Abstract

The ability of elliptical polarized reflectance spectroscopy (EPRS) to detect spectroscopic alterations in tissue mimicking phantoms and in biological tissue in situ is demonstrated. It is shown that there is a linear relationship between light penetration depth and ellipticity. This dependence is used to demonstrate the feasibility of a depth-resolved spectroscopic imaging using EPRS. The advantages and drawbacks of EPRS in evaluation of biological tissue are analyzed and discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Elliptically polarized light for depth resolved optical imaging

Anabela Da Silva, Carole Deumié, and Ivo Vanzetta
Biomed. Opt. Express 3(11) 2907-2915 (2012)

Depth-resolved measurement of mucosal microvascular blood content using 
low-coherence enhanced backscattering spectroscopy

Andrew J. Radosevich, Vladimir M. Turzhitsky, Nikhil N. Mutyal, Jeremy D. Rogers, Valentina Stoyneva, Ashish Kumar Tiwari, Mart De La Cruz, Dhananjay P. Kunte, Ramesh K. Wali, Hemant K. Roy, and Vadim Backman
Biomed. Opt. Express 1(4) 1196-1208 (2010)

Depth selectivity for the assessment of microstructure by polarization studies

Xu Feng, Liqun Sun, and Enyao Zhang
Biomed. Opt. Express 4(6) 958-966 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
    [Crossref] [PubMed]
  2. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47(1), 555–606 (1996).
    [Crossref] [PubMed]
  3. I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42(5), 803–814 (1997).
    [Crossref] [PubMed]
  4. L. Qiu, V. Turzhitsky, R. Chuttani, D. Pleskow, J. D. Goldsmith, L. Guo, E. Vitkin, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Spectral imaging with scattered light: from early cancer detection to cell biology,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1073–1083 (2012).
    [Crossref] [PubMed]
  5. T. E. Matthews, M. Medina, J. R. Maher, H. Levinson, W. J. Brown, and A. Wax, “Deep tissue imaging using spectroscopic analysis of multiply scattered light,” Optica 1(2), 105–111 (2014).
    [Crossref]
  6. Y. Zhu, N. G. Terry, and A. Wax, “Angle-resolved low-coherence interferometry: an optical biopsy technique for clinical detection of dysplasia in Barrett’s esophagus,” Expert Rev. Gastroenterol. Hepatol. 6(1), 37–41 (2012).
    [Crossref] [PubMed]
  7. L. T. Nieman, C.-W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
    [Crossref] [PubMed]
  8. I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
    [Crossref] [PubMed]
  9. K. Sokolov, M. Follen, and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6(5), 651–658 (2002).
    [Crossref] [PubMed]
  10. B. C. Wilson, E. M. Sevick, M. S. Patterson, and B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80(6), 918–930 (1992).
    [Crossref]
  11. B. B. Das, K. M. Yoo, and R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18(13), 1092–1094 (1993).
    [Crossref] [PubMed]
  12. G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33(28), 6699–6710 (1994).
    [Crossref] [PubMed]
  13. K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology,” Opt. Express 5(13), 302–317 (1999).
    [Crossref] [PubMed]
  14. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
    [Crossref]
  15. R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127(7), 1000–1005 (1991).
    [Crossref] [PubMed]
  16. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
    [Crossref] [PubMed]
  17. Y. Liu, Y. Kim, X. Li, and V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13(2), 601–611 (2005).
    [Crossref] [PubMed]
  18. S. G. Demos and R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21(2), 161–163 (1996).
    [Crossref] [PubMed]
  19. S. Morgan and M. Ridgway, “Polarization properties of light backscattered from a two layer scattering medium,” Opt. Express 7(12), 395–402 (2000).
    [Crossref] [PubMed]
  20. D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13, 024019 (2008).
  21. L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
    [Crossref] [PubMed]
  22. C. M. Macdonald, S. L. Jacques, and I. V. Meglinski, “Circular polarization memory in polydisperse scattering media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(3), 033204 (2015).
    [Crossref] [PubMed]
  23. S. Rehn, A. Planat-Chrétien, M. Berger, J.-M. Dinten, C. Deumié, and A. da Silva, “Depth probing of diffuse tissues controlled with elliptically polarized light,” J. Biomed. Opt. 18(1), 016007 (2013).
    [Crossref] [PubMed]
  24. R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30(10), 1159–1161 (2005).
    [Crossref] [PubMed]
  25. O. R. Sćepanović, Z. Volynskaya, C. R. Kong, L. H. Galindo, R. R. Dasari, and M. S. Feld, “A multimodal spectroscopy system for real-time disease diagnosis,” Rev. Sci. Instrum. 80(4), 043103 (2009).
    [Crossref] [PubMed]
  26. R. A. Schwarz, W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El-Naggar, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy,” Cancer 115(8), 1669–1679 (2009).
    [Crossref] [PubMed]
  27. A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29(10), 1087–1089 (2004).
    [Crossref] [PubMed]
  28. L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43(6), 1308–1319 (2004).
    [Crossref] [PubMed]
  29. A. M. J. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10(4), 044017 (2005).
    [Crossref] [PubMed]
  30. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44(20), 4291–4305 (2005).
    [Crossref] [PubMed]
  31. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
    [Crossref] [PubMed]
  32. A. Garcia-Uribe, N. Kehtarnavaz, G. Marquez, V. Prieto, M. Duvic, and L. V. Wang, “Skin cancer detection by spectroscopic oblique-incidence reflectometry: classification and physiological origins,” Appl. Opt. 43(13), 2643–2650 (2004).
    [Crossref] [PubMed]
  33. L. T. Nieman, M. Jakovljevic, and K. Sokolov, “Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues,” Opt. Express 17(4), 2780–2796 (2009).
    [Crossref] [PubMed]
  34. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989).
    [Crossref] [PubMed]
  35. Y. L. Kim, P. Pradhan, M. H. Kim, and V. Backman, “Circular polarization memory effect in low-coherence enhanced backscattering of light,” Opt. Lett. 31(18), 2744–2746 (2006).
    [Crossref] [PubMed]
  36. I. M. Stockford, S. P. Morgan, P. C. Chang, and J. G. Walker, “Analysis of the spatial distribution of polarized light backscattered from layered scattering media,” J. Biomed. Opt. 7(3), 313–320 (2002).
    [Crossref] [PubMed]
  37. A. Da Silva, C. Deumié, and I. Vanzetta, “Elliptically polarized light for depth resolved optical imaging,” Biomed. Opt. Express 3(11), 2907–2915 (2012).
    [Crossref] [PubMed]
  38. R. Ahuja, J. Osorio-Guillen, J. S. de Almeida, B. Holm, W. Ching, and B. Johansson, “Electronic and optical properties of?-Al2O3 from ab initio theory,” J. Phys. Condens. Matter 16(16), 2891–2900 (2004).
    [Crossref]
  39. I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P1 approximation for semi-infinite turbid media,” Med. Phys. 35(2), 681–693 (2008).
    [Crossref] [PubMed]
  40. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
  41. C. Maetzler, http://omlc.ogi.edu/software/mie/maetzlermie/mie.m2013 .
  42. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).
  43. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788–2797 (1998).
    [Crossref] [PubMed]
  44. S. Prahl, http://omlc.ogi.edu/software/iad/2013 .
  45. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  46. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
    [Crossref]
  47. F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in Biomedical Optics (BiOS)2008(International Society for Optics and Photonics, 2008), pp. 687007–687007–687009.
  48. Y. Zhang, B. Chen, and D. Li, “Propagation of polarized light in the biological tissue: a numerical study by polarized geometric Monte Carlo method,” Appl. Opt. 55(10), 2681–2691 (2016).
    [Crossref] [PubMed]
  49. S. Bloom and H. Margenau, “Quantum theory of spectral line broadening,” Phys. Rev. 90(5), 791–794 (1953).
    [Crossref]
  50. T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14, 010503 (2009).
  51. E. J. Seibel and Q. Y. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30(3), 177–183 (2002).
    [Crossref] [PubMed]
  52. S. J. Miller, C. M. Lee, B. P. Joshi, E. J. Seibel, and T. D. Wang, “In vivo multi-spectral wide-field fluorescence detection of dysplasia in the mouse,” Gastroenterology 140, S11 (2011).

