Abstract

The SafeBoosC trial showed that cerebral oximetry combined with a treatment guideline can reduce the the burden of hypoxia in neonates by 50% [Brit. Med. J. 350, g7635 (2015)]. However, guidelines based on oximetry by one oximeter are not directly usable by other oximeters. We made a blood-lipid phantom simulating the neonatal head to determine the relation between oxygenation values obtained by different oximeters. We calculated coefficients for easy conversion from one oximeter to the other. We additionally determined the corresponding SafeBoosC intervention thresholds at which we measured an uncertainty of up to 9.2% when varying hemoglobin content from 25μM to 70μM. In conclusion, this paper makes the comparison of absolute values obtained by different oximeters possible.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: an extension

S. Kleiser, D. Ostojic, B. Andresen, N. Nasseri, H. Isler, F. Scholkmann, T. Karen, G. Greisen, and M. Wolf
Biomed. Opt. Express 9(1) 86-101 (2018)

Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom

Simon Hyttel-Sorensen, Stefan Kleiser, Martin Wolf, and Gorm Greisen
Biomed. Opt. Express 4(9) 1662-1672 (2013)

Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy

Nassim Nasseri, Stefan Kleiser, Daniel Ostojic, Tanja Karen, and Martin Wolf
Biomed. Opt. Express 7(11) 4605-4619 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Volpe, “Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances,” Lancet Neurol. 8, 110–124 (2009).
    [Crossref]
  2. S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
    [Crossref] [PubMed]
  3. A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
    [Crossref]
  4. S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm,” Biomed. Opt. Express 2, 3047–3057 (2011).
    [Crossref] [PubMed]
  5. N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18, 160–166 (2008).
    [PubMed]
  6. R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
    [Crossref] [PubMed]
  7. M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near infrared spectroscopy for term and preterm newborns,” J. Near Infrared Spec. 20, 43–55 (2012).
    [Crossref]
  8. B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
    [Crossref] [PubMed]
  9. H. D. Clay, “Validity and reliability of the sjo2 catheter in neurologically impaired patients: a critical review of the literature,” J. Neurosci. Nurs. 32, 194–203 (2000).
    [Crossref] [PubMed]
  10. W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
    [Crossref] [PubMed]
  11. A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
    [Crossref]
  12. L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11, 054005 (2006).
    [Crossref] [PubMed]
  13. C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchre, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
    [Crossref] [PubMed]
  14. M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Mueller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
    [Crossref] [PubMed]
  15. L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
    [Crossref] [PubMed]
  16. T. Szczapa, L. Karpinski, J. Moczko, M. Weindling, A. Kornacka, K. Wroblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
    [Crossref]
  17. T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of INVOS and FORE-SIGHT near-infrared spectroscopy oximeters,” Acta Paediatr. 103, 488–493 (2014).
    [Crossref] [PubMed]
  18. A. Schneider, B. Minnich, E. Hofstaetter, C. Weisser, E. Hattinger-Jurgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
    [Crossref] [PubMed]
  19. A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt. 11, 014007 (2006).
    [Crossref] [PubMed]
  20. S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
    [Crossref]
  21. C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
    [Crossref] [PubMed]
  22. J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52, 6295–6322 (2007).
    [Crossref] [PubMed]
  23. E. L. Hull, M. G. Nichols, and T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
    [Crossref] [PubMed]
  24. A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4, 29 (2005).
    [Crossref] [PubMed]
  25. J. Kraitl, U. Timm, and H. Ewald, “Non-invasive measurement of blood and tissue parameters based on vis-nir spectroscopy,” Proc. SPIE 8591, 859105 (2013).
    [Crossref]
  26. S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4, 1662–1672 (2013).
    [Crossref] [PubMed]
  27. S. Kleiser, S. Hyttel-Sorensen, G. Greisen, and M. Wolf, “Comparison of near-infrared oximeters in a liquid optical phantom with varying intralipid and blood content,” Adv. Exp. Med. Biol. 876, 413–418 (2016).
    [Crossref] [PubMed]
  28. N. Nasseri, S. Kleiser, S. Reidt, and M. Wolf, “Local measurement of flap oxygen saturation; an application of visible light spectroscopy,” Adv. Exp. Med. Biol. 876, 391–397 (2016).
    [Crossref]
  29. C. Kurth and B. Uher, “Cerebral hemoglobin and optical pathlength influence near-infrared spectroscopy measurement of cerebral oxygen saturation,” Anesth. Analg. 84, 1297–1305 (1997).
    [PubMed]
  30. S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
    [PubMed]
  31. “The INVOS system improving patient outcomes through cerebral/somatic oximetry,” Tech. Rep. 11-PM-0256 MN21010, Medtronic, Inc., Minneapolis, MN, USA (2011).
  32. “Model 8004CA, Instructions for use - english,” Tech. Rep. 9539-001-02, Nonin Medical, Inc., 13700 1st Avenue North Plymouth, MN, 55441–55443, USA (2014).
  33. “Model 8004CB-NA, Instructions for use - english,” Tech. Rep. 9223-001-02, Nonin Medical, Inc., 13700 1st Avenue North Plymouth, MN, 55441–55443, USA (2014).
  34. D. Hueber, S. Fantini, A. Cerussi, and B. Beniamino, “New optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements,” Proc. SPIE 3597, 618–631 (1999).
    [Crossref]
  35. “Oxiplexts near infrared, non-invasive, tissue spectrometer,” Tech. rep., ISS, Inc., 1602 Newton Drive Champaign, Illinois 61822, USA (2001).
  36. R. Dash and J. Bassingthwaighte, “Erratum to: Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2, 3 – DPG and temperature levels,” Ann. Biomed. Eng. 38, 1683–1701 (2010).
    [Crossref] [PubMed]
  37. R. Dash, B. Korman, and J. Bassingthwaighte, “Simple accurate mathematical models of blood HbO2 and HbCO2 dissociation curves at varied physiological conditions - Evaluation and comparison with other models,” Eur. J. Appl. Physiol. 116, 97–113 (2016).
    [Crossref]
  38. T. Yoshida and S. S. Shevkoplyas, “Anaerobic storage of red blood cells,” Blood Transfus. 8, 220–236 (2010).
    [PubMed]
  39. A. J. Bellingham, J. C. Detter, and C. Lenfant, “Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis,” J. Clin. Invest. 50, 700–706 (1971).
    [Crossref] [PubMed]
  40. W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin Determination and Application (VSP Utrecht, 2000).
  41. R. Wodick and D. W. Luebbers, “Quantitative analysis of reflection spectra and other spectra of inhomogeneous light paths conducted in multi component systems with the aid of interval analysis part 1,” Biol. Chem. 354, 903–915 (1973).
  42. J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
    [Crossref] [PubMed]
  43. A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19, 017004 (2014).
    [Crossref]
  44. “SenSmart model X-100 universal oximetry system for pediatric patients,” Tech. Rep. 10392-001-01, Nonin Medical, Inc., 13700 1st Avenue North Plymouth, MN, 55441-5443, USA (2014).
  45. S. J. Arri, T. Muehlemann, M. Biallas, H. U. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16, 047005 (2011).
    [Crossref] [PubMed]
  46. S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
    [Crossref] [PubMed]
  47. J. Dobbing and J. Sands, “Quantitative growth and development of human brain,” Arch. Dis. Child. 48, 757–767 (1973).
    [Crossref] [PubMed]
  48. S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
    [Crossref]
  49. Y. Sakata, M. W. Abajian, M. O. Ripple, and R. Springett, “Measurement of the oxidation state of mitochondrial cytochrome c from the neocortex of the mammalian brain,” Biomed. Opt. Express 3, 1933–1946 (2012).
    [Crossref] [PubMed]
  50. Y. Nosoh, “Absorption spectrum of actively respiring yeast cells,” Arch. Biochem. Biophys. 105, 439–445 (1964).
    [Crossref] [PubMed]
  51. A. Demel, M. Wolf, C. F. Poets, and A. R. Franz, “Effect of different assumptions for brain water content on absolute measures of cerebral oxygenation determined by frequency-domain near-infrared spectroscopy in preterm infants: an observational study,” BMC Pediatr. 14, 1–6 (2014).
    [Crossref]

