Abstract

We propose an innovative registration method to correct motion artifacts for wide-field optical coherence tomography angiography (OCTA) acquired by ultrahigh-speed swept-source OCT (>200 kHz A-scan rate). Considering that the number of A-scans along the fast axis is much higher than the number of positions along slow axis in the wide-field OCTA scan, a non-orthogonal scheme is introduced. Two en face angiograms in the vertical priority (2 y-fast) are divided into microsaccade-free parallel strips. A gross registration based on large vessels and a fine registration based on small vessels are sequentially applied to register parallel strips into a composite image. This technique is extended to automatically montage individual registered, motion-free angiograms into an ultrawide-field view.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

30 June 2016: A correction was made to the author affiliations.


OSA Recommended Articles
Invariant features-based automated registration and montage for wide-field OCT angiography

Jie Wang, Acner Camino, Xiaohui Hua, Liang Liu, David Huang, Thomas S. Hwang, and Yali Jia
Biomed. Opt. Express 10(1) 120-136 (2019)

Maximum value projection produces better en face OCT angiograms than mean value projection

Tristan T. Hormel, Jie Wang, Steven T. Bailey, Thomas S. Hwang, David Huang, and Yali Jia
Biomed. Opt. Express 9(12) 6412-6424 (2018)

Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography

Hansford C. Hendargo, Rolando Estrada, Stephanie J. Chiu, Carlo Tomasi, Sina Farsiu, and Joseph A. Izatt
Biomed. Opt. Express 4(6) 803-821 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref] [PubMed]
  2. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
    [Crossref] [PubMed]
  3. S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical micro-angiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
    [Crossref] [PubMed]
  4. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [Crossref] [PubMed]
  5. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [Crossref] [PubMed]
  6. G. Liu, L. Chou, W. Jia, W. Qi, B. Choi, and Z. Chen, “Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems,” Opt. Express 19(12), 11429–11440 (2011).
    [Crossref] [PubMed]
  7. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2(6), 1504–1513 (2011).
    [Crossref] [PubMed]
  8. V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
    [Crossref]
  9. B. Park, M. Pierce, B. Cense, and J. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11(7), 782–793 (2003).
    [Crossref] [PubMed]
  10. A. S. Nam, I. Chico-Calero, and B. J. Vakoc, “Complex differential variance algorithm for optical coherence tomography angiography,” Biomed. Opt. Express 5(11), 3822–3832 (2014).
    [Crossref] [PubMed]
  11. J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2(5), 1184–1193 (2011).
    [Crossref] [PubMed]
  12. Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
    [Crossref] [PubMed]
  13. D. Huang, Y. Jia, and S. S. Gao, “Principles of Optical Coherence Tomography Angiography ” in OCT Angiography Atlas H. D. Lumbros, B. Rosenfield, P. Chen, C. Rispoli, M. Romano, eds. (Jaypee Brothers Medical Publishers, New Delhi, 2015).
  14. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
    [Crossref] [PubMed]
  15. R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
    [Crossref]
  16. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
    [Crossref] [PubMed]
  17. B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express 4(1), 51–65 (2013).
    [Crossref] [PubMed]
  18. I. Gorczynska, J. Migacz, R. J. Zawadzki, N. Sudheendran, Y. F. Jian, P. K. Tiruveedhula, A. Roorda, and J. S. Werner, “En face projection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods,” Proc. SPIE 9541, 954112 (2015).
  19. Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
    [Crossref] [PubMed]
  20. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
    [Crossref] [PubMed]
  21. H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
    [Crossref] [PubMed]
  22. W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
    [Crossref] [PubMed]
  23. Laser Institute of America, “American National Standard for the Safe Use of Lasers,” LIA (Amst.) (2014).
  24. M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
    [Crossref] [PubMed]
  25. R. Estrada, C. Tomasi, M. T. Cabrera, D. K. Wallace, S. F. Freedman, and S. Farsiu, “Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing,” Biomed. Opt. Express 2(10), 2871–2887 (2011).
    [Crossref] [PubMed]
  26. A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” in Medical Image Computing and Computer Assisted Intervention-MICCAI (Springer, 1998), pp. 130–137.
  27. D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging 18(8), 712–721 (1999).
    [Crossref] [PubMed]
  28. S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with multilevel B-splines,” IEEE Trans. Vis. Comput. Graph. 3(3), 228–244 (1997).
    [Crossref]
  29. G. Wahba, Spline models for observational data (SIAM, 1990).
  30. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7(10), 2032–2040 (1990).
    [Crossref] [PubMed]

