct only the sampling points towards the camera). Spectral resolution testing: (d) Raman spectra of a tylenol sample for different slit widths on the DMD for a first-order spot, and (e) comparison of the worsening of the spectral resolution for increasing slit width of the DMD-generated reflective slit, and traditional mechanical slit.

Fig. 3
Fig. 3

Homogeneity of multiplexed spectra on a uniform polystyrene substrate for line and arbitrary sampling patterns. CCD images (cropped, resized, and intensity-scaled for clarity) show Raman fingerprint region for line and arbitrary placement of spots, with selected spectra (the most intense corresponding to the 0th order/optic axis for each setup). Total laser power: 2.6W before LC-SLM; integration time: 1 second.

Fig. 4
Fig. 4

Multifocal Raman spectra of a mixed sample consisting of Tylenol and hydroxyapatite powder on a quartz coverslip (micrograph shown in (a)). Sampling points selected manually. Cropped CCD image of the multiplexed spectra (b), reference spectra (c) and the corresponding spectral plots from the labelled sampling points (BG: background, Ty: tylenol, HA: hydroxyapatite) (d). Laser power at sample: ~1W; integration time: 2 seconds.

Fig. 5
Fig. 5

Multiplexed Raman spectra with an optimized blazing function based on 10 beams with total laser power ~1W at sample. Sampling positions selected manually. (a) Microscope camera image of sampling pattern (on polystyrene). (b) Uniform polystyrene film sample (acquisition time 0.1 s); (c) Chicken skin sample, acquisition time 2 seconds. Spectra plotted from binning two CCD tracks from raw image data with no additional processing. In (b) and (c) spectra are shifted vertically for clarity.

Fig. 6
Fig. 6

(a) Average Raman spectra of the healthy skin structures and BCC (samples from 10 patients, total number of Raman spectra was ~40,000). Spectra are shifted vertically for clarity. b). RMS diagnosis of skin surgical resection containing BCC using raster scanning and only the 0th order laser beam (15x15μm2 pixel size, false-positive on hair follicle marked by *) and (c) the adjacent H&E image.

Fig. 7
Fig. 7

Example multiplex Raman measurements and diagnosis for a typical skin tissue sample from surgery. (a) Adjacent H&E tissue section, with the estimated measurement locations shown with green circles and manually selected sampling pattern (scaled up in size for clarity, not representative of exact sampling locations). (b) 6-beam multiplex Raman spectra (with baseline subtracted) from the labelled regions in the bright-field image, with corresponding diagnoses. Total laser power at sample: 1W; integration time: 2 seconds (batches of 6 sampling points). Spectra are shifted vertically for clarity.

Fig. 8
Fig. 8

Automated multiplexed MSI diagnosis of skin tissue using segment-averaged spectra. The expanded view of the segmentation image shows typical batch sampling points with crosses, with the 0th order position marked with circles. Markers of the same color belong to the same batch. Each batch of six spectra was acquired in 2s.

Metrics