2016 (3)

S. Kleiser, S. Hyttel-Sorensen, G. Greisen, and M. Wolf, “Comparison of near-infrared oximeters in a liquid optical phantom with varying intralipid and blood content,” Adv. Exp. Med. Biol. 876, 413–418 (2016).
[Crossref] [PubMed]

N. Nasseri, S. Kleiser, S. Reidt, and M. Wolf, “Local measurement of flap oxygen saturation; an application of visible light spectroscopy,” Adv. Exp. Med. Biol. 876, 391–397 (2016).
[Crossref]

R. Dash, B. Korman, and J. Bassingthwaighte, “Simple accurate mathematical models of blood HbO2 and HbCO2 dissociation curves at varied physiological conditions - Evaluation and comparison with other models,” Eur. J. Appl. Physiol. 116, 97–113 (2016).
[Crossref]

2015 (1)

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

2014 (4)

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of INVOS and FORE-SIGHT near-infrared spectroscopy oximeters,” Acta Paediatr. 103, 488–493 (2014).
[Crossref] [PubMed]

A. Schneider, B. Minnich, E. Hofstaetter, C. Weisser, E. Hattinger-Jurgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19, 017004 (2014).
[Crossref]

A. Demel, M. Wolf, C. F. Poets, and A. R. Franz, “Effect of different assumptions for brain water content on absolute measures of cerebral oxygenation determined by frequency-domain near-infrared spectroscopy in preterm infants: an observational study,” BMC Pediatr. 14, 1–6 (2014).
[Crossref]

2013 (6)

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

T. Szczapa, L. Karpinski, J. Moczko, M. Weindling, A. Kornacka, K. Wroblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

J. Kraitl, U. Timm, and H. Ewald, “Non-invasive measurement of blood and tissue parameters based on vis-nir spectroscopy,” Proc. SPIE 8591, 859105 (2013).
[Crossref]

S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4, 1662–1672 (2013).
[Crossref] [PubMed]

2012 (3)

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near infrared spectroscopy for term and preterm newborns,” J. Near Infrared Spec. 20, 43–55 (2012).
[Crossref]

Y. Sakata, M. W. Abajian, M. O. Ripple, and R. Springett, “Measurement of the oxidation state of mitochondrial cytochrome c from the neocortex of the mammalian brain,” Biomed. Opt. Express 3, 1933–1946 (2012).
[Crossref] [PubMed]

2011 (4)

S. J. Arri, T. Muehlemann, M. Biallas, H. U. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16, 047005 (2011).
[Crossref] [PubMed]

S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm,” Biomed. Opt. Express 2, 3047–3057 (2011).
[Crossref] [PubMed]

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchre, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Mueller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

2010 (2)

T. Yoshida and S. S. Shevkoplyas, “Anaerobic storage of red blood cells,” Blood Transfus. 8, 220–236 (2010).
[PubMed]

R. Dash and J. Bassingthwaighte, “Erratum to: Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2, 3 – DPG and temperature levels,” Ann. Biomed. Eng. 38, 1683–1701 (2010).
[Crossref] [PubMed]

2009 (1)

