Abstract

In optical coherence tomography (OCT), the axial resolution is directly linked to the coherence length of the employed light source. It is currently unclear if OCT allows measuring thicknesses below its axial resolution value. To investigate spectral-domain OCT imaging in the super-resolution regime, we derived a signal model and compared it with the experiment. Several island thin film samples of known refractive indices and thicknesses in the range 46 – 163 nm were fabricated and imaged. Reference thickness measurements were performed using a commercial atomic force microscope. In vivo measurements of the tear film were performed in 4 healthy subjects. Our results show that quantitative super-resolved thickness measurement can be performed using OCT. In addition, we report repeatable tear film lipid layer visualization. Our results provide a novel interpretation of the OCT axial resolution limit and open a perspective to deeper extraction of the information hidden in the coherence volume.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography

Valentin Aranha dos Santos, Leopold Schmetterer, Martin Gröschl, Gerhard Garhofer, Doreen Schmidl, Martin Kucera, Angelika Unterhuber, Jean-Pierre Hermand, and René M. Werkmeister
Opt. Express 23(16) 21043-21063 (2015)

Tear film imager for dynamic mapping of the human tear film

Yoel Cohen, Shlomi Epshtein, Alon Harris, Raanan Gefen, Lawrence Kagemann, and Yoel Arieli
Appl. Opt. 58(29) 7987-7995 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography : Technology and Applications (Springer, 2015).
    [Crossref]
  2. R. A. Leitgeb and M. Wojtkowski, “Complex and Coherence-Noise Free Fourier Domain Optical Coherence Tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and G. J. Fujimoto, eds. (Springer, 2015).
  3. P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy (Springer, 2011).
  4. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
    [Crossref] [PubMed]
  5. M. Schnell, M. J. Perez-Roldan, P. S. Carney, and R. Hillenbrand, “Quantitative confocal phase imaging by synthetic optical holography,” Opt. Express 22(12), 15267–15276 (2014).
    [Crossref] [PubMed]
  6. R. Andrade, E. G. Birgin, I. Chambouleyron, J. M. Martinez, and S. D. Ventura, “Estimation of the thickness and the optical parameters of several stacked thin films using optimization,” Appl. Opt. 47(28), 5208–5220 (2008).
    [Crossref] [PubMed]
  7. P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, “Spectral interferometry and reflectometry used to measure thin films,” Appl. Phys. B 92, 203–207 (2008).
    [Crossref]
  8. P. Hlubina, D. Ciprian, J. Lunacek, and M. Lesnak, “Thickness of SiO2 thin film on silicon wafer measured by dispersive white-light spectral interferometry,” Appl. Phys. B 84, 511–516 (2006).
    [Crossref]
  9. P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, and R. M. Hill, “Interferometric imaging of the full thickness of the precorneal tear film,” J. Opt. Soc. Am. A 23(9), 2097–2104 (2006).
    [Crossref]
  10. G. Wiegand, K. R. Neumaier, and E. Sackmann, “Microinterferometry: Three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM),” Appl. Opt. 37(29), 6892–6905 (1998).
    [Crossref]
  11. R. Parthasarathy and J. T. Groves, “Optical techniques for imaging membrane topography,” Cell Biochem. Biophys. 41(3), 391–414 (2004).
    [Crossref] [PubMed]
  12. P. de Groot, “Principles of interference microscopy for the measurement of surface topography,” Adv. Opt. Photon. 7(1), 1–65 (2015).
    [Crossref]
  13. S.-W. Kim and G.-H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt. 38(28), 5968–5973 (1999).
    [Crossref]
  14. W. Osten and N. Reingand, Optical Imaging and Metrology: Advanced Technologies (Wiley-VCH, 2012).
    [Crossref]
  15. M. D. Seaberg, B. Zhang, D. F. Gardner, E. R. Shanblatt, M. M. Murnane, H. C. Kapteyn, and D. E. Adams, “Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography,” Optica 1(1), 39–44 (2014).
    [Crossref]
  16. M. Quinten, A Practical Guide to Optical Metrology for Thin Films (Wiley-VCH, 2012).
    [Crossref]
  17. R. Wen, A. Lahiri, M. Azhagurajan, S.-i. Kobayashi, and K. Itaya, “A new in situ optical microscope with single atomic layer resolution for observation of electrochemical dissolution of Au (111),” J. Am. Chem. Soc. 132(39), 13657–13659 (2010).
    [Crossref] [PubMed]
  18. R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
    [Crossref]
  19. V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhofer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
    [Crossref] [PubMed]
  20. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007).
  21. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2001).
  22. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  23. J. Izatt, M. Choma, and A.-H. Dhalla, “Theory of Optical Coherence Tomography”, in Optical Coherence Tomography: Technology and Applications, W. Drexler and G. J. Fujimoto, eds. (Springer, 2015).
    [Crossref]
  24. A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing (Pearson, 2010).
  25. E. Wolff, “The mucocutaneous junction of the lidmargin and the distribution of the tear fluid,” Trans. Am. Ophthalmol. Soc. 66, 291–308 (1946).
  26. R. R. Hodges and D. A. Dartt, “Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins,” Exp. Eye Res. 117, 62–78 (2013).
    [Crossref] [PubMed]
  27. I. A. Butovich, E. Uchiyama, M. A. Di Pascuale, and J. P. McCulley, “Liquid chromatography–mass spectrometric analysis of lipids present in human meibomian gland secretions,” Lipids 42(8), 765–776 (2007).
    [Crossref] [PubMed]
  28. M. Patterson, H. J. Vogel, and E. J. Prenner, “Biophysical characterization of monofilm model systems composed of selected tear film phospholipids,” Biochim. Biophys. Acta 1858(2), 403–414 (2016).
    [Crossref]
  29. T. J. Millar and B. S. Schuett, “The real reason for having a meibomian lipid layer covering the outer surface of the tear film–a review,” Exp. Eye Res. 137, 125–138 (2015).
    [Crossref] [PubMed]
  30. M. A. Lemp, C. Baudouin, J. Baum, M. Dogru, G. N. Foulks, S. Kinoshita, P. Laibson, J. McCulley, J. Murube, S. C. Pflugfelder, M. Rolando, and I. Toda, “The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007),” Ocul. Surf. 5(2), 75–92 (2007).
    [Crossref]
  31. R. J. Braun, P. E. King-Smith, C. G. Begley, L. Li, and N. R. Gewecke, “Dynamics and function of the tear film in relation to the blink cycle,” Prog. Retin. Eye Res. 45, 132–164 (2015).
    [Crossref]
  32. P. E. King-Smith, M. D. Bailey, and R. J. Braun, “Four characteristics and a model of an effective tear film lipid layer (TFLL),” Ocul. Surf. 11(4), 236–245 (2013).
    [Crossref] [PubMed]
  33. G. A. Georgiev, N. Yokoi, S. Ivanova, V. Tonchev, Y. Nencheva, and R. Krastev, “Surface relaxations as a tool to distinguish the dynamic interfacial properties of films formed by normal and diseased meibomian lipids,” Soft Matter 10(30), 5579–5588 (2014).
    [Crossref] [PubMed]
  34. P. E. King-Smith, B. Fink, R. Hill, K. Koelling, and J. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29(4–5), 357–368 (2004).
    [Crossref] [PubMed]
  35. D. R. Korb, D. F. Baron, J. P. Herman, V. M. Finnemore, J. M. Exford, J. L. Hermosa, C. D. Leahy, T. Glonek, and J. V. Greiner, “Tear Film Lipid Layer Thickness as a Function of Blinking,” Cornea 13(4), 354–359 (1994).
    [Crossref] [PubMed]
  36. J. M. Tiffany, “Refractive index of meibomian and other lipids,” Curr. Eye Res. 5(11), 887–889 (1986).
    [Crossref] [PubMed]
  37. P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, R. J. Braun, and G. B. McFadden, “The Contribution of Lipid Layer Movement to Tear Film Thinning and Breakup,” Invest. Ophthalmol. Visual Sci. 50(6), 2747–2756 (2009).
    [Crossref]
  38. X. Liu, S. Chen, D. Cui, X. Yu, and L. Liu, “Spectral estimation optical coherence tomography for axial super-resolution,” Opt. Express 23(20), 26521–26532 (2015).
    [Crossref] [PubMed]
  39. P. E. Napoli, F. Coronella, G. M. Satta, and M. Fossarello, “A Novel Technique of Contrast-Enhanced Optical Coherence Tomography Imaging in Evaluation of Clearance of Lipids in Human Tears,” PLoS ONE 9(11), e109843 (2014).
    [Crossref] [PubMed]
  40. J. Huang, Q. Yuan, B. Zhang, K. Xu, P. Tankam, E. Clarkson, M. A. Kupinski, H. B. Hindman, J. V. Aquavella, T. J. Suleski, and J. P. Rolland, “Measurement of a multi-layered tear film phantom using optical coherence tomography and statistical decision theory,” Biomed. Opt. Express 5(12), 4374–4697 (2014).
    [Crossref]
  41. N. Yokoi and A. Komuro, “Non-invasive methods of assessing the tear film,” Exp. Eye Res. 78(3), 399–407 (2004).
    [Crossref] [PubMed]
  42. E. Goto, M. Dogru, T. Kojima, and K. Tsubota, “Computer-Synthesis of an Interference Color Chart of Human Tear Lipid Layer, by a Colorimetric Approach,” Invest. Ophthalmol. Visual Sci. 44(11), 4693–4697 (2003).
    [Crossref]
  43. A. H. Bachmann, R. Michaely, T. Lasser, and R. A. Leitgeb, “Dual beam heterodyne Fourier domain optical coherence tomography,” Opt. Express 15(15), 9254–9266 (2007).
    [Crossref] [PubMed]
  44. E. Bousi and C. Pitris, “Axial resolution improvement by modulated deconvolution in Fourier domain optical coherence tomography,” J. Biomed. Opt. 17(7), 071307 (2012).
    [Crossref] [PubMed]
  45. E. Bousi, I. Charalambous, and C. Pitris, “Optical coherence tomography axial resolution improvement by step-frequency encoding,” Opt. Express 18(11), 11877–11890 (2010).
    [Crossref] [PubMed]
  46. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
    [Crossref]
  47. R. E. Wagner and W. J. Tomlinson, “Coupling efficiency of optics in single-mode fiber components,” Appl. Opt. 21(15), 2671–2688 (1982).
    [Crossref] [PubMed]
  48. I. Amidror, Mastering the Discrete Fourier Transform in One, Two or Several Dimensions: Pitfalls and Artifacts (Springer, 2013).
    [Crossref]
  49. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
    [Crossref]