2015 (5)

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

I. Gorczynska, J. Migacz, R. J. Zawadzki, N. Sudheendran, Y. F. Jian, P. K. Tiruveedhula, A. Roorda, and J. S. Werner, “En face projection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods,” Proc. SPIE 9541, 954112 (2015).

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (2)

2012 (2)

2011 (5)

2008 (1)

2007 (2)

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[Crossref] [PubMed]

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[Crossref]

2006 (1)

2004 (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

1999 (1)

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging 18(8), 712–721 (1999).
[Crossref] [PubMed]

1997 (1)

S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with multilevel B-splines,” IEEE Trans. Vis. Comput. Graph. 3(3), 228–244 (1997).
[Crossref]

1993 (1)

1990 (1)

Adhi, M.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

An, L.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Arathorn, D. W.

Bailey, S. T.

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Baumann, B.

Bock, R.

Braaf, B.

Cable, A.

Cabrera, M. T.

Cense, B.

Chen, Z.

Chen, Z. P.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Chico-Calero, I.

Chiu, S. J.

Choi, B.

Choi, S. S.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[Crossref]

Choi, W.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Chou, L.

Cobbold, R. S. C.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

de Boer, J.

de Boer, J. F.

de Carlo, T. E.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Duker, J. S.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Enfield, J.

Estrada, R.

Farsiu, S.

Fingler, J.

Flaxel, C. J.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Fraser, S. E.

Freedman, S. F.

Fujimoto, J. G.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

Fuller, A. R.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[Crossref]

Gao, S. S.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Gorczynska, I.

I. Gorczynska, J. Migacz, R. J. Zawadzki, N. Sudheendran, Y. F. Jian, P. K. Tiruveedhula, A. Roorda, and J. S. Werner, “En face projection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods,” Proc. SPIE 9541, 954112 (2015).

Gordon, M. L.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Gruber, A.

Hamann, B.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[Crossref]

Hanson, S. R.

Hawkes, D. J.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging 18(8), 712–721 (1999).
[Crossref] [PubMed]

Hayes, C.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging 18(8), 712–721 (1999).
[Crossref] [PubMed]

Hee, M. R.

Hendargo, H. C.

Hill, D. L.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging 18(8), 712–721 (1999).
[Crossref] [PubMed]

Hong, Y.

Hornegger, J.

Huang, D.

Huang, Y.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Hubel, D. H.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Hurst, S.

Hwang, T. S.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Izatt, J. A.

Jacques, S. L.

Jayaraman, V.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Jia, W.

Jia, Y.

Jian, Y. F.

I. Gorczynska, J. Migacz, R. J. Zawadzki, N. Sudheendran, Y. F. Jian, P. K. Tiruveedhula, A. Roorda, and J. S. Werner, “En face projection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods,” Proc. SPIE 9541, 954112 (2015).

Jiang, J.

Jonathan, E.

Khurana, M.

Kim, D. Y.

Kraus, M. F.

Kubach, S.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Laron, M.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Lauer, A. K.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Leach, M. O.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging 18(8), 712–721 (1999).
[Crossref] [PubMed]

Leahy, M.

Lee, B.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Lee, S.

S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with multilevel B-splines,” IEEE Trans. Vis. Comput. Graph. 3(3), 228–244 (1997).
[Crossref]

Leung, M. K.

Lin, C. P.

Liu, G.

Liu, J. J.

Liu, L.

Lu, C. D.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Ma, Z.