J. J. Volpe, “Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances,” Lancet Neurol. 8, 110–124 (2009).
[Crossref]

2008 (1)

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18, 160–166 (2008).
[PubMed]

2007 (1)

J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52, 6295–6322 (2007).
[Crossref] [PubMed]

2006 (2)

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11, 054005 (2006).
[Crossref] [PubMed]

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt. 11, 014007 (2006).
[Crossref] [PubMed]

2005 (2)

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4, 29 (2005).
[Crossref] [PubMed]

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

2004 (1)

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[Crossref] [PubMed]

2003 (1)

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
[Crossref]

2000 (1)

H. D. Clay, “Validity and reliability of the sjo2 catheter in neurologically impaired patients: a critical review of the literature,” J. Neurosci. Nurs. 32, 194–203 (2000).
[Crossref] [PubMed]

1999 (3)

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
[Crossref] [PubMed]

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

D. Hueber, S. Fantini, A. Cerussi, and B. Beniamino, “New optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements,” Proc. SPIE 3597, 618–631 (1999).
[Crossref]

1998 (1)

E. L. Hull, M. G. Nichols, and T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[Crossref] [PubMed]

1997 (2)

C. Kurth and B. Uher, “Cerebral hemoglobin and optical pathlength influence near-infrared spectroscopy measurement of cerebral oxygen saturation,” Anesth. Analg. 84, 1297–1305 (1997).
[PubMed]

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

1995 (2)

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
[Crossref]

1973 (2)

J. Dobbing and J. Sands, “Quantitative growth and development of human brain,” Arch. Dis. Child. 48, 757–767 (1973).
[Crossref] [PubMed]

R. Wodick and D. W. Luebbers, “Quantitative analysis of reflection spectra and other spectra of inhomogeneous light paths conducted in multi component systems with the aid of interval analysis part 1,” Biol. Chem. 354, 903–915 (1973).

1971 (1)

A. J. Bellingham, J. C. Detter, and C. Lenfant, “Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis,” J. Clin. Invest. 50, 700–706 (1971).
[Crossref] [PubMed]

1964 (1)

Y. Nosoh, “Absorption spectrum of actively respiring yeast cells,” Arch. Biochem. Biophys. 105, 439–445 (1964).
[Crossref] [PubMed]

Abajian, M. W.

Adamczak, A.

T. Szczapa, L. Karpinski, J. Moczko, M. Weindling, A. Kornacka, K. Wroblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Alderliesten, T.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

Ames, W. A.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Arri, S. J.

S. J. Arri, T. Muehlemann, M. Biallas, H. U. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16, 047005 (2011).
[Crossref] [PubMed]

Austin, T.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

Baenziger, O.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
[Crossref]

Baerts, W.

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

Bassingthwaighte, J.

R. Dash, B. Korman, and J. Bassingthwaighte, “Simple accurate mathematical models of blood HbO2 and HbCO2 dissociation curves at varied physiological conditions - Evaluation and comparison with other models,” Eur. J. Appl. Physiol. 116, 97–113 (2016).
[Crossref]

R. Dash and J. Bassingthwaighte, “Erratum to: Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2, 3 – DPG and temperature levels,” Ann. Biomed. Eng. 38, 1683–1701 (2010).
[Crossref] [PubMed]

Bellingham, A. J.

A. J. Bellingham, J. C. Detter, and C. Lenfant, “Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis,” J. Clin. Invest. 50, 700–706 (1971).
[Crossref] [PubMed]

Benders, M.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

Beniamino, B.

D. Hueber, S. Fantini, A. Cerussi, and B. Beniamino, “New optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements,” Proc. SPIE 3597, 618–631 (1999).
[Crossref]

Berger, F.

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18, 160–166 (2008).
[PubMed]

Biallas, M.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchre, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

S. J. Arri, T. Muehlemann, M. Biallas, H. U. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16, 047005 (2011).
[Crossref] [PubMed]

Bozkurt, A.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4, 29 (2005).
[Crossref] [PubMed]

Bucher, H. U.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchre, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

S. J. Arri, T. Muehlemann, M. Biallas, H. U. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16, 047005 (2011).
[Crossref] [PubMed]

Buursma, A.

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin Determination and Application (VSP Utrecht, 2000).

Cerussi, A.

D. Hueber, S. Fantini, A. Cerussi, and B. Beniamino, “New optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements,” Proc. SPIE 3597, 618–631 (1999).
[Crossref]

Chance, B.

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

Choi, J.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[Crossref] [PubMed]

Chojnacka, K.

T. Szczapa, L. Karpinski, J. Moczko, M. Weindling, A. Kornacka, K. Wroblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Claris, O.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

Clay, H. D.

H. D. Clay, “Validity and reliability of the sjo2 catheter in neurologically impaired patients: a critical review of the literature,” J. Neurosci. Nurs. 32, 194–203 (2000).
[Crossref] [PubMed]

Cope, M.

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
[Crossref]

Coplin, W. M.

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Dash, R.

R. Dash, B. Korman, and J. Bassingthwaighte, “Simple accurate mathematical models of blood HbO2 and HbCO2 dissociation curves at varied physiological conditions - Evaluation and comparison with other models,” Eur. J. Appl. Physiol. 116, 97–113 (2016).
[Crossref]

R. Dash and J. Bassingthwaighte, “Erratum to: Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2, 3 – DPG and temperature levels,” Ann. Biomed. Eng. 38, 1683–1701 (2010).
[Crossref] [PubMed]

De Grand, A. M.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt. 11, 014007 (2006).
[Crossref] [PubMed]

Delpy, D. T.

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
[Crossref]

Demel, A.