2016 (1)

2015 (1)

C. M. Macdonald, S. L. Jacques, and I. V. Meglinski, “Circular polarization memory in polydisperse scattering media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(3), 033204 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (2)

S. Rehn, A. Planat-Chrétien, M. Berger, J.-M. Dinten, C. Deumié, and A. da Silva, “Depth probing of diffuse tissues controlled with elliptically polarized light,” J. Biomed. Opt. 18(1), 016007 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (3)

A. Da Silva, C. Deumié, and I. Vanzetta, “Elliptically polarized light for depth resolved optical imaging,” Biomed. Opt. Express 3(11), 2907–2915 (2012).
[Crossref] [PubMed]

Y. Zhu, N. G. Terry, and A. Wax, “Angle-resolved low-coherence interferometry: an optical biopsy technique for clinical detection of dysplasia in Barrett’s esophagus,” Expert Rev. Gastroenterol. Hepatol. 6(1), 37–41 (2012).
[Crossref] [PubMed]

L. Qiu, V. Turzhitsky, R. Chuttani, D. Pleskow, J. D. Goldsmith, L. Guo, E. Vitkin, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Spectral imaging with scattered light: from early cancer detection to cell biology,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1073–1083 (2012).
[Crossref] [PubMed]

2011 (1)

S. J. Miller, C. M. Lee, B. P. Joshi, E. J. Seibel, and T. D. Wang, “In vivo multi-spectral wide-field fluorescence detection of dysplasia in the mouse,” Gastroenterology 140, S11 (2011).

2010 (1)

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

2009 (5)

O. R. Sćepanović, Z. Volynskaya, C. R. Kong, L. H. Galindo, R. R. Dasari, and M. S. Feld, “A multimodal spectroscopy system for real-time disease diagnosis,” Rev. Sci. Instrum. 80(4), 043103 (2009).
[Crossref] [PubMed]

R. A. Schwarz, W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El-Naggar, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy,” Cancer 115(8), 1669–1679 (2009).
[Crossref] [PubMed]

L. T. Nieman, M. Jakovljevic, and K. Sokolov, “Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues,” Opt. Express 17(4), 2780–2796 (2009).
[Crossref] [PubMed]

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14, 010503 (2009).

2008 (3)

I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P1 approximation for semi-infinite turbid media,” Med. Phys. 35(2), 681–693 (2008).
[Crossref] [PubMed]

L. T. Nieman, C.-W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
[Crossref] [PubMed]

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13, 024019 (2008).

2007 (1)

2006 (2)

Y. L. Kim, P. Pradhan, M. H. Kim, and V. Backman, “Circular polarization memory effect in low-coherence enhanced backscattering of light,” Opt. Lett. 31(18), 2744–2746 (2006).
[Crossref] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).