2016 (1)

M. Patterson, H. J. Vogel, and E. J. Prenner, “Biophysical characterization of monofilm model systems composed of selected tear film phospholipids,” Biochim. Biophys. Acta 1858(2), 403–414 (2016).
[Crossref]

2015 (5)

2014 (5)

2013 (3)

R. R. Hodges and D. A. Dartt, “Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins,” Exp. Eye Res. 117, 62–78 (2013).
[Crossref] [PubMed]

P. E. King-Smith, M. D. Bailey, and R. J. Braun, “Four characteristics and a model of an effective tear film lipid layer (TFLL),” Ocul. Surf. 11(4), 236–245 (2013).
[Crossref] [PubMed]

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

2012 (1)

E. Bousi and C. Pitris, “Axial resolution improvement by modulated deconvolution in Fourier domain optical coherence tomography,” J. Biomed. Opt. 17(7), 071307 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

R. Wen, A. Lahiri, M. Azhagurajan, S.-i. Kobayashi, and K. Itaya, “A new in situ optical microscope with single atomic layer resolution for observation of electrochemical dissolution of Au (111),” J. Am. Chem. Soc. 132(39), 13657–13659 (2010).
[Crossref] [PubMed]

E. Bousi, I. Charalambous, and C. Pitris, “Optical coherence tomography axial resolution improvement by step-frequency encoding,” Opt. Express 18(11), 11877–11890 (2010).
[Crossref] [PubMed]

2009 (2)

Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
[Crossref]

P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, R. J. Braun, and G. B. McFadden, “The Contribution of Lipid Layer Movement to Tear Film Thinning and Breakup,” Invest. Ophthalmol. Visual Sci. 50(6), 2747–2756 (2009).
[Crossref]

2008 (2)

2007 (3)

I. A. Butovich, E. Uchiyama, M. A. Di Pascuale, and J. P. McCulley, “Liquid chromatography–mass spectrometric analysis of lipids present in human meibomian gland secretions,” Lipids 42(8), 765–776 (2007).
[Crossref] [PubMed]