A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19, 017004 (2014).
[Crossref]

A. Demel, M. Wolf, C. F. Poets, and A. R. Franz, “Effect of different assumptions for brain water content on absolute measures of cerebral oxygenation determined by frequency-domain near-infrared spectroscopy in preterm infants: an observational study,” BMC Pediatr. 14, 1–6 (2014).
[Crossref]

Dempsey, E.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

Dempsey, E. M.

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

Detter, J. C.

A. J. Bellingham, J. C. Detter, and C. Lenfant, “Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis,” J. Clin. Invest. 50, 700–706 (1971).
[Crossref] [PubMed]

Dix, L. M.

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

Dobbing, J.

J. Dobbing and J. Sands, “Quantitative growth and development of human brain,” Arch. Dis. Child. 48, 757–767 (1973).
[Crossref] [PubMed]

Dullenkopf, A.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
[Crossref]

Ebeling, B.

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
[Crossref] [PubMed]

Ewald, H.

J. Kraitl, U. Timm, and H. Ewald, “Non-invasive measurement of blood and tissue parameters based on vis-nir spectroscopy,” Proc. SPIE 8591, 859105 (2013).
[Crossref]

Ewert, P.

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18, 160–166 (2008).
[PubMed]

Fantini, S.

D. Hueber, S. Fantini, A. Cerussi, and B. Beniamino, “New optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements,” Proc. SPIE 3597, 618–631 (1999).
[Crossref]

Fauchre, J.-C.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchre, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

Feilke, K.

A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19, 017004 (2014).
[Crossref]

Fleck, T.

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18, 160–166 (2008).
[PubMed]

Foster, T. H.

E. L. Hull, M. G. Nichols, and T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[Crossref] [PubMed]

Frangioni, J. V.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt. 11, 014007 (2006).
[Crossref] [PubMed]

Franz, A. R.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19, 017004 (2014).
[Crossref]

A. Demel, M. Wolf, C. F. Poets, and A. R. Franz, “Effect of different assumptions for brain water content on absolute measures of cerebral oxygenation determined by frequency-domain near-infrared spectroscopy in preterm infants: an observational study,” BMC Pediatr. 14, 1–6 (2014).
[Crossref]

Frenkel, C.

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
[Crossref] [PubMed]

Frey, B.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
[Crossref]

Fumagalli, M.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

Fumagally, M.

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

Gadzinowski, J.

T. Szczapa, L. Karpinski, J. Moczko, M. Weindling, A. Kornacka, K. Wroblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Gerber, A.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
[Crossref]

Glatz, A. C.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Gluud, C.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

Gogbashian, A.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt. 11, 014007 (2006).
[Crossref] [PubMed]

Grady, M. S.

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Grant, G. A.

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Gratton, E.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[Crossref] [PubMed]

Greisen, G.

S. Kleiser, S. Hyttel-Sorensen, G. Greisen, and M. Wolf, “Comparison of near-infrared oximeters in a liquid optical phantom with varying intralipid and blood content,” Adv. Exp. Med. Biol. 876, 413–418 (2016).
[Crossref] [PubMed]

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of INVOS and FORE-SIGHT near-infrared spectroscopy oximeters,” Acta Paediatr. 103, 488–493 (2014).
[Crossref] [PubMed]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4, 1662–1672 (2013).
[Crossref] [PubMed]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near infrared spectroscopy for term and preterm newborns,” J. Near Infrared Spec. 20, 43–55 (2012).
[Crossref]

S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm,” Biomed. Opt. Express 2, 3047–3057 (2011).
[Crossref] [PubMed]

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11, 054005 (2006).
[Crossref] [PubMed]

Grevstad, B.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

Gupta, R.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[Crossref] [PubMed]

Hagmann, C.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

Hattinger-Jurgenssen, E.

A. Schneider, B. Minnich, E. Hofstaetter, C. Weisser, E. Hattinger-Jurgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Hellstrm-Westas, L.

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

Hellstrom-Westas, L.

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

Hessel, T. W.

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of INVOS and FORE-SIGHT near-infrared spectroscopy oximeters,” Acta Paediatr. 103, 488–493 (2014).
[Crossref] [PubMed]

Hill, K. D.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Hirsch, R.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Hoffman, J.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Hofstaetter, E.

A. Schneider, B. Minnich, E. Hofstaetter, C. Weisser, E. Hattinger-Jurgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Hueber, D.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[Crossref] [PubMed]

D. Hueber, S. Fantini, A. Cerussi, and B. Beniamino, “New optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements,” Proc. SPIE 3597, 618–631 (1999).
[Crossref]

Hull, E. L.

E. L. Hull, M. G. Nichols, and T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[Crossref] [PubMed]

Hyttel-Sorensen, S.

S. Kleiser, S. Hyttel-Sorensen, G. Greisen, and M. Wolf, “Comparison of near-infrared oximeters in a liquid optical phantom with varying intralipid and blood content,” Adv. Exp. Med. Biol. 876, 413–418 (2016).
[Crossref] [PubMed]

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of INVOS and FORE-SIGHT near-infrared spectroscopy oximeters,” Acta Paediatr. 103, 488–493 (2014).
[Crossref] [PubMed]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4, 1662–1672 (2013).
[Crossref] [PubMed]

S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm,” Biomed. Opt. Express 2, 3047–3057 (2011).
[Crossref] [PubMed]

Ijichi, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Imai, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Isobe, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Itoh, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Jenny, C.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchre, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

Jopek, A.

T. Szczapa, L. Karpinski, J. Moczko, M. Weindling, A. Kornacka, K. Wroblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Karpinski, L.

T. Szczapa, L. Karpinski, J. Moczko, M. Weindling, A. Kornacka, K. Wroblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Kawada, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Kim, J. G.