2005 (4)

2004 (4)

2003 (2)

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[Crossref]

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

2002 (3)

K. Sokolov, M. Follen, and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6(5), 651–658 (2002).
[Crossref] [PubMed]

I. M. Stockford, S. P. Morgan, P. C. Chang, and J. G. Walker, “Analysis of the spatial distribution of polarized light backscattered from layered scattering media,” J. Biomed. Opt. 7(3), 313–320 (2002).
[Crossref] [PubMed]

E. J. Seibel and Q. Y. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30(3), 177–183 (2002).
[Crossref] [PubMed]

2000 (2)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

S. Morgan and M. Ridgway, “Polarization properties of light backscattered from a two layer scattering medium,” Opt. Express 7(12), 395–402 (2000).
[Crossref] [PubMed]

1999 (2)

K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology,” Opt. Express 5(13), 302–317 (1999).
[Crossref] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

1998 (1)

1997 (1)

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42(5), 803–814 (1997).
[Crossref] [PubMed]

1996 (2)

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47(1), 555–606 (1996).
[Crossref] [PubMed]

S. G. Demos and R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21(2), 161–163 (1996).
[Crossref] [PubMed]

1994 (1)

1993 (1)

1992 (1)

B. C. Wilson, E. M. Sevick, M. S. Patterson, and B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80(6), 918–930 (1992).
[Crossref]

1991 (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127(7), 1000–1005 (1991).
[Crossref] [PubMed]

1989 (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989).
[Crossref] [PubMed]

1953 (1)

S. Bloom and H. Margenau, “Quantum theory of spectral line broadening,” Phys. Rev. 90(5), 791–794 (1953).
[Crossref]

A’Amar, O.

Aaron, J.

Ahuja, R.

R. Ahuja, J. Osorio-Guillen, J. S. de Almeida, B. Holm, W. Ching, and B. Johansson, “Electronic and optical properties of?-Al2O3 from ab initio theory,” J. Phys. Condens. Matter 16(16), 2891–2900 (2004).
[Crossref]

Alfano, R. R.

Amelink, A.

Anderson, R. R.

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127(7), 1000–1005 (1991).
[Crossref] [PubMed]

Arifler, D.

Backman, V.

Y. L. Kim, P. Pradhan, M. H. Kim, and V. Backman, “Circular polarization memory effect in low-coherence enhanced backscattering of light,” Opt. Lett. 31(18), 2744–2746 (2006).
[Crossref] [PubMed]

Y. Liu, Y. Kim, X. Li, and V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13(2), 601–611 (2005).
[Crossref] [PubMed]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[Crossref]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Badizadegan, K.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Bard, M. P. L.

Bender, J. E.

A. M. J. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10(4), 044017 (2005).
[Crossref] [PubMed]

Berger, M.

S. Rehn, A. Planat-Chrétien, M. Berger, J.-M. Dinten, C. Deumié, and A. da Silva, “Depth probing of diffuse tissues controlled with elliptically polarized light,” J. Biomed. Opt. 18(1), 016007 (2013).
[Crossref] [PubMed]

Bigio, I. J.

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
[Crossref] [PubMed]

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42(5), 803–814 (1997).
[Crossref] [PubMed]

Bloom, S.

S. Bloom and H. Margenau, “Quantum theory of spectral line broadening,” Phys. Rev. 90(5), 791–794 (1953).
[Crossref]

Brown, J. Q.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

Brown, W. J.

Burgers, S. A.

Chance, B.

B. C. Wilson, E. M. Sevick, M. S. Patterson, and B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80(6), 918–930 (1992).
[Crossref]

Chang, P. C.

I. M. Stockford, S. P. Morgan, P. C. Chang, and J. G. Walker, “Analysis of the spatial distribution of polarized light backscattered from layered scattering media,” J. Biomed. Opt. 7(3), 313–320 (2002).
[Crossref] [PubMed]

Chang, S. K.

Chen, B.

Chen, K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[Crossref]

Ching, W.

R. Ahuja, J. Osorio-Guillen, J. S. de Almeida, B. Holm, W. Ching, and B. Johansson, “Electronic and optical properties of?-Al2O3 from ab initio theory,” J. Phys. Condens. Matter 16(16), 2891–2900 (2004).
[Crossref]

Chuttani, R.

L. Qiu, V. Turzhitsky, R. Chuttani, D. Pleskow, J. D. Goldsmith, L. Guo, E. Vitkin, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Spectral imaging with scattered light: from early cancer detection to cell biology,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1073–1083 (2012).
[Crossref] [PubMed]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

da Silva, A.

S. Rehn, A. Planat-Chrétien, M. Berger, J.-M. Dinten, C. Deumié, and A. da Silva, “Depth probing of diffuse tissues controlled with elliptically polarized light,” J. Biomed. Opt. 18(1), 016007 (2013).
[Crossref] [PubMed]

A. Da Silva, C. Deumié, and I. Vanzetta, “Elliptically polarized light for depth resolved optical imaging,” Biomed. Opt. Express 3(11), 2907–2915 (2012).
[Crossref] [PubMed]

Das, B. B.

Dasari, R. R.

O. R. Sćepanović, Z. Volynskaya, C. R. Kong, L. H. Galindo, R. R. Dasari, and M. S. Feld, “A multimodal spectroscopy system for real-time disease diagnosis,” Rev. Sci. Instrum. 80(4), 043103 (2009).
[Crossref] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

de Almeida, J. S.

R. Ahuja, J. Osorio-Guillen, J. S. de Almeida, B. Holm, W. Ching, and B. Johansson, “Electronic and optical properties of?-Al2O3 from ab initio theory,” J. Phys. Condens. Matter 16(16), 2891–2900 (2004).
[Crossref]

Demos, S. G.