Macknik, S. L.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Makita, S.

Mariampillai, A.

Martinez-Conde, S.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Mayer, M. A.

McClintic, S. M.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Migacz, J.

I. Gorczynska, J. Migacz, R. J. Zawadzki, N. Sudheendran, Y. F. Jian, P. K. Tiruveedhula, A. Roorda, and J. S. Werner, “En face projection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods,” Proc. SPIE 9541, 954112 (2015).

Mok, A.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Moriyama, E. H.

Moult, E. M.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Munce, N. R.

Nam, A. S.

Park, B.

Pechauer, A. D.

Peli, E.

Pennesi, M. E.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Pierce, M.

Potsaid, B.

Puliafito, C. A.

Qi, W.

Roorda, A.

I. Gorczynska, J. Migacz, R. J. Zawadzki, N. Sudheendran, Y. F. Jian, P. K. Tiruveedhula, A. Roorda, and J. S. Werner, “En face projection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods,” Proc. SPIE 9541, 954112 (2015).

B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express 4(1), 51–65 (2013).
[Crossref] [PubMed]

Rosenfeld, P. J.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Rueckert, D.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging 18(8), 712–721 (1999).
[Crossref] [PubMed]

Schuman, J. S.

Schwartz, D. M.

Sharma, U.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Sheehy, C. K.

Shin, S. Y.

S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with multilevel B-splines,” IEEE Trans. Vis. Comput. Graph. 3(3), 228–244 (1997).
[Crossref]

Sonoda, L. I.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging 18(8), 712–721 (1999).
[Crossref] [PubMed]

Standish, B. A.

Subhash, H.

Sudheendran, N.

I. Gorczynska, J. Migacz, R. J. Zawadzki, N. Sudheendran, Y. F. Jian, P. K. Tiruveedhula, A. Roorda, and J. S. Werner, “En face projection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods,” Proc. SPIE 9541, 954112 (2015).

Swanson, E. A.

Tan, O.

Tiruveedhula, P.

Tiruveedhula, P. K.

I. Gorczynska, J. Migacz, R. J. Zawadzki, N. Sudheendran, Y. F. Jian, P. K. Tiruveedhula, A. Roorda, and J. S. Werner, “En face projection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods,” Proc. SPIE 9541, 954112 (2015).

Tokayer, J.

Tomasi, C.

Vakoc, B. J.

Vermeer, K. A.

Vienola, K. V.

Vitkin, I. A.

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref] [PubMed]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Waheed, N. K.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Wallace, D. K.

Wang, J.

Wang, R. K.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical micro-angiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
[Crossref] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[Crossref] [PubMed]

Wang, Y.

Werner, J. S.

I. Gorczynska, J. Migacz, R. J. Zawadzki, N. Sudheendran, Y. F. Jian, P. K. Tiruveedhula, A. Roorda, and J. S. Werner, “En face projection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods,” Proc. SPIE 9541, 954112 (2015).

D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2(6), 1504–1513 (2011).
[Crossref] [PubMed]

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[Crossref]

Wiley, D. F.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[Crossref]

Wilson, B. C.

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref] [PubMed]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Wilson, D. J.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Wolberg, G.

S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with multilevel B-splines,” IEEE Trans. Vis. Comput. Graph. 3(3), 228–244 (1997).
[Crossref]

Yamanari, M.

Yang, Q.

Yang, V. X.

Yang, V. X. D.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Yasuno, Y.

Yatagai, T.

Yousefi, S.

S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical micro-angiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
[Crossref] [PubMed]

Zawadzki, R. J.

I. Gorczynska, J. Migacz, R. J. Zawadzki, N. Sudheendran, Y. F. Jian, P. K. Tiruveedhula, A. Roorda, and J. S. Werner, “En face projection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods,” Proc. SPIE 9541, 954112 (2015).

D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2(6), 1504–1513 (2011).
[Crossref] [PubMed]

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[Crossref]

Zhang, M.