M. A. Lemp, C. Baudouin, J. Baum, M. Dogru, G. N. Foulks, S. Kinoshita, P. Laibson, J. McCulley, J. Murube, S. C. Pflugfelder, M. Rolando, and I. Toda, “The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007),” Ocul. Surf. 5(2), 75–92 (2007).
[Crossref]

A. H. Bachmann, R. Michaely, T. Lasser, and R. A. Leitgeb, “Dual beam heterodyne Fourier domain optical coherence tomography,” Opt. Express 15(15), 9254–9266 (2007).
[Crossref] [PubMed]

2006 (2)

P. Hlubina, D. Ciprian, J. Lunacek, and M. Lesnak, “Thickness of SiO2 thin film on silicon wafer measured by dispersive white-light spectral interferometry,” Appl. Phys. B 84, 511–516 (2006).
[Crossref]

P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, and R. M. Hill, “Interferometric imaging of the full thickness of the precorneal tear film,” J. Opt. Soc. Am. A 23(9), 2097–2104 (2006).
[Crossref]

2004 (3)

R. Parthasarathy and J. T. Groves, “Optical techniques for imaging membrane topography,” Cell Biochem. Biophys. 41(3), 391–414 (2004).
[Crossref] [PubMed]

P. E. King-Smith, B. Fink, R. Hill, K. Koelling, and J. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29(4–5), 357–368 (2004).
[Crossref] [PubMed]

N. Yokoi and A. Komuro, “Non-invasive methods of assessing the tear film,” Exp. Eye Res. 78(3), 399–407 (2004).
[Crossref] [PubMed]

2003 (2)

E. Goto, M. Dogru, T. Kojima, and K. Tsubota, “Computer-Synthesis of an Interference Color Chart of Human Tear Lipid Layer, by a Colorimetric Approach,” Invest. Ophthalmol. Visual Sci. 44(11), 4693–4697 (2003).
[Crossref]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

1999 (1)

1998 (1)

1994 (1)

D. R. Korb, D. F. Baron, J. P. Herman, V. M. Finnemore, J. M. Exford, J. L. Hermosa, C. D. Leahy, T. Glonek, and J. V. Greiner, “Tear Film Lipid Layer Thickness as a Function of Blinking,” Cornea 13(4), 354–359 (1994).
[Crossref] [PubMed]

1986 (1)

J. M. Tiffany, “Refractive index of meibomian and other lipids,” Curr. Eye Res. 5(11), 887–889 (1986).
[Crossref] [PubMed]

1982 (1)

1978 (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
[Crossref]

1946 (1)

E. Wolff, “The mucocutaneous junction of the lidmargin and the distribution of the tear fluid,” Trans. Am. Ophthalmol. Soc. 66, 291–308 (1946).

Adams, D. E.

Alex, A.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

Amidror, I.

I. Amidror, Mastering the Discrete Fourier Transform in One, Two or Several Dimensions: Pitfalls and Artifacts (Springer, 2013).
[Crossref]

Andrade, R.

Aquavella, J. V.

Aranha dos Santos, V.

Azhagurajan, M.

R. Wen, A. Lahiri, M. Azhagurajan, S.-i. Kobayashi, and K. Itaya, “A new in situ optical microscope with single atomic layer resolution for observation of electrochemical dissolution of Au (111),” J. Am. Chem. Soc. 132(39), 13657–13659 (2010).
[Crossref] [PubMed]

Bachmann, A. H.

Bailey, M. D.

P. E. King-Smith, M. D. Bailey, and R. J. Braun, “Four characteristics and a model of an effective tear film lipid layer (TFLL),” Ocul. Surf. 11(4), 236–245 (2013).
[Crossref] [PubMed]

Baron, D. F.

D. R. Korb, D. F. Baron, J. P. Herman, V. M. Finnemore, J. M. Exford, J. L. Hermosa, C. D. Leahy, T. Glonek, and J. V. Greiner, “Tear Film Lipid Layer Thickness as a Function of Blinking,” Cornea 13(4), 354–359 (1994).
[Crossref] [PubMed]

Baudouin, C.

M. A. Lemp, C. Baudouin, J. Baum, M. Dogru, G. N. Foulks, S. Kinoshita, P. Laibson, J. McCulley, J. Murube, S. C. Pflugfelder, M. Rolando, and I. Toda, “The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007),” Ocul. Surf. 5(2), 75–92 (2007).
[Crossref]

Baum, J.

M. A. Lemp, C. Baudouin, J. Baum, M. Dogru, G. N. Foulks, S. Kinoshita, P. Laibson, J. McCulley, J. Murube, S. C. Pflugfelder, M. Rolando, and I. Toda, “The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007),” Ocul. Surf. 5(2), 75–92 (2007).
[Crossref]

Begley, C. G.

R. J. Braun, P. E. King-Smith, C. G. Begley, L. Li, and N. R. Gewecke, “Dynamics and function of the tear film in relation to the blink cycle,” Prog. Retin. Eye Res. 45, 132–164 (2015).
[Crossref]

Birgin, E. G.

Bousi, E.

E. Bousi and C. Pitris, “Axial resolution improvement by modulated deconvolution in Fourier domain optical coherence tomography,” J. Biomed. Opt. 17(7), 071307 (2012).
[Crossref] [PubMed]

E. Bousi, I. Charalambous, and C. Pitris, “Optical coherence tomography axial resolution improvement by step-frequency encoding,” Opt. Express 18(11), 11877–11890 (2010).
[Crossref] [PubMed]

Braun, R. J.

R. J. Braun, P. E. King-Smith, C. G. Begley, L. Li, and N. R. Gewecke, “Dynamics and function of the tear film in relation to the blink cycle,” Prog. Retin. Eye Res. 45, 132–164 (2015).
[Crossref]

P. E. King-Smith, M. D. Bailey, and R. J. Braun, “Four characteristics and a model of an effective tear film lipid layer (TFLL),” Ocul. Surf. 11(4), 236–245 (2013).
[Crossref] [PubMed]

P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, R. J. Braun, and G. B. McFadden, “The Contribution of Lipid Layer Movement to Tear Film Thinning and Breakup,” Invest. Ophthalmol. Visual Sci. 50(6), 2747–2756 (2009).
[Crossref]

Bronhagl, M.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

Butovich, I. A.

I. A. Butovich, E. Uchiyama, M. A. Di Pascuale, and J. P. McCulley, “Liquid chromatography–mass spectrometric analysis of lipids present in human meibomian gland secretions,” Lipids 42(8), 765–776 (2007).
[Crossref] [PubMed]

Carney, P. S.