Deumié, C.

S. Rehn, A. Planat-Chrétien, M. Berger, J.-M. Dinten, C. Deumié, and A. da Silva, “Depth probing of diffuse tissues controlled with elliptically polarized light,” J. Biomed. Opt. 18(1), 016007 (2013).
[Crossref] [PubMed]

A. Da Silva, C. Deumié, and I. Vanzetta, “Elliptically polarized light for depth resolved optical imaging,” Biomed. Opt. Express 3(11), 2907–2915 (2012).
[Crossref] [PubMed]

Dinten, J.-M.

S. Rehn, A. Planat-Chrétien, M. Berger, J.-M. Dinten, C. Deumié, and A. da Silva, “Depth probing of diffuse tissues controlled with elliptically polarized light,” J. Biomed. Opt. 18(1), 016007 (2013).
[Crossref] [PubMed]

Drezek, R.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology,” Opt. Express 5(13), 302–317 (1999).
[Crossref] [PubMed]

Drezek, R. A.

A. M. J. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10(4), 044017 (2005).
[Crossref] [PubMed]

Duvic, M.

El-Naggar, A. K.

R. A. Schwarz, W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El-Naggar, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy,” Cancer 115(8), 1669–1679 (2009).
[Crossref] [PubMed]

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13, 024019 (2008).

Fabritius, T.

T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14, 010503 (2009).

Feld, M. S.

O. R. Sćepanović, Z. Volynskaya, C. R. Kong, L. H. Galindo, R. R. Dasari, and M. S. Feld, “A multimodal spectroscopy system for real-time disease diagnosis,” Rev. Sci. Instrum. 80(4), 043103 (2009).
[Crossref] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Follen, M.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

K. Sokolov, M. Follen, and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6(5), 651–658 (2002).
[Crossref] [PubMed]

Galindo, L. H.

O. R. Sćepanović, Z. Volynskaya, C. R. Kong, L. H. Galindo, R. R. Dasari, and M. S. Feld, “A multimodal spectroscopy system for real-time disease diagnosis,” Rev. Sci. Instrum. 80(4), 043103 (2009).
[Crossref] [PubMed]

Gao, W.

R. A. Schwarz, W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El-Naggar, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy,” Cancer 115(8), 1669–1679 (2009).
[Crossref] [PubMed]

Garcia-Uribe, A.

Gillenwater, A.

L. T. Nieman, C.-W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
[Crossref] [PubMed]

Gillenwater, A. M.

R. A. Schwarz, W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El-Naggar, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy,” Cancer 115(8), 1669–1679 (2009).
[Crossref] [PubMed]

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13, 024019 (2008).

R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30(10), 1159–1161 (2005).
[Crossref] [PubMed]

Goldberg, M. J.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[Crossref]

Goldsmith, J. D.

L. Qiu, V. Turzhitsky, R. Chuttani, D. Pleskow, J. D. Goldsmith, L. Guo, E. Vitkin, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Spectral imaging with scattered light: from early cancer detection to cell biology,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1073–1083 (2012).
[Crossref] [PubMed]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

Gossage, K.

Guo, L.

L. Qiu, V. Turzhitsky, R. Chuttani, D. Pleskow, J. D. Goldsmith, L. Guo, E. Vitkin, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Spectral imaging with scattered light: from early cancer detection to cell biology,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1073–1083 (2012).
[Crossref] [PubMed]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Hanlon, E. B.

L. Qiu, V. Turzhitsky, R. Chuttani, D. Pleskow, J. D. Goldsmith, L. Guo, E. Vitkin, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Spectral imaging with scattered light: from early cancer detection to cell biology,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1073–1083 (2012).
[Crossref] [PubMed]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

Hayakawa, C. K.

I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P1 approximation for semi-infinite turbid media,” Med. Phys. 35(2), 681–693 (2008).
[Crossref] [PubMed]

Holm, B.

R. Ahuja, J. Osorio-Guillen, J. S. de Almeida, B. Holm, W. Ching, and B. Johansson, “Electronic and optical properties of?-Al2O3 from ab initio theory,” J. Phys. Condens. Matter 16(16), 2891–2900 (2004).
[Crossref]

Hong, Y.

T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14, 010503 (2009).

Hussain, I. A.

Itani, S.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

Itzkan, I.

L. Qiu, V. Turzhitsky, R. Chuttani, D. Pleskow, J. D. Goldsmith, L. Guo, E. Vitkin, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Spectral imaging with scattered light: from early cancer detection to cell biology,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1073–1083 (2012).
[Crossref] [PubMed]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Jacques, S. L.

C. M. Macdonald, S. L. Jacques, and I. V. Meglinski, “Circular polarization memory in polydisperse scattering media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(3), 033204 (2015).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

Jakovljevic, M.

Johansson, B.

R. Ahuja, J. Osorio-Guillen, J. S. de Almeida, B. Holm, W. Ching, and B. Johansson, “Electronic and optical properties of?-Al2O3 from ab initio theory,” J. Phys. Condens. Matter 16(16), 2891–2900 (2004).
[Crossref]

Joshi, B. P.

S. J. Miller, C. M. Lee, B. P. Joshi, E. J. Seibel, and T. D. Wang, “In vivo multi-spectral wide-field fluorescence detection of dysplasia in the mouse,” Gastroenterology 140, S11 (2011).

Kan, C.-W.

L. T. Nieman, C.-W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
[Crossref] [PubMed]

Kehtarnavaz, N.