Zhang, Q.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Zhang, T.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Zhao, Y. H.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Zhi, Z.

S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical micro-angiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
[Crossref] [PubMed]

Biomed. Opt. Express (8)

A. S. Nam, I. Chico-Calero, and B. J. Vakoc, “Complex differential variance algorithm for optical coherence tomography angiography,” Biomed. Opt. Express 5(11), 3822–3832 (2014).
[Crossref] [PubMed]

J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2(5), 1184–1193 (2011).
[Crossref] [PubMed]

D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2(6), 1504–1513 (2011).
[Crossref] [PubMed]

B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express 4(1), 51–65 (2013).
[Crossref] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref] [PubMed]

H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

R. Estrada, C. Tomasi, M. T. Cabrera, D. K. Wallace, S. F. Freedman, and S. Farsiu, “Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing,” Biomed. Opt. Express 2(10), 2871–2887 (2011).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical micro-angiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging 18(8), 712–721 (1999).
[Crossref] [PubMed]

IEEE Trans. Vis. Comput. Graph. (1)

S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with multilevel B-splines,” IEEE Trans. Vis. Comput. Graph. 3(3), 228–244 (1997).
[Crossref]

J. Biomed. Opt. (1)

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Rev. Neurosci. (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Ophthalmology (1)

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Proc. SPIE (2)

I. Gorczynska, J. Migacz, R. J. Zawadzki, N. Sudheendran, Y. F. Jian, P. K. Tiruveedhula, A. Roorda, and J. S. Werner, “En face projection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods,” Proc. SPIE 9541, 954112 (2015).

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007).
[Crossref]

Other (4)

D. Huang, Y. Jia, and S. S. Gao, “Principles of Optical Coherence Tomography Angiography ” in OCT Angiography Atlas H. D. Lumbros, B. Rosenfield, P. Chen, C. Rispoli, M. Romano, eds. (Jaypee Brothers Medical Publishers, New Delhi, 2015).

Laser Institute of America, “American National Standard for the Safe Use of Lasers,” LIA (Amst.) (2014).