Chambouleyron, I.

Charalambous, I.

Chen, S.

Chlebus, R.

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, “Spectral interferometry and reflectometry used to measure thin films,” Appl. Phys. B 92, 203–207 (2008).
[Crossref]

Choma, M.

J. Izatt, M. Choma, and A.-H. Dhalla, “Theory of Optical Coherence Tomography”, in Optical Coherence Tomography: Technology and Applications, W. Drexler and G. J. Fujimoto, eds. (Springer, 2015).
[Crossref]

Ciprian, D.

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, “Spectral interferometry and reflectometry used to measure thin films,” Appl. Phys. B 92, 203–207 (2008).
[Crossref]

P. Hlubina, D. Ciprian, J. Lunacek, and M. Lesnak, “Thickness of SiO2 thin film on silicon wafer measured by dispersive white-light spectral interferometry,” Appl. Phys. B 84, 511–516 (2006).
[Crossref]

Clarkson, E.

Coronella, F.

P. E. Napoli, F. Coronella, G. M. Satta, and M. Fossarello, “A Novel Technique of Contrast-Enhanced Optical Coherence Tomography Imaging in Evaluation of Clearance of Lipids in Human Tears,” PLoS ONE 9(11), e109843 (2014).
[Crossref] [PubMed]

Cui, D.

Dartt, D. A.

R. R. Hodges and D. A. Dartt, “Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins,” Exp. Eye Res. 117, 62–78 (2013).
[Crossref] [PubMed]

de Groot, P.

Dhalla, A.-H.

J. Izatt, M. Choma, and A.-H. Dhalla, “Theory of Optical Coherence Tomography”, in Optical Coherence Tomography: Technology and Applications, W. Drexler and G. J. Fujimoto, eds. (Springer, 2015).
[Crossref]

Di Pascuale, M. A.

I. A. Butovich, E. Uchiyama, M. A. Di Pascuale, and J. P. McCulley, “Liquid chromatography–mass spectrometric analysis of lipids present in human meibomian gland secretions,” Lipids 42(8), 765–776 (2007).
[Crossref] [PubMed]

Ding, H.

Dogru, M.

M. A. Lemp, C. Baudouin, J. Baum, M. Dogru, G. N. Foulks, S. Kinoshita, P. Laibson, J. McCulley, J. Murube, S. C. Pflugfelder, M. Rolando, and I. Toda, “The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007),” Ocul. Surf. 5(2), 75–92 (2007).
[Crossref]

E. Goto, M. Dogru, T. Kojima, and K. Tsubota, “Computer-Synthesis of an Interference Color Chart of Human Tear Lipid Layer, by a Colorimetric Approach,” Invest. Ophthalmol. Visual Sci. 44(11), 4693–4697 (2003).
[Crossref]

Drexler, W.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography : Technology and Applications (Springer, 2015).
[Crossref]

Exford, J. M.

D. R. Korb, D. F. Baron, J. P. Herman, V. M. Finnemore, J. M. Exford, J. L. Hermosa, C. D. Leahy, T. Glonek, and J. V. Greiner, “Tear Film Lipid Layer Thickness as a Function of Blinking,” Cornea 13(4), 354–359 (1994).
[Crossref] [PubMed]

Fercher, A.

Ferraro, P.

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy (Springer, 2011).

Fink, B.

P. E. King-Smith, B. Fink, R. Hill, K. Koelling, and J. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29(4–5), 357–368 (2004).
[Crossref] [PubMed]

Fink, B. A.

P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, R. J. Braun, and G. B. McFadden, “The Contribution of Lipid Layer Movement to Tear Film Thinning and Breakup,” Invest. Ophthalmol. Visual Sci. 50(6), 2747–2756 (2009).
[Crossref]

P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, and R. M. Hill, “Interferometric imaging of the full thickness of the precorneal tear film,” J. Opt. Soc. Am. A 23(9), 2097–2104 (2006).
[Crossref]

Finnemore, V. M.

D. R. Korb, D. F. Baron, J. P. Herman, V. M. Finnemore, J. M. Exford, J. L. Hermosa, C. D. Leahy, T. Glonek, and J. V. Greiner, “Tear Film Lipid Layer Thickness as a Function of Blinking,” Cornea 13(4), 354–359 (1994).
[Crossref] [PubMed]

Fossarello, M.

P. E. Napoli, F. Coronella, G. M. Satta, and M. Fossarello, “A Novel Technique of Contrast-Enhanced Optical Coherence Tomography Imaging in Evaluation of Clearance of Lipids in Human Tears,” PLoS ONE 9(11), e109843 (2014).
[Crossref] [PubMed]

Foulks, G. N.

M. A. Lemp, C. Baudouin, J. Baum, M. Dogru, G. N. Foulks, S. Kinoshita, P. Laibson, J. McCulley, J. Murube, S. C. Pflugfelder, M. Rolando, and I. Toda, “The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007),” Ocul. Surf. 5(2), 75–92 (2007).
[Crossref]

Fujimoto, J. G.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography : Technology and Applications (Springer, 2015).
[Crossref]

Gardner, D. F.

Garhofer, G.

V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhofer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref] [PubMed]

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

Georgiev, G. A.

G. A. Georgiev, N. Yokoi, S. Ivanova, V. Tonchev, Y. Nencheva, and R. Krastev, “Surface relaxations as a tool to distinguish the dynamic interfacial properties of films formed by normal and diseased meibomian lipids,” Soft Matter 10(30), 5579–5588 (2014).
[Crossref] [PubMed]

Gewecke, N. R.

R. J. Braun, P. E. King-Smith, C. G. Begley, L. Li, and N. R. Gewecke, “Dynamics and function of the tear film in relation to the blink cycle,” Prog. Retin. Eye Res. 45, 132–164 (2015).
[Crossref]

Gillette, M. U.

Glonek, T.

D. R. Korb, D. F. Baron, J. P. Herman, V. M. Finnemore, J. M. Exford, J. L. Hermosa, C. D. Leahy, T. Glonek, and J. V. Greiner, “Tear Film Lipid Layer Thickness as a Function of Blinking,” Cornea 13(4), 354–359 (1994).
[Crossref] [PubMed]

Goto, E.