Kim, M. H.

Kim, Y.

Kim, Y. L.

Y. L. Kim, P. Pradhan, M. H. Kim, and V. Backman, “Circular polarization memory effect in low-coherence enhanced backscattering of light,” Opt. Lett. 31(18), 2744–2746 (2006).
[Crossref] [PubMed]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[Crossref]

Knight, B.

Kölzer, J.

Kong, C. R.

O. R. Sćepanović, Z. Volynskaya, C. R. Kong, L. H. Galindo, R. R. Dasari, and M. S. Feld, “A multimodal spectroscopy system for real-time disease diagnosis,” Rev. Sci. Instrum. 80(4), 043103 (2009).
[Crossref] [PubMed]

Kromin, A. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[Crossref]

Kumar, G.

Kurachi, C.

R. A. Schwarz, W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El-Naggar, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy,” Cancer 115(8), 1669–1679 (2009).
[Crossref] [PubMed]

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13, 024019 (2008).

Lee, C. M.

S. J. Miller, C. M. Lee, B. P. Joshi, E. J. Seibel, and T. D. Wang, “In vivo multi-spectral wide-field fluorescence detection of dysplasia in the mouse,” Gastroenterology 140, S11 (2011).

Lee, J. J.

R. A. Schwarz, W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El-Naggar, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy,” Cancer 115(8), 1669–1679 (2009).
[Crossref] [PubMed]

Lee, K.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

Levinson, H.

Leyden, J.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

Li, D.

Li, X.

Liu, Y.

Y. Liu, Y. Kim, X. Li, and V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13(2), 601–611 (2005).
[Crossref] [PubMed]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[Crossref]

Macdonald, C. M.

C. M. Macdonald, S. L. Jacques, and I. V. Meglinski, “Circular polarization memory in polydisperse scattering media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(3), 033204 (2015).
[Crossref] [PubMed]

Mack, V.

MacKintosh, F. C.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989).
[Crossref] [PubMed]

Maher, J. R.

Makita, S.

T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14, 010503 (2009).

Malpica, A.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

Margenau, H.

S. Bloom and H. Margenau, “Quantum theory of spectral line broadening,” Phys. Rev. 90(5), 791–794 (1953).
[Crossref]

Markey, M. K.

L. T. Nieman, C.-W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
[Crossref] [PubMed]

Marquez, G.

Matthews, T. E.

Medina, M.

Meglinski, I. V.

C. M. Macdonald, S. L. Jacques, and I. V. Meglinski, “Circular polarization memory in polydisperse scattering media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(3), 033204 (2015).
[Crossref] [PubMed]

Miller, S. J.

S. J. Miller, C. M. Lee, B. P. Joshi, E. J. Seibel, and T. D. Wang, “In vivo multi-spectral wide-field fluorescence detection of dysplasia in the mouse,” Gastroenterology 140, S11 (2011).

Mitic, G.

Modell, M. D.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

Morgan, S.

Morgan, S. P.

I. M. Stockford, S. P. Morgan, P. C. Chang, and J. G. Walker, “Analysis of the spatial distribution of polarized light backscattered from layered scattering media,” J. Biomed. Opt. 7(3), 313–320 (2002).
[Crossref] [PubMed]

Mourant, J. R.

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42(5), 803–814 (1997).
[Crossref] [PubMed]

Myakov, A.

Myllylä, R.

T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14, 010503 (2009).

Nieman, L.

Nieman, L. T.

L. T. Nieman, M. Jakovljevic, and K. Sokolov, “Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues,” Opt. Express 17(4), 2780–2796 (2009).
[Crossref] [PubMed]

L. T. Nieman, C.-W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
[Crossref] [PubMed]

Osorio-Guillen, J.

R. Ahuja, J. Osorio-Guillen, J. S. de Almeida, B. Holm, W. Ching, and B. Johansson, “Electronic and optical properties of?-Al2O3 from ab initio theory,” J. Phys. Condens. Matter 16(16), 2891–2900 (2004).
[Crossref]

Otto, J.

Ozden, N.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

Palmer, G. M.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).

B. C. Wilson, E. M. Sevick, M. S. Patterson, and B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80(6), 918–930 (1992).
[Crossref]

Pavlova, I.

R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30(10), 1159–1161 (2005).
[Crossref] [PubMed]

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

Perelman, L. T.

L. Qiu, V. Turzhitsky, R. Chuttani, D. Pleskow, J. D. Goldsmith, L. Guo, E. Vitkin, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Spectral imaging with scattered light: from early cancer detection to cell biology,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1073–1083 (2012).
[Crossref] [PubMed]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Pfefer, J.

A. M. J. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10(4), 044017 (2005).
[Crossref] [PubMed]

Pine, D. J.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989).
[Crossref] [PubMed]

Planat-Chrétien, A.

S. Rehn, A. Planat-Chrétien, M. Berger, J.-M. Dinten, C. Deumié, and A. da Silva, “Depth probing of diffuse tissues controlled with elliptically polarized light,” J. Biomed. Opt. 18(1), 016007 (2013).
[Crossref] [PubMed]

Pleskow, D.

L. Qiu, V. Turzhitsky, R. Chuttani, D. Pleskow, J. D. Goldsmith, L. Guo, E. Vitkin, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Spectral imaging with scattered light: from early cancer detection to cell biology,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1073–1083 (2012).
[Crossref] [PubMed]

Pleskow, D. K.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

Plies, E.

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).

Pradhan, P.

Prieto, V.

Qiu, L.