J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52, 6295–6322 (2007).
[Crossref] [PubMed]

Kirkpatrick, P. J.

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
[Crossref]

Kleiser, S.

S. Kleiser, S. Hyttel-Sorensen, G. Greisen, and M. Wolf, “Comparison of near-infrared oximeters in a liquid optical phantom with varying intralipid and blood content,” Adv. Exp. Med. Biol. 876, 413–418 (2016).
[Crossref] [PubMed]

N. Nasseri, S. Kleiser, S. Reidt, and M. Wolf, “Local measurement of flap oxygen saturation; an application of visible light spectroscopy,” Adv. Exp. Med. Biol. 876, 391–397 (2016).
[Crossref]

S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4, 1662–1672 (2013).
[Crossref] [PubMed]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near infrared spectroscopy for term and preterm newborns,” J. Near Infrared Spec. 20, 43–55 (2012).
[Crossref]

Kobayashi, Y.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Korman, B.

R. Dash, B. Korman, and J. Bassingthwaighte, “Simple accurate mathematical models of blood HbO2 and HbCO2 dissociation curves at varied physiological conditions - Evaluation and comparison with other models,” Eur. J. Appl. Physiol. 116, 97–113 (2016).
[Crossref]

Kornacka, A.

T. Szczapa, L. Karpinski, J. Moczko, M. Weindling, A. Kornacka, K. Wroblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Kraitl, J.

J. Kraitl, U. Timm, and H. Ewald, “Non-invasive measurement of blood and tissue parameters based on vis-nir spectroscopy,” Proc. SPIE 8591, 859105 (2013).
[Crossref]

Kreeger, R. N.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Kurth, C.

C. Kurth and B. Uher, “Cerebral hemoglobin and optical pathlength influence near-infrared spectroscopy measurement of cerebral oxygen saturation,” Anesth. Analg. 84, 1297–1305 (1997).
[PubMed]

Kurth, C. D.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

Kusaka, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Lam, A. M.

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Laurence, R. G.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt. 11, 014007 (2006).
[Crossref] [PubMed]

Lee, D. S.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt. 11, 014007 (2006).
[Crossref] [PubMed]

Lemmers, P.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

Lemmers, P. M.

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

Lenfant, C.

A. J. Bellingham, J. C. Detter, and C. Lenfant, “Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis,” J. Clin. Invest. 50, 700–706 (1971).
[Crossref] [PubMed]

Liu, H.

J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52, 6295–6322 (2007).
[Crossref] [PubMed]

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

Lomnes, S. J.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt. 11, 014007 (2006).
[Crossref] [PubMed]

Luebbers, D. W.

R. Wodick and D. W. Luebbers, “Quantitative analysis of reflection spectra and other spectra of inhomogeneous light paths conducted in multi component systems with the aid of interval analysis part 1,” Biol. Chem. 354, 903–915 (1973).

Mantulin, W.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[Crossref] [PubMed]

March, K. S.

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Matcher, S. J.

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
[Crossref]

Meyer, B.

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
[Crossref] [PubMed]

Michalos, A.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[Crossref] [PubMed]

Miera, O.

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18, 160–166 (2008).
[PubMed]

Minnich, B.

A. Schneider, B. Minnich, E. Hofstaetter, C. Weisser, E. Hattinger-Jurgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Moczko, J.

T. Szczapa, L. Karpinski, J. Moczko, M. Weindling, A. Kornacka, K. Wroblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Morgan, T. G.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt. 11, 014007 (2006).
[Crossref] [PubMed]

Muehlemann, T.

S. J. Arri, T. Muehlemann, M. Biallas, H. U. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16, 047005 (2011).
[Crossref] [PubMed]

Mueller, W.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Mueller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

Nagdyman, N.

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18, 160–166 (2008).
[PubMed]

Nahid, K.

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
[Crossref]

Namba, M.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Nasseri, N.

N. Nasseri, S. Kleiser, S. Reidt, and M. Wolf, “Local measurement of flap oxygen saturation; an application of visible light spectroscopy,” Adv. Exp. Med. Biol. 876, 391–397 (2016).
[Crossref]

Naulaers, G.

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near infrared spectroscopy for term and preterm newborns,” J. Near Infrared Spec. 20, 43–55 (2012).
[Crossref]

Nichols, M. G.

E. L. Hull, M. G. Nichols, and T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[Crossref] [PubMed]

Nicolson, S. C.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Nishida, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Nosoh, Y.

Y. Nosoh, “Absorption spectrum of actively respiring yeast cells,” Arch. Biochem. Biophys. 105, 439–445 (1964).
[Crossref] [PubMed]

O’Keefe, G. E.

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Ohnishi, S.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt. 11, 014007 (2006).
[Crossref] [PubMed]

Okada, H.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Okubo, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Onaral, B.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4, 29 (2005).
[Crossref] [PubMed]

Ozaki, T.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Pellicer, A.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

Peng, L. F.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Peters, B.

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18, 160–166 (2008).
[PubMed]

Pichler, G.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Mueller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

Pietrzykowski, M.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt. 11, 014007 (2006).
[Crossref] [PubMed]

Plomgaard, A. M.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

Pocivalnik, M.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Mueller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

Poets, C. F.

A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19, 017004 (2014).
[Crossref]

A. Demel, M. Wolf, C. F. Poets, and A. R. Franz, “Effect of different assumptions for brain water content on absolute measures of cerebral oxygenation determined by frequency-domain near-infrared spectroscopy in preterm infants: an observational study,” BMC Pediatr. 14, 1–6 (2014).
[Crossref]

Polzonetti, C.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[Crossref] [PubMed]

Ramamoorthy, C.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Reidt, S.