E. Goto, M. Dogru, T. Kojima, and K. Tsubota, “Computer-Synthesis of an Interference Color Chart of Human Tear Lipid Layer, by a Colorimetric Approach,” Invest. Ophthalmol. Visual Sci. 44(11), 4693–4697 (2003).
[Crossref]

Greiner, J. V.

D. R. Korb, D. F. Baron, J. P. Herman, V. M. Finnemore, J. M. Exford, J. L. Hermosa, C. D. Leahy, T. Glonek, and J. V. Greiner, “Tear Film Lipid Layer Thickness as a Function of Blinking,” Cornea 13(4), 354–359 (1994).
[Crossref] [PubMed]

Gröschl, M.

V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhofer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref] [PubMed]

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

Groves, J. T.

R. Parthasarathy and J. T. Groves, “Optical techniques for imaging membrane topography,” Cell Biochem. Biophys. 41(3), 391–414 (2004).
[Crossref] [PubMed]

Harris, F. J.

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
[Crossref]

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2001).

Herman, J. P.

D. R. Korb, D. F. Baron, J. P. Herman, V. M. Finnemore, J. M. Exford, J. L. Hermosa, C. D. Leahy, T. Glonek, and J. V. Greiner, “Tear Film Lipid Layer Thickness as a Function of Blinking,” Cornea 13(4), 354–359 (1994).
[Crossref] [PubMed]

Hermand, J.-P.

Hermosa, J. L.

D. R. Korb, D. F. Baron, J. P. Herman, V. M. Finnemore, J. M. Exford, J. L. Hermosa, C. D. Leahy, T. Glonek, and J. V. Greiner, “Tear Film Lipid Layer Thickness as a Function of Blinking,” Cornea 13(4), 354–359 (1994).
[Crossref] [PubMed]

Hill, R.

P. E. King-Smith, B. Fink, R. Hill, K. Koelling, and J. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29(4–5), 357–368 (2004).
[Crossref] [PubMed]

Hill, R. M.

Hillenbrand, R.

Hindman, H. B.

Hitzenberger, C.

Hlubina, P.

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, “Spectral interferometry and reflectometry used to measure thin films,” Appl. Phys. B 92, 203–207 (2008).
[Crossref]

P. Hlubina, D. Ciprian, J. Lunacek, and M. Lesnak, “Thickness of SiO2 thin film on silicon wafer measured by dispersive white-light spectral interferometry,” Appl. Phys. B 84, 511–516 (2006).
[Crossref]

Hodges, R. R.

R. R. Hodges and D. A. Dartt, “Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins,” Exp. Eye Res. 117, 62–78 (2013).
[Crossref] [PubMed]

Hofer, B.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

Huang, J.

Itaya, K.

R. Wen, A. Lahiri, M. Azhagurajan, S.-i. Kobayashi, and K. Itaya, “A new in situ optical microscope with single atomic layer resolution for observation of electrochemical dissolution of Au (111),” J. Am. Chem. Soc. 132(39), 13657–13659 (2010).
[Crossref] [PubMed]

Ivanova, S.

G. A. Georgiev, N. Yokoi, S. Ivanova, V. Tonchev, Y. Nencheva, and R. Krastev, “Surface relaxations as a tool to distinguish the dynamic interfacial properties of films formed by normal and diseased meibomian lipids,” Soft Matter 10(30), 5579–5588 (2014).
[Crossref] [PubMed]

Izatt, J.

J. Izatt, M. Choma, and A.-H. Dhalla, “Theory of Optical Coherence Tomography”, in Optical Coherence Tomography: Technology and Applications, W. Drexler and G. J. Fujimoto, eds. (Springer, 2015).
[Crossref]

Kapteyn, H. C.

Kaya, S.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

Kim, G.-H.

Kim, S.-W.

King-Smith, P. E.

R. J. Braun, P. E. King-Smith, C. G. Begley, L. Li, and N. R. Gewecke, “Dynamics and function of the tear film in relation to the blink cycle,” Prog. Retin. Eye Res. 45, 132–164 (2015).
[Crossref]

P. E. King-Smith, M. D. Bailey, and R. J. Braun, “Four characteristics and a model of an effective tear film lipid layer (TFLL),” Ocul. Surf. 11(4), 236–245 (2013).
[Crossref] [PubMed]

P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, R. J. Braun, and G. B. McFadden, “The Contribution of Lipid Layer Movement to Tear Film Thinning and Breakup,” Invest. Ophthalmol. Visual Sci. 50(6), 2747–2756 (2009).
[Crossref]

P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, and R. M. Hill, “Interferometric imaging of the full thickness of the precorneal tear film,” J. Opt. Soc. Am. A 23(9), 2097–2104 (2006).
[Crossref]

P. E. King-Smith, B. Fink, R. Hill, K. Koelling, and J. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29(4–5), 357–368 (2004).
[Crossref] [PubMed]

Kinoshita, S.

M. A. Lemp, C. Baudouin, J. Baum, M. Dogru, G. N. Foulks, S. Kinoshita, P. Laibson, J. McCulley, J. Murube, S. C. Pflugfelder, M. Rolando, and I. Toda, “The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007),” Ocul. Surf. 5(2), 75–92 (2007).
[Crossref]

Kobayashi, S.-i.

R. Wen, A. Lahiri, M. Azhagurajan, S.-i. Kobayashi, and K. Itaya, “A new in situ optical microscope with single atomic layer resolution for observation of electrochemical dissolution of Au (111),” J. Am. Chem. Soc. 132(39), 13657–13659 (2010).
[Crossref] [PubMed]

Koelling, K.

P. E. King-Smith, B. Fink, R. Hill, K. Koelling, and J. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29(4–5), 357–368 (2004).
[Crossref] [PubMed]

Kojima, T.

E. Goto, M. Dogru, T. Kojima, and K. Tsubota, “Computer-Synthesis of an Interference Color Chart of Human Tear Lipid Layer, by a Colorimetric Approach,” Invest. Ophthalmol. Visual Sci. 44(11), 4693–4697 (2003).
[Crossref]

Komuro, A.

N. Yokoi and A. Komuro, “Non-invasive methods of assessing the tear film,” Exp. Eye Res. 78(3), 399–407 (2004).
[Crossref] [PubMed]

Korb, D. R.

D. R. Korb, D. F. Baron, J. P. Herman, V. M. Finnemore, J. M. Exford, J. L. Hermosa, C. D. Leahy, T. Glonek, and J. V. Greiner, “Tear Film Lipid Layer Thickness as a Function of Blinking,” Cornea 13(4), 354–359 (1994).
[Crossref] [PubMed]

Krastev, R.