L. Qiu, V. Turzhitsky, R. Chuttani, D. Pleskow, J. D. Goldsmith, L. Guo, E. Vitkin, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Spectral imaging with scattered light: from early cancer detection to cell biology,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1073–1083 (2012).
[Crossref] [PubMed]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

Ramanujam, N.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

Redden Weber, C.

R. A. Schwarz, W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El-Naggar, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy,” Cancer 115(8), 1669–1679 (2009).
[Crossref] [PubMed]

Rehn, S.

S. Rehn, A. Planat-Chrétien, M. Berger, J.-M. Dinten, C. Deumié, and A. da Silva, “Depth probing of diffuse tissues controlled with elliptically polarized light,” J. Biomed. Opt. 18(1), 016007 (2013).
[Crossref] [PubMed]

Reif, R.

Richards-Kortum, R.

R. A. Schwarz, W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El-Naggar, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy,” Cancer 115(8), 1669–1679 (2009).
[Crossref] [PubMed]

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13, 024019 (2008).

R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30(10), 1159–1161 (2005).
[Crossref] [PubMed]

D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44(20), 4291–4305 (2005).
[Crossref] [PubMed]

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

K. Sokolov, M. Follen, and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6(5), 651–658 (2002).
[Crossref] [PubMed]

K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology,” Opt. Express 5(13), 302–317 (1999).
[Crossref] [PubMed]

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47(1), 555–606 (1996).
[Crossref] [PubMed]

Ridgway, M.

Roblyer, D.

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13, 024019 (2008).

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

Roy, H. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[Crossref]

Sacks, A.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

Scepanovic, O. R.

O. R. Sćepanović, Z. Volynskaya, C. R. Kong, L. H. Galindo, R. R. Dasari, and M. S. Feld, “A multimodal spectroscopy system for real-time disease diagnosis,” Rev. Sci. Instrum. 80(4), 043103 (2009).
[Crossref] [PubMed]

Schmitt, J. M.

Schwarz, R. A.

Seibel, E. J.

S. J. Miller, C. M. Lee, B. P. Joshi, E. J. Seibel, and T. D. Wang, “In vivo multi-spectral wide-field fluorescence detection of dysplasia in the mouse,” Gastroenterology 140, S11 (2011).

E. J. Seibel and Q. Y. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30(3), 177–183 (2002).
[Crossref] [PubMed]

Seo, I.

I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P1 approximation for semi-infinite turbid media,” Med. Phys. 35(2), 681–693 (2008).
[Crossref] [PubMed]

Sevick, E. M.

B. C. Wilson, E. M. Sevick, M. S. Patterson, and B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80(6), 918–930 (1992).
[Crossref]

Sevick-Muraca, E.

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47(1), 555–606 (1996).
[Crossref] [PubMed]

Smithwick, Q. Y.

E. J. Seibel and Q. Y. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30(3), 177–183 (2002).
[Crossref] [PubMed]

Sokolov, K.

L. T. Nieman, M. Jakovljevic, and K. Sokolov, “Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues,” Opt. Express 17(4), 2780–2796 (2009).
[Crossref] [PubMed]

L. T. Nieman, C.-W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
[Crossref] [PubMed]

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13, 024019 (2008).

L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43(6), 1308–1319 (2004).
[Crossref] [PubMed]

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

K. Sokolov, M. Follen, and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6(5), 651–658 (2002).
[Crossref] [PubMed]

K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology,” Opt. Express 5(13), 302–317 (1999).
[Crossref] [PubMed]

Sölkner, G.

Sterenborg, H. J. C. M.

Stockford, I. M.

I. M. Stockford, S. P. Morgan, P. C. Chang, and J. G. Walker, “Analysis of the spatial distribution of polarized light backscattered from layered scattering media,” J. Biomed. Opt. 7(3), 313–320 (2002).
[Crossref] [PubMed]

Terry, N. G.

Y. Zhu, N. G. Terry, and A. Wax, “Angle-resolved low-coherence interferometry: an optical biopsy technique for clinical detection of dysplasia in Barrett’s esophagus,” Expert Rev. Gastroenterol. Hepatol. 6(1), 37–41 (2012).
[Crossref] [PubMed]

Turzhitsky, V.

L. Qiu, V. Turzhitsky, R. Chuttani, D. Pleskow, J. D. Goldsmith, L. Guo, E. Vitkin, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Spectral imaging with scattered light: from early cancer detection to cell biology,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1073–1083 (2012).
[Crossref] [PubMed]

Utzinger, U.

A. M. J. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10(4), 044017 (2005).
[Crossref] [PubMed]

Vanzetta, I.

Venugopalan, V.

I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P1 approximation for semi-infinite turbid media,” Med. Phys. 35(2), 681–693 (2008).
[Crossref] [PubMed]

Vishwanath, K.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

Vitkin, E.

L. Qiu, V. Turzhitsky, R. Chuttani, D. Pleskow, J. D. Goldsmith, L. Guo, E. Vitkin, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Spectral imaging with scattered light: from early cancer detection to cell biology,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1073–1083 (2012).
[Crossref] [PubMed]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

Volynskaya, Z.

O. R. Sćepanović, Z. Volynskaya, C. R. Kong, L. H. Galindo, R. R. Dasari, and M. S. Feld, “A multimodal spectroscopy system for real-time disease diagnosis,” Rev. Sci. Instrum. 80(4), 043103 (2009).
[Crossref] [PubMed]

Wali, R. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[Crossref]

Walker, J. G.