N. Nasseri, S. Kleiser, S. Reidt, and M. Wolf, “Local measurement of flap oxygen saturation; an application of visible light spectroscopy,” Adv. Exp. Med. Biol. 876, 391–397 (2016).
[Crossref]

Riera, J.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm,” Biomed. Opt. Express 2, 3047–3057 (2011).
[Crossref] [PubMed]

Ripple, M. O.

Roll, C.

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

Rosen, A.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4, 29 (2005).
[Crossref] [PubMed]

Rosen, H.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4, 29 (2005).
[Crossref] [PubMed]

Safonova, L. P.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[Crossref] [PubMed]

Sakata, Y.

Sanchez, L.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

Sands, J.

J. Dobbing and J. Sands, “Quantitative growth and development of human brain,” Arch. Dis. Child. 48, 757–767 (1973).
[Crossref] [PubMed]

Schaller, C.

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
[Crossref] [PubMed]

Schneider, A.

A. Schneider, B. Minnich, E. Hofstaetter, C. Weisser, E. Hattinger-Jurgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Schramm, J.

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
[Crossref] [PubMed]

Shevkoplyas, S. S.

T. Yoshida and S. S. Shevkoplyas, “Anaerobic storage of red blood cells,” Blood Transfus. 8, 220–236 (2010).
[PubMed]

Skoog, M.

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

Sorensen, L. C.

Springett, R.

Stoy, L. S.

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

Suzuki, S.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Szczapa, T.

T. Szczapa, L. Karpinski, J. Moczko, M. Weindling, A. Kornacka, K. Wroblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Takasaki, S.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Tax, N.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Mueller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

Thayer, W. S.

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

Timm, U.

J. Kraitl, U. Timm, and H. Ewald, “Non-invasive measurement of blood and tissue parameters based on vis-nir spectroscopy,” Proc. SPIE 8591, 859105 (2013).
[Crossref]

Tomasson, J.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Toronov, V.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[Crossref] [PubMed]

Trajkovic, I.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchre, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

Uher, B.

C. Kurth and B. Uher, “Cerebral hemoglobin and optical pathlength influence near-infrared spectroscopy measurement of cerebral oxygen saturation,” Anesth. Analg. 84, 1297–1305 (1997).
[PubMed]

Urlesberger, B.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Mueller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

van Assendelft, O. W.

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin Determination and Application (VSP Utrecht, 2000).

van Bel, F.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near infrared spectroscopy for term and preterm newborns,” J. Near Infrared Spec. 20, 43–55 (2012).
[Crossref]

van Oeveren, W.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

Volpe, J. J.

J. J. Volpe, “Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances,” Lancet Neurol. 8, 110–124 (2009).
[Crossref]

Wald, M.

A. Schneider, B. Minnich, E. Hofstaetter, C. Weisser, E. Hattinger-Jurgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Weindling, M.

T. Szczapa, L. Karpinski, J. Moczko, M. Weindling, A. Kornacka, K. Wroblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Weiss, M.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
[Crossref]

Weisser, C.

A. Schneider, B. Minnich, E. Hofstaetter, C. Weisser, E. Hattinger-Jurgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Winkel, P.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

Winn, H. R.

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Wodick, R.

R. Wodick and D. W. Luebbers, “Quantitative analysis of reflection spectra and other spectra of inhomogeneous light paths conducted in multi component systems with the aid of interval analysis part 1,” Biol. Chem. 354, 903–915 (1973).

Wolf, M.

N. Nasseri, S. Kleiser, S. Reidt, and M. Wolf, “Local measurement of flap oxygen saturation; an application of visible light spectroscopy,” Adv. Exp. Med. Biol. 876, 391–397 (2016).
[Crossref]

S. Kleiser, S. Hyttel-Sorensen, G. Greisen, and M. Wolf, “Comparison of near-infrared oximeters in a liquid optical phantom with varying intralipid and blood content,” Adv. Exp. Med. Biol. 876, 413–418 (2016).
[Crossref] [PubMed]

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19, 017004 (2014).
[Crossref]

A. Demel, M. Wolf, C. F. Poets, and A. R. Franz, “Effect of different assumptions for brain water content on absolute measures of cerebral oxygenation determined by frequency-domain near-infrared spectroscopy in preterm infants: an observational study,” BMC Pediatr. 14, 1–6 (2014).
[Crossref]

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, “Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom,” Biomed. Opt. Express 4, 1662–1672 (2013).
[Crossref] [PubMed]

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near infrared spectroscopy for term and preterm newborns,” J. Near Infrared Spec. 20, 43–55 (2012).
[Crossref]

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchre, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

S. J. Arri, T. Muehlemann, M. Biallas, H. U. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16, 047005 (2011).
[Crossref] [PubMed]

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[Crossref] [PubMed]

Wolf, U.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[Crossref] [PubMed]

Wroblewska, K.

T. Szczapa, L. Karpinski, J. Moczko, M. Weindling, A. Kornacka, K. Wroblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

Yoshida, T.

T. Yoshida and S. S. Shevkoplyas, “Anaerobic storage of red blood cells,” Blood Transfus. 8, 220–236 (2010).
[PubMed]

Zijlstra, W. G.

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin Determination and Application (VSP Utrecht, 2000).