G. A. Georgiev, N. Yokoi, S. Ivanova, V. Tonchev, Y. Nencheva, and R. Krastev, “Surface relaxations as a tool to distinguish the dynamic interfacial properties of films formed by normal and diseased meibomian lipids,” Soft Matter 10(30), 5579–5588 (2014).
[Crossref] [PubMed]

Kucera, M.

Kupinski, M. A.

Lahiri, A.

R. Wen, A. Lahiri, M. Azhagurajan, S.-i. Kobayashi, and K. Itaya, “A new in situ optical microscope with single atomic layer resolution for observation of electrochemical dissolution of Au (111),” J. Am. Chem. Soc. 132(39), 13657–13659 (2010).
[Crossref] [PubMed]

Laibson, P.

M. A. Lemp, C. Baudouin, J. Baum, M. Dogru, G. N. Foulks, S. Kinoshita, P. Laibson, J. McCulley, J. Murube, S. C. Pflugfelder, M. Rolando, and I. Toda, “The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007),” Ocul. Surf. 5(2), 75–92 (2007).
[Crossref]

Lasser, T.

Leahy, C. D.

D. R. Korb, D. F. Baron, J. P. Herman, V. M. Finnemore, J. M. Exford, J. L. Hermosa, C. D. Leahy, T. Glonek, and J. V. Greiner, “Tear Film Lipid Layer Thickness as a Function of Blinking,” Cornea 13(4), 354–359 (1994).
[Crossref] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

A. H. Bachmann, R. Michaely, T. Lasser, and R. A. Leitgeb, “Dual beam heterodyne Fourier domain optical coherence tomography,” Opt. Express 15(15), 9254–9266 (2007).
[Crossref] [PubMed]

R. A. Leitgeb and M. Wojtkowski, “Complex and Coherence-Noise Free Fourier Domain Optical Coherence Tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and G. J. Fujimoto, eds. (Springer, 2015).

Lemp, M. A.

M. A. Lemp, C. Baudouin, J. Baum, M. Dogru, G. N. Foulks, S. Kinoshita, P. Laibson, J. McCulley, J. Murube, S. C. Pflugfelder, M. Rolando, and I. Toda, “The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007),” Ocul. Surf. 5(2), 75–92 (2007).
[Crossref]

Lesnak, M.

P. Hlubina, D. Ciprian, J. Lunacek, and M. Lesnak, “Thickness of SiO2 thin film on silicon wafer measured by dispersive white-light spectral interferometry,” Appl. Phys. B 84, 511–516 (2006).
[Crossref]

Li, L.

R. J. Braun, P. E. King-Smith, C. G. Begley, L. Li, and N. R. Gewecke, “Dynamics and function of the tear film in relation to the blink cycle,” Prog. Retin. Eye Res. 45, 132–164 (2015).
[Crossref]

Liang, Y.

Liu, L.

Liu, X.

Liu, Y.

Lunacek, J.

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, “Spectral interferometry and reflectometry used to measure thin films,” Appl. Phys. B 92, 203–207 (2008).
[Crossref]

P. Hlubina, D. Ciprian, J. Lunacek, and M. Lesnak, “Thickness of SiO2 thin film on silicon wafer measured by dispersive white-light spectral interferometry,” Appl. Phys. B 84, 511–516 (2006).
[Crossref]

Martinez, J. M.

McCulley, J.

M. A. Lemp, C. Baudouin, J. Baum, M. Dogru, G. N. Foulks, S. Kinoshita, P. Laibson, J. McCulley, J. Murube, S. C. Pflugfelder, M. Rolando, and I. Toda, “The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007),” Ocul. Surf. 5(2), 75–92 (2007).
[Crossref]

McCulley, J. P.

I. A. Butovich, E. Uchiyama, M. A. Di Pascuale, and J. P. McCulley, “Liquid chromatography–mass spectrometric analysis of lipids present in human meibomian gland secretions,” Lipids 42(8), 765–776 (2007).
[Crossref] [PubMed]

McFadden, G. B.

P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, R. J. Braun, and G. B. McFadden, “The Contribution of Lipid Layer Movement to Tear Film Thinning and Breakup,” Invest. Ophthalmol. Visual Sci. 50(6), 2747–2756 (2009).
[Crossref]

Michaely, R.

Millar, T. J.

T. J. Millar and B. S. Schuett, “The real reason for having a meibomian lipid layer covering the outer surface of the tear film–a review,” Exp. Eye Res. 137, 125–138 (2015).
[Crossref] [PubMed]

Millet, L.

Mir, M.

Mu, G.

Murnane, M. M.

Murube, J.

M. A. Lemp, C. Baudouin, J. Baum, M. Dogru, G. N. Foulks, S. Kinoshita, P. Laibson, J. McCulley, J. Murube, S. C. Pflugfelder, M. Rolando, and I. Toda, “The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007),” Ocul. Surf. 5(2), 75–92 (2007).
[Crossref]

Napoli, P. E.

P. E. Napoli, F. Coronella, G. M. Satta, and M. Fossarello, “A Novel Technique of Contrast-Enhanced Optical Coherence Tomography Imaging in Evaluation of Clearance of Lipids in Human Tears,” PLoS ONE 9(11), e109843 (2014).
[Crossref] [PubMed]

Nencheva, Y.

G. A. Georgiev, N. Yokoi, S. Ivanova, V. Tonchev, Y. Nencheva, and R. Krastev, “Surface relaxations as a tool to distinguish the dynamic interfacial properties of films formed by normal and diseased meibomian lipids,” Soft Matter 10(30), 5579–5588 (2014).
[Crossref] [PubMed]

Neumaier, K. R.

Nichols, J. J.

P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, R. J. Braun, and G. B. McFadden, “The Contribution of Lipid Layer Movement to Tear Film Thinning and Breakup,” Invest. Ophthalmol. Visual Sci. 50(6), 2747–2756 (2009).
[Crossref]

P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, and R. M. Hill, “Interferometric imaging of the full thickness of the precorneal tear film,” J. Opt. Soc. Am. A 23(9), 2097–2104 (2006).
[Crossref]

Nichols, K. K.