I. M. Stockford, S. P. Morgan, P. C. Chang, and J. G. Walker, “Analysis of the spatial distribution of polarized light backscattered from layered scattering media,” J. Biomed. Opt. 7(3), 313–320 (2002).
[Crossref] [PubMed]

Wang, A. M. J.

A. M. J. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10(4), 044017 (2005).
[Crossref] [PubMed]

Wang, L. V.

Wang, T. D.

S. J. Miller, C. M. Lee, B. P. Joshi, E. J. Seibel, and T. D. Wang, “In vivo multi-spectral wide-field fluorescence detection of dysplasia in the mouse,” Gastroenterology 140, S11 (2011).

Wax, A.

T. E. Matthews, M. Medina, J. R. Maher, H. Levinson, W. J. Brown, and A. Wax, “Deep tissue imaging using spectroscopic analysis of multiply scattered light,” Optica 1(2), 105–111 (2014).
[Crossref]

Y. Zhu, N. G. Terry, and A. Wax, “Angle-resolved low-coherence interferometry: an optical biopsy technique for clinical detection of dysplasia in Barrett’s esophagus,” Expert Rev. Gastroenterol. Hepatol. 6(1), 37–41 (2012).
[Crossref] [PubMed]

Weitz, D. A.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989).
[Crossref] [PubMed]

Williams, M. D.

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13, 024019 (2008).

Wilson, B. C.

B. C. Wilson, E. M. Sevick, M. S. Patterson, and B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80(6), 918–930 (1992).
[Crossref]

Yasuno, Y.

T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14, 010503 (2009).

Yoo, K. M.

Zhang, Y.

Zhu, J. X.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989).
[Crossref] [PubMed]

Zhu, Y.

Y. Zhu, N. G. Terry, and A. Wax, “Angle-resolved low-coherence interferometry: an optical biopsy technique for clinical detection of dysplasia in Barrett’s esophagus,” Expert Rev. Gastroenterol. Hepatol. 6(1), 37–41 (2012).
[Crossref] [PubMed]

Zinth, W.

Annu. Rev. Phys. Chem. (1)

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47(1), 555–606 (1996).
[Crossref] [PubMed]

Appl. Opt. (7)

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33(28), 6699–6710 (1994).
[Crossref] [PubMed]

J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788–2797 (1998).
[Crossref] [PubMed]

L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43(6), 1308–1319 (2004).
[Crossref] [PubMed]

A. Garcia-Uribe, N. Kehtarnavaz, G. Marquez, V. Prieto, M. Duvic, and L. V. Wang, “Skin cancer detection by spectroscopic oblique-incidence reflectometry: classification and physiological origins,” Appl. Opt. 43(13), 2643–2650 (2004).
[Crossref] [PubMed]

D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44(20), 4291–4305 (2005).
[Crossref] [PubMed]

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
[Crossref] [PubMed]

Y. Zhang, B. Chen, and D. Li, “Propagation of polarized light in the biological tissue: a numerical study by polarized geometric Monte Carlo method,” Appl. Opt. 55(10), 2681–2691 (2016).
[Crossref] [PubMed]

Arch. Dermatol. (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127(7), 1000–1005 (1991).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Cancer (1)

R. A. Schwarz, W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El-Naggar, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy,” Cancer 115(8), 1669–1679 (2009).
[Crossref] [PubMed]

Curr. Opin. Biotechnol. (1)

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

Curr. Opin. Chem. Biol. (1)

K. Sokolov, M. Follen, and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6(5), 651–658 (2002).
[Crossref] [PubMed]

Expert Rev. Gastroenterol. Hepatol. (1)

Y. Zhu, N. G. Terry, and A. Wax, “Angle-resolved low-coherence interferometry: an optical biopsy technique for clinical detection of dysplasia in Barrett’s esophagus,” Expert Rev. Gastroenterol. Hepatol. 6(1), 37–41 (2012).
[Crossref] [PubMed]

Gastroenterology (1)

S. J. Miller, C. M. Lee, B. P. Joshi, E. J. Seibel, and T. D. Wang, “In vivo multi-spectral wide-field fluorescence detection of dysplasia in the mouse,” Gastroenterology 140, S11 (2011).

IEEE J. Sel. Top. Quantum Electron. (3)

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[Crossref]

L. Qiu, V. Turzhitsky, R. Chuttani, D. Pleskow, J. D. Goldsmith, L. Guo, E. Vitkin, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Spectral imaging with scattered light: from early cancer detection to cell biology,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1073–1083 (2012).
[Crossref] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

J. Biomed. Opt. (7)

L. T. Nieman, C.-W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
[Crossref] [PubMed]

A. M. J. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10(4), 044017 (2005).
[Crossref] [PubMed]

S. Rehn, A. Planat-Chrétien, M. Berger, J.-M. Dinten, C. Deumié, and A. da Silva, “Depth probing of diffuse tissues controlled with elliptically polarized light,” J. Biomed. Opt. 18(1), 016007 (2013).
[Crossref] [PubMed]

D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13, 024019 (2008).

T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14, 010503 (2009).

I. M. Stockford, S. P. Morgan, P. C. Chang, and J. G. Walker, “Analysis of the spatial distribution of polarized light backscattered from layered scattering media,” J. Biomed. Opt. 7(3), 313–320 (2002).
[Crossref] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).