Zotter, H.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Mueller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

Acta Paediatr. (2)

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of INVOS and FORE-SIGHT near-infrared spectroscopy oximeters,” Acta Paediatr. 103, 488–493 (2014).
[Crossref] [PubMed]

A. Schneider, B. Minnich, E. Hofstaetter, C. Weisser, E. Hattinger-Jurgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (2)

S. Kleiser, S. Hyttel-Sorensen, G. Greisen, and M. Wolf, “Comparison of near-infrared oximeters in a liquid optical phantom with varying intralipid and blood content,” Adv. Exp. Med. Biol. 876, 413–418 (2016).
[Crossref] [PubMed]

N. Nasseri, S. Kleiser, S. Reidt, and M. Wolf, “Local measurement of flap oxygen saturation; an application of visible light spectroscopy,” Adv. Exp. Med. Biol. 876, 391–397 (2016).
[Crossref]

Anesth. Analg. (1)

C. Kurth and B. Uher, “Cerebral hemoglobin and optical pathlength influence near-infrared spectroscopy measurement of cerebral oxygen saturation,” Anesth. Analg. 84, 1297–1305 (1997).
[PubMed]

Ann. Biomed. Eng. (1)

R. Dash and J. Bassingthwaighte, “Erratum to: Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2, 3 – DPG and temperature levels,” Ann. Biomed. Eng. 38, 1683–1701 (2010).
[Crossref] [PubMed]

Ann. Thorac. Surg. (1)

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Arch. Biochem. Biophys. (1)

Y. Nosoh, “Absorption spectrum of actively respiring yeast cells,” Arch. Biochem. Biophys. 105, 439–445 (1964).
[Crossref] [PubMed]

Arch. Dis. Child. (1)

J. Dobbing and J. Sands, “Quantitative growth and development of human brain,” Arch. Dis. Child. 48, 757–767 (1973).
[Crossref] [PubMed]

Biol. Chem. (1)

R. Wodick and D. W. Luebbers, “Quantitative analysis of reflection spectra and other spectra of inhomogeneous light paths conducted in multi component systems with the aid of interval analysis part 1,” Biol. Chem. 354, 903–915 (1973).

Biomed. Eng. Online (1)

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4, 29 (2005).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Blood Transfus. (1)

T. Yoshida and S. S. Shevkoplyas, “Anaerobic storage of red blood cells,” Blood Transfus. 8, 220–236 (2010).
[PubMed]

BMC Pediatr. (1)

A. Demel, M. Wolf, C. F. Poets, and A. R. Franz, “Effect of different assumptions for brain water content on absolute measures of cerebral oxygenation determined by frequency-domain near-infrared spectroscopy in preterm infants: an observational study,” BMC Pediatr. 14, 1–6 (2014).
[Crossref]

Brit. Med. J. (1)

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial,” Brit. Med. J. 350, g7635 (2015).
[Crossref] [PubMed]

Dan. Med. J. (1)

S. Hyttel-Sorensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellstrom-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Stoy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan. Med. J. 60, A4533 (2013).
[PubMed]

Eur. J. Appl. Physiol. (1)

R. Dash, B. Korman, and J. Bassingthwaighte, “Simple accurate mathematical models of blood HbO2 and HbCO2 dissociation curves at varied physiological conditions - Evaluation and comparison with other models,” Eur. J. Appl. Physiol. 116, 97–113 (2016).
[Crossref]

J. Biomed. Opt. (8)

T. Szczapa, L. Karpinski, J. Moczko, M. Weindling, A. Kornacka, K. Wroblewska, A. Adamczak, A. Jopek, K. Chojnacka, and J. Gadzinowski, “Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter,” J. Biomed. Opt. 18, 087006 (2013).
[Crossref]

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt. 11, 014007 (2006).
[Crossref] [PubMed]

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11, 054005 (2006).
[Crossref] [PubMed]

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchre, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16, 097004 (2011).
[Crossref] [PubMed]

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Mueller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16, 057004 (2011).
[Crossref] [PubMed]

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[Crossref] [PubMed]

A. Demel, K. Feilke, M. Wolf, C. F. Poets, and A. R. Franz, “Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants,” J. Biomed. Opt. 19, 017004 (2014).
[Crossref]

S. J. Arri, T. Muehlemann, M. Biallas, H. U. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16, 047005 (2011).
[Crossref] [PubMed]

J. Clin. Invest. (1)

A. J. Bellingham, J. C. Detter, and C. Lenfant, “Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis,” J. Clin. Invest. 50, 700–706 (1971).
[Crossref] [PubMed]

J. Near Infrared Spec. (1)

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near infrared spectroscopy for term and preterm newborns,” J. Near Infrared Spec. 20, 43–55 (2012).
[Crossref]

J. Neurosci. Nurs. (1)

H. D. Clay, “Validity and reliability of the sjo2 catheter in neurologically impaired patients: a critical review of the literature,” J. Neurosci. Nurs. 32, 194–203 (2000).
[Crossref] [PubMed]

Lancet Neurol. (1)

J. J. Volpe, “Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances,” Lancet Neurol. 8, 110–124 (2009).
[Crossref]

Neonatology (1)

A. Pellicer, G. Greisen, M. Benders, O. Claris, E. Dempsey, M. Fumagally, C. Gluud, C. Hagmann, L. Hellstrm-Westas, S. Hyttel-Sorensen, P. Lemmers, G. Naulaers, G. Pichler, C. Roll, F. van Bel, W. van Oeveren, M. Skoog, M. Wolf, and T. Austin, “The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants,” Neonatology 104, 171–178 (2013).
[Crossref]

Neurosurgery (1)

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Paediatr. Anaesth. (1)

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18, 160–166 (2008).
[PubMed]

Pediatr. Anesth. (1)

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Pediatr. Anesth. 13, 384–391 (2003).
[Crossref]

Pediatr. Res. (2)

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Phys. Med. Biol. (3)

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52, 6295–6322 (2007).
[Crossref] [PubMed]

E. L. Hull, M. G. Nichols, and T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[Crossref] [PubMed]

Proc. SPIE (4)

J. Kraitl, U. Timm, and H. Ewald, “Non-invasive measurement of blood and tissue parameters based on vis-nir spectroscopy,” Proc. SPIE 8591, 859105 (2013).
[Crossref]

D. Hueber, S. Fantini, A. Cerussi, and B. Beniamino, “New optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements,” Proc. SPIE 3597, 618–631 (1999).
[Crossref]

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
[Crossref]

Stroke (1)

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
[Crossref] [PubMed]

Other (6)

“Oxiplexts near infrared, non-invasive, tissue spectrometer,” Tech. rep., ISS, Inc., 1602 Newton Drive Champaign, Illinois 61822, USA (2001).