G. Wahba, Spline models for observational data (SIAM, 1990).

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” in Medical Image Computing and Computer Assisted Intervention-MICCAI (Springer, 1998), pp. 130–137.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Segmentation of the inner limiting membrane (ILM, green line) and outer plexiform layer (OPL, yellow line) on one y-fast B-frame from a healthy data set. En face images were generated from the mean value of the region between the ILM and OPL. Decorrelation signal is shown in red.
Fig. 2
Fig. 2 The flow chart of the automated motion correction algorithm.
Fig. 3
Fig. 3 (A) En face mean projection of OCT reflectance. (B) The bias field by Gaussian filtering of (A). (C) Original en face angiogram. (D) The en face angiogram after bias field correction.
Fig. 4
Fig. 4 Motion detection and strip division process of an en face OCTA. (A) Original en face OCTA. (B) En face OCTA after bias field correction. (C) En face OCTA after the removal of large eye movements. (D) En face OCTA enhanced by the local histogram equalization and Gabor filter. Six microsaccade-free strips were formed for subsequent registration steps.
Fig. 5
Fig. 5 The plot of mean decorrelation values of projected B-frames on OCTA before (A) and after (B) adjustment. The lines with large eye movements have been removed showing decorrelation values of zero.
Fig. 6
Fig. 6 Example of the gross registration of two microsaccade-free parallel strips based on large vessels. (A) Reference strip in a zero-padded matrix. (B) Moving strip in a zero-padded matrix. The large vessels are shown in yellow and small vessels are shown in purple. (C) Newly registered strip containing the reference strip (outlined in green) and transformed moving strip (outlined in red).
Fig. 7
Fig. 7 The comparison of merged images registered using different weighting values (α) between large and small vessels. The region with size of 6 × 5mm was selected in this figure. (A) when α = 2, the merged image shows incorrectly registered vasculatures indicated by yellow boxes. (B) when α = 3, the merged image is improved, but a double vessel still remains, outlined in the red box. (C) when α = 9, the registration is optimized and merged image shows the best quality.
Fig. 8
Fig. 8 Comparison of region (outlined in yellow) merged after (A) gross registration and (B) fine registration of two strips. The enlarged regions (outlined in red) in (A) and (B) are shown in (C) and (D), respectively. In (C), the large vessels merged after gross registration are not well connected to the single strip region (pointed by red arrows), and the small vessels are less clear than that of single strip. In (D), the large vessels merged after fine registration are continuous with the single strip and the small vessels are more clear than that of single strip.
Fig. 9
Fig. 9 Removal of artifacts using parallel-strip registration of two y-fast en face OCTA images (6 × 10mm) of a healthy retina. (A) 1st y-fast en face OCTA. (B) 2nd y-fast en face OCTA. (C) merged image after using proposed parallel-strip registration of Panels A and B. (D), (E) and (F) are the enlarged region (outlined in red) of the same region of Panels A, B and C.
Fig. 10
Fig. 10 Interpolation of positions in registered and merged en face OCTA image with overlapped microsaccade motion artifacts in orginal y-fast scans. (A) 1st y-fast en face OCTA. (B) 2nd y-fast en face OCTA. (C) merged image. The interpolation was perfomed on the lines with missing flow information due to overlapped microsaccades. The overlapped artifacts and the corresponding regions fixed by interpolation were indicated by red (1st example) and yellow (2nd example) arrows.
Fig. 11
Fig. 11 Registration of two y-fast en face OCTA (6 × 10mm) of an eye with proliferative diabetic retinopathy (PDR). (A) 1st y-fast en face OCTA of retina. (B) 2nd y-fast en face OCTA of retina. (C) Merged retinal image using proposed parallel-strip registration. (D) 1st y-fast en face OCTA of vitreous with retinal neovascularization (RNV). (E) 2nd y-fast en face OCTA of vitreous with RNV. (F) Merged vitreous image by applying deformable field obtained from the retinal slab. Red arrow indicates a vertical motion artifact crossing through a nonperfusion region.
Fig. 12
Fig. 12 Automated ultrawide-field montage (25 × 10mm) by registering and merging five motion-corrected wide-field image (6 × 10mm).

Tables (1)

Tables Icon

Table 1 The Comparison of the RMS Contrast

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

D ' ( x , y ) = D ( x , y ) M e a n ( G ( S ) ) G ( S ( x , y ) ) ( x = 1 , 2 , 3 , ... , X ; y = 1 , 2 , 3 , ... , Y )
T l ( x , y ; t ) = ( t 1 t 2 t 3 t 4 ) ( x y ) + ( t 5 t 6 )
C l ( t ) = x , y [ L r ( x , y ) L m ( T l ( x , y ; t ) ) ] 2
t ( k + 1 ) = t ( k ) + α d ( k ) d ( k ) = C l ( k ) t
T s ( x , y ) = p = 0 3 q = 0 3 B p ( u ) B q ( v ) ϕ i + p , j + q
B 0 ( u ) = ( 1 u ) 3 / 6 B 1 ( u ) = ( 3 u 3 6 u 2 + 4 ) 3 / 6 B 2 ( u ) = ( 3 u 3 + 3 u 2 + 3 u + 1 ) 3 / 6 B 3 ( u ) = u 3 / 6
C s m o o t h = 1 A o ( x , y ) A o [ ( 2 T s x 2 ) 2 + ( 2 T s y 2 ) 2 + ( 2 T s x y ) 2 ] d x d y
C s i m i l a r i t y = 1 A o ( x , y ) A o ( S r S m ( T s [ T l ( x , y ) ] ) ) 2 d x d y
C f i n e = α ( λ C L s m o o t h + C L s i m i l a r i t y ) + λ C S s m o o t h + C S s i m i l a r i t y
M ' ( x ' , y ' ) = M ( T s ( x , y ) )
C R M S = 1 A × ( x , y ) A ( M ( x , y ) M ¯ ) 2

Metrics