J. Phys. Condens. Matter (1)

R. Ahuja, J. Osorio-Guillen, J. S. de Almeida, B. Holm, W. Ching, and B. Johansson, “Electronic and optical properties of?-Al2O3 from ab initio theory,” J. Phys. Condens. Matter 16(16), 2891–2900 (2004).
[Crossref]

Lasers Surg. Med. (2)

E. J. Seibel and Q. Y. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30(3), 177–183 (2002).
[Crossref] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

Med. Phys. (1)

I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P1 approximation for semi-infinite turbid media,” Med. Phys. 35(2), 681–693 (2008).
[Crossref] [PubMed]

Nat. Med. (1)

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16(5), 603–606 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (5)

Optica (1)

Photochem. Photobiol. (1)

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42(5), 803–814 (1997).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Phys. Rev. (1)

S. Bloom and H. Margenau, “Quantum theory of spectral line broadening,” Phys. Rev. 90(5), 791–794 (1953).
[Crossref]

Phys. Rev. B Condens. Matter (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

C. M. Macdonald, S. L. Jacques, and I. V. Meglinski, “Circular polarization memory in polydisperse scattering media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(3), 033204 (2015).
[Crossref] [PubMed]

Proc. IEEE (1)

B. C. Wilson, E. M. Sevick, M. S. Patterson, and B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80(6), 918–930 (1992).
[Crossref]

Rev. Sci. Instrum. (1)

O. R. Sćepanović, Z. Volynskaya, C. R. Kong, L. H. Galindo, R. R. Dasari, and M. S. Feld, “A multimodal spectroscopy system for real-time disease diagnosis,” Rev. Sci. Instrum. 80(4), 043103 (2009).
[Crossref] [PubMed]

Other (4)

C. Maetzler, http://omlc.ogi.edu/software/mie/maetzlermie/mie.m2013 .

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

S. Prahl, http://omlc.ogi.edu/software/iad/2013 .

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in Biomedical Optics (BiOS)2008(International Society for Optics and Photonics, 2008), pp. 687007–687007–687009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup of elliptical polarized reflectance spectroscopy system. Angle of incidence of the illumination was 45° relative to the sample surface. The rotation angles of the linear polarizers and quarter-wave plates are indicated by α and β, respectively.
Fig. 2
Fig. 2 Normalized absorbance spectra of (a) red and green food coloring and (b) bovine blood.
Fig. 3
Fig. 3 (a) A schematic of a PDMS phantom used to examine polarized light penetration as a function of depth. (b) Polarization gated, ΔI, and (c) non-gated signals as a function of optical thickness. The polarization gated signals were normalized by the overall maximum integrated intensity that corresponded to the intensity of linear polarized light.
Fig. 4
Fig. 4 (a) Multilayer phantom design to evaluate depth-resolved spectroscopy by EPRS where d is the thickness of the top layer. (b) Left: Spectra obtained from the multilayer optical phantom with 1700 µm top layer thickness. Right: comparison of the measured EPRS spectrum with ellipticity of 30° normalized to one and the absorbance spectrum of the green dye. (c-h) Integrated intensities over the wavelengths region associated with the green food coloring absorption (610-650 nm) as a function of light ellipticity for optical phantoms with a top layer thickness of 500, 1000, 1700, 3000, 4000, and 4700 μm. (i) Penetration depths as a function of light polarization; the parameters of the linear fit are y = 118.62x + 264.07 (R2 = 0.9873) for the physical thickness (μm) and y = 1.29x + 2.86 for the optical thickness.
Fig. 5
Fig. 5 (a) Left: Measured polarization gated spectra. Right: the least squares fit of the normalized to one EPRS spectrum with ellipticity of 45° using absorbance spectra of the green and the red dyes. (b) Multilayer phantom design with green and red food coloring dyes. (c) integrated intensities over the wavelengths associated with green food coloring (610-650 nm) and red food coloring (500-540 nm) absorption, respectively, as a function of light ellipticity; note, that the absorption of the dyes are corrected by subtracting a DC offset in the 700-750 nm region as described in the Method section.
Fig. 6
Fig. 6 Spectra of a 1700 μm thick scattering phantom with green food coloring on top of a (a) transparent and (b) scattering bottom layer. (c) Integrated intensities over the 610-650 nm wavelength region as a function of light ellipticity for the spectra in (a) and (b). Schematics of phantom designs is shown in (d).
Fig. 7
Fig. 7 (a) Left: Polarization gated spectra. Right: comparison of the measured EPRS spectrum with ellipticity of 45° normalized to one and the absorbance spectrum of the bovine blood; the least squares method was used to fit the bovine blood spectrum to the EPRS spectrum . (c) integrated intensities of the spectra in (b) over wavelengths 500 to 625 nm subtracted by the background at 625-750 nm. (c) Schematic of a tissue scattering phantom with a blood filled microchannel.
Fig. 8
Fig. 8 (a) Left: an image of a nude mouse cadaver with the ear spread on PDMS. Right: Image of a mouse ear with red lines outlining the area that was analyzed by EPRS. (b) Images acquired using perpendicular polarization (left) and co-polarized polarization gated images (right). (c) Polarization gated EPRS spectra of the five areas shown in (a). (d) Integrated intensity differences (600-640 nm background region subtracted by 530-570 nm blood absorbance region) of the spectra shown in (c). Scale bars are 250 μm.
Fig. 9
Fig. 9 Two dimensional depth-resolved pseudo-colored EPRS image of blood absorbance in a mouse ear. The image contrast is determined by the integrated intensity differences (600 – 640 nm background signal subtracted by the 530 – 570 nm blood absorbance region). The depth is derived from the fit in Fig. 4. Each spectroscopic pixel in x-coordinate of the image corresponds to 20 integrated imaging pixels alone the imaging line of the hyperspectral PARISS system.

Tables (1)

Tables Icon

Table 1 Illumination and detection schemes of experimental setup

Metrics