P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, R. J. Braun, and G. B. McFadden, “The Contribution of Lipid Layer Movement to Tear Film Thinning and Breakup,” Invest. Ophthalmol. Visual Sci. 50(6), 2747–2756 (2009).
[Crossref]

P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, and R. M. Hill, “Interferometric imaging of the full thickness of the precorneal tear film,” J. Opt. Soc. Am. A 23(9), 2097–2104 (2006).
[Crossref]

Oppenheim, A. V.

A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing (Pearson, 2010).

Osten, W.

W. Osten and N. Reingand, Optical Imaging and Metrology: Advanced Technologies (Wiley-VCH, 2012).
[Crossref]

Parthasarathy, R.

R. Parthasarathy and J. T. Groves, “Optical techniques for imaging membrane topography,” Cell Biochem. Biophys. 41(3), 391–414 (2004).
[Crossref] [PubMed]

Patterson, M.

M. Patterson, H. J. Vogel, and E. J. Prenner, “Biophysical characterization of monofilm model systems composed of selected tear film phospholipids,” Biochim. Biophys. Acta 1858(2), 403–414 (2016).
[Crossref]

Perez-Roldan, M. J.

Pflugfelder, S. C.

M. A. Lemp, C. Baudouin, J. Baum, M. Dogru, G. N. Foulks, S. Kinoshita, P. Laibson, J. McCulley, J. Murube, S. C. Pflugfelder, M. Rolando, and I. Toda, “The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007),” Ocul. Surf. 5(2), 75–92 (2007).
[Crossref]

Pitris, C.

E. Bousi and C. Pitris, “Axial resolution improvement by modulated deconvolution in Fourier domain optical coherence tomography,” J. Biomed. Opt. 17(7), 071307 (2012).
[Crossref] [PubMed]

E. Bousi, I. Charalambous, and C. Pitris, “Optical coherence tomography axial resolution improvement by step-frequency encoding,” Opt. Express 18(11), 11877–11890 (2010).
[Crossref] [PubMed]

Popescu, G.

Prenner, E. J.

M. Patterson, H. J. Vogel, and E. J. Prenner, “Biophysical characterization of monofilm model systems composed of selected tear film phospholipids,” Biochim. Biophys. Acta 1858(2), 403–414 (2016).
[Crossref]

Quinten, M.

M. Quinten, A Practical Guide to Optical Metrology for Thin Films (Wiley-VCH, 2012).
[Crossref]

Reingand, N.

W. Osten and N. Reingand, Optical Imaging and Metrology: Advanced Technologies (Wiley-VCH, 2012).
[Crossref]

Riedl, J.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

Rogers, J.

Rolando, M.

M. A. Lemp, C. Baudouin, J. Baum, M. Dogru, G. N. Foulks, S. Kinoshita, P. Laibson, J. McCulley, J. Murube, S. C. Pflugfelder, M. Rolando, and I. Toda, “The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007),” Ocul. Surf. 5(2), 75–92 (2007).
[Crossref]

Rolland, J. P.

Sackmann, E.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007).

Satta, G. M.

P. E. Napoli, F. Coronella, G. M. Satta, and M. Fossarello, “A Novel Technique of Contrast-Enhanced Optical Coherence Tomography Imaging in Evaluation of Clearance of Lipids in Human Tears,” PLoS ONE 9(11), e109843 (2014).
[Crossref] [PubMed]

Schafer, R. W.

A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing (Pearson, 2010).

Schmetterer, L.

V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhofer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref] [PubMed]

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

Schmidl, D.

V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhofer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref] [PubMed]

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

Schmoll, T.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

Schnell, M.

Schuett, B. S.

T. J. Millar and B. S. Schuett, “The real reason for having a meibomian lipid layer covering the outer surface of the tear film–a review,” Exp. Eye Res. 137, 125–138 (2015).
[Crossref] [PubMed]

Seaberg, M. D.

Shanblatt, E. R.

Suleski, T. J.

Tankam, P.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007).

Tiffany, J.

P. E. King-Smith, B. Fink, R. Hill, K. Koelling, and J. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29(4–5), 357–368 (2004).
[Crossref] [PubMed]

Tiffany, J. M.

J. M. Tiffany, “Refractive index of meibomian and other lipids,” Curr. Eye Res. 5(11), 887–889 (1986).
[Crossref] [PubMed]

Toda, I.

M. A. Lemp, C. Baudouin, J. Baum, M. Dogru, G. N. Foulks, S. Kinoshita, P. Laibson, J. McCulley, J. Murube, S. C. Pflugfelder, M. Rolando, and I. Toda, “The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007),” Ocul. Surf. 5(2), 75–92 (2007).
[Crossref]

Tomlinson, W. J.

Tonchev, V.

G. A. Georgiev, N. Yokoi, S. Ivanova, V. Tonchev, Y. Nencheva, and R. Krastev, “Surface relaxations as a tool to distinguish the dynamic interfacial properties of films formed by normal and diseased meibomian lipids,” Soft Matter 10(30), 5579–5588 (2014).
[Crossref] [PubMed]

Tsubota, K.

E. Goto, M. Dogru, T. Kojima, and K. Tsubota, “Computer-Synthesis of an Interference Color Chart of Human Tear Lipid Layer, by a Colorimetric Approach,” Invest. Ophthalmol. Visual Sci. 44(11), 4693–4697 (2003).
[Crossref]

Uchiyama, E.

I. A. Butovich, E. Uchiyama, M. A. Di Pascuale, and J. P. McCulley, “Liquid chromatography–mass spectrometric analysis of lipids present in human meibomian gland secretions,” Lipids 42(8), 765–776 (2007).
[Crossref] [PubMed]

Unarunotai, S.

Unterhuber, A.

V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhofer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref] [PubMed]

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

Ventura, S. D.

Vietauer, M.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

Vogel, H. J.

M. Patterson, H. J. Vogel, and E. J. Prenner, “Biophysical characterization of monofilm model systems composed of selected tear film phospholipids,” Biochim. Biophys. Acta 1858(2), 403–414 (2016).
[Crossref]

Wagner, R. E.

Wang, Z.

Wax, A.

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy (Springer, 2011).

Wen, R.

R. Wen, A. Lahiri, M. Azhagurajan, S.-i. Kobayashi, and K. Itaya, “A new in situ optical microscope with single atomic layer resolution for observation of electrochemical dissolution of Au (111),” J. Am. Chem. Soc. 132(39), 13657–13659 (2010).
[Crossref] [PubMed]

Werkmeister, R. M.

V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhofer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref] [PubMed]

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

Wiegand, G.