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin Determination and Application (VSP Utrecht, 2000).

“The INVOS system improving patient outcomes through cerebral/somatic oximetry,” Tech. Rep. 11-PM-0256 MN21010, Medtronic, Inc., Minneapolis, MN, USA (2011).

“Model 8004CA, Instructions for use - english,” Tech. Rep. 9539-001-02, Nonin Medical, Inc., 13700 1st Avenue North Plymouth, MN, 55441–55443, USA (2014).

“Model 8004CB-NA, Instructions for use - english,” Tech. Rep. 9223-001-02, Nonin Medical, Inc., 13700 1st Avenue North Plymouth, MN, 55441–55443, USA (2014).

“SenSmart model X-100 universal oximetry system for pediatric patients,” Tech. Rep. 10392-001-01, Nonin Medical, Inc., 13700 1st Avenue North Plymouth, MN, 55441-5443, USA (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Spectrum of O2Hb. d1, d2, d3, and d4 depict the intervals for wavelengths of 520, 527, 542, and 570nm, respectively.
Fig. 2
Fig. 2 Interval signal of O2Hb.
Fig. 3
Fig. 3 (Phantom container (cut vertically in front). pO2, pCO2, pH, and temperature sensors were placed in the middle shaft. Sensors of NIRS oximeters were placed in the middle of the windows. The sensor of OxyVLS was immersed through a hole in the cap down to the middle of the windows. The cap effectively prevented oxygen and light entering into the phantom. The bottom plate of the phantom container was made of copper indicated in orange. For dimensions see Fig. 4.
Fig. 4
Fig. 4 Cross sections of the phantom container (windows not displayed) with outer dimensions of the container, window size and window separation in mm.
Fig. 5
Fig. 5 Time series of the StO2 readings of oximeters in phantom 1 with blood content expressed as the background red color.
Fig. 6
Fig. 6 Time series of the StO2 readings of oximeters in phantom 2 with blood content expressed as the background red color.
Fig. 7
Fig. 7 OxyVLS versus OxiplexTS for ctHb = 25μM (y = 0.947x − 0.9, R2 = 0.9843,), 45μM (y = 0.913x − 1.5, R2 = 0.9907) and 70μM (y = 0.912x − 2.7, R2 = 0.9892). 25μM(1), 25μM(2), 45μM(1) and 70μM(1) were measured on phantom 1, 25μM(3), 45μM(2) and 70μM(2) were measured on phantom 2.
Fig. 8
Fig. 8 OxyPrem v1.3 versus OxiplexTS for ctHb = 25μM (y = 0.675x + 23.5, R2 = 0.9985), 45μM (y = 0.709x + 21.3, R2 = 0.9990) and 70μM (y = 0.768x + 17.2, R2 = 0.9978). 25μM(1), 25μM(2), 45μM(1) and 70μM(1) were measured on phantom 1, 25μM(3), 45μM(2) and 70μM(2) were measured on phantom 2.
Fig. 9
Fig. 9 INVOS adult versus OxiplexTS for ctHb = 25μM (y = 0.802x + 21.5, R2 = 0.9973), 45μM (y = 0.996x + 8.1, R2 = 0.9994) and 70μM (y = 1.213x − 7.1, R2 = 0.9997). All data was measured on phantom 1.
Fig. 10
Fig. 10 INVOS neonatal versus OxiplexTS for ctHb = 25μM (y = 0.877x + 26.2, R2 = 0.9991), 45μM (y = 1.094x + 11.8, R2 = 0.9994) and 70μM (y = 1.438x − 9.4, R2 = 0.9995). All data was measured on phantom 2.
Fig. 11
Fig. 11 Nonin neonatal versus OxiplexTS for ctHb = 25μM (y = 0.295x + 55.4, R2 = 0.9940), 45μM (y = 0.410x + 47.1, R2 = 0.9989) and 70μM (y = 0.539x + 37.6, R2 = 0.9982). All data was measured on phantom 2.
Fig. 12
Fig. 12 All oximeters versus OxiplexTS for ctHb = 45μM. The vertical black lines indicate INVOS adult measuring StO2 = 55% and 85%. (1) and (2) indicate the phantom on which the data was acquired for OxyPrem v1.3 and OxyVLS.

Tables (6)

Tables Icon

Table 1 Sensors to measure partial pressure of oxygen (pO2), partial pressure of carbon dioxide (pCO2), pH, and temperature.

Tables Icon

Table 2 Ingredients of the liquid phantom. Yeast 1 indicates the amount of yeast in phantom 1 and yeast 2, the amount of yeast in phantom 2.

Tables Icon

Table 3 Procedure of changing the StO2 level of phantom 1 and phantom 2.

Tables Icon

Table 4 Range of pCO2, pH, and temperature in phantom 1 and in phantom 2.

Tables Icon

Table 5 Coefficients for linear StO2(%) conversion from any oximeter to the scale of any other oximeter: StO2,to = a * StO2,from + b.

Tables Icon

Table 6 Intervention thresholds for ctHb = 45μM and range of uncertainty due to variation of ctHb in the range of 25μM to 70μM.

Metrics