Wojtkowski, M.

R. A. Leitgeb and M. Wojtkowski, “Complex and Coherence-Noise Free Fourier Domain Optical Coherence Tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and G. J. Fujimoto, eds. (Springer, 2015).

Wolff, E.

E. Wolff, “The mucocutaneous junction of the lidmargin and the distribution of the tear fluid,” Trans. Am. Ophthalmol. Soc. 66, 291–308 (1946).

Xu, K.

Yokoi, N.

G. A. Georgiev, N. Yokoi, S. Ivanova, V. Tonchev, Y. Nencheva, and R. Krastev, “Surface relaxations as a tool to distinguish the dynamic interfacial properties of films formed by normal and diseased meibomian lipids,” Soft Matter 10(30), 5579–5588 (2014).
[Crossref] [PubMed]

N. Yokoi and A. Komuro, “Non-invasive methods of assessing the tear film,” Exp. Eye Res. 78(3), 399–407 (2004).
[Crossref] [PubMed]

Yu, X.

Yuan, Q.

Zalevsky, Z.

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy (Springer, 2011).

Zhang, B.

Zhu, X.

Adv. Opt. Photon. (1)

Appl. Opt. (4)

Appl. Phys. B (2)

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, “Spectral interferometry and reflectometry used to measure thin films,” Appl. Phys. B 92, 203–207 (2008).
[Crossref]

P. Hlubina, D. Ciprian, J. Lunacek, and M. Lesnak, “Thickness of SiO2 thin film on silicon wafer measured by dispersive white-light spectral interferometry,” Appl. Phys. B 84, 511–516 (2006).
[Crossref]

Biochim. Biophys. Acta (1)

M. Patterson, H. J. Vogel, and E. J. Prenner, “Biophysical characterization of monofilm model systems composed of selected tear film phospholipids,” Biochim. Biophys. Acta 1858(2), 403–414 (2016).
[Crossref]

Biomed. Opt. Express (1)

Cell Biochem. Biophys. (1)

R. Parthasarathy and J. T. Groves, “Optical techniques for imaging membrane topography,” Cell Biochem. Biophys. 41(3), 391–414 (2004).
[Crossref] [PubMed]

Cornea (1)

D. R. Korb, D. F. Baron, J. P. Herman, V. M. Finnemore, J. M. Exford, J. L. Hermosa, C. D. Leahy, T. Glonek, and J. V. Greiner, “Tear Film Lipid Layer Thickness as a Function of Blinking,” Cornea 13(4), 354–359 (1994).
[Crossref] [PubMed]

Curr. Eye Res. (2)

J. M. Tiffany, “Refractive index of meibomian and other lipids,” Curr. Eye Res. 5(11), 887–889 (1986).
[Crossref] [PubMed]

P. E. King-Smith, B. Fink, R. Hill, K. Koelling, and J. Tiffany, “The thickness of the tear film,” Curr. Eye Res. 29(4–5), 357–368 (2004).
[Crossref] [PubMed]

Exp. Eye Res. (3)

N. Yokoi and A. Komuro, “Non-invasive methods of assessing the tear film,” Exp. Eye Res. 78(3), 399–407 (2004).
[Crossref] [PubMed]

T. J. Millar and B. S. Schuett, “The real reason for having a meibomian lipid layer covering the outer surface of the tear film–a review,” Exp. Eye Res. 137, 125–138 (2015).
[Crossref] [PubMed]

R. R. Hodges and D. A. Dartt, “Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins,” Exp. Eye Res. 117, 62–78 (2013).
[Crossref] [PubMed]

Invest. Ophthalmol. Visual Sci. (3)

P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, R. J. Braun, and G. B. McFadden, “The Contribution of Lipid Layer Movement to Tear Film Thinning and Breakup,” Invest. Ophthalmol. Visual Sci. 50(6), 2747–2756 (2009).
[Crossref]

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhofer, W. Drexler, R. A. Leitgeb, M. Gröschl, and L. Schmetterer, “Measurement of Tear Film Thickness Using Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]

E. Goto, M. Dogru, T. Kojima, and K. Tsubota, “Computer-Synthesis of an Interference Color Chart of Human Tear Lipid Layer, by a Colorimetric Approach,” Invest. Ophthalmol. Visual Sci. 44(11), 4693–4697 (2003).
[Crossref]

J. Am. Chem. Soc. (1)

R. Wen, A. Lahiri, M. Azhagurajan, S.-i. Kobayashi, and K. Itaya, “A new in situ optical microscope with single atomic layer resolution for observation of electrochemical dissolution of Au (111),” J. Am. Chem. Soc. 132(39), 13657–13659 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

E. Bousi and C. Pitris, “Axial resolution improvement by modulated deconvolution in Fourier domain optical coherence tomography,” J. Biomed. Opt. 17(7), 071307 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Lipids (1)

I. A. Butovich, E. Uchiyama, M. A. Di Pascuale, and J. P. McCulley, “Liquid chromatography–mass spectrometric analysis of lipids present in human meibomian gland secretions,” Lipids 42(8), 765–776 (2007).
[Crossref] [PubMed]

Ocul. Surf. (2)

M. A. Lemp, C. Baudouin, J. Baum, M. Dogru, G. N. Foulks, S. Kinoshita, P. Laibson, J. McCulley, J. Murube, S. C. Pflugfelder, M. Rolando, and I. Toda, “The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007),” Ocul. Surf. 5(2), 75–92 (2007).
[Crossref]

P. E. King-Smith, M. D. Bailey, and R. J. Braun, “Four characteristics and a model of an effective tear film lipid layer (TFLL),” Ocul. Surf. 11(4), 236–245 (2013).
[Crossref] [PubMed]

Opt. Express (7)

E. Bousi, I. Charalambous, and C. Pitris, “Optical coherence tomography axial resolution improvement by step-frequency encoding,” Opt. Express 18(11), 11877–11890 (2010).
[Crossref] [PubMed]

A. H. Bachmann, R. Michaely, T. Lasser, and R. A. Leitgeb, “Dual beam heterodyne Fourier domain optical coherence tomography,” Opt. Express 15(15), 9254–9266 (2007).
[Crossref] [PubMed]

X. Liu, S. Chen, D. Cui, X. Yu, and L. Liu, “Spectral estimation optical coherence tomography for axial super-resolution,” Opt. Express 23(20), 26521–26532 (2015).
[Crossref] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

M. Schnell, M. J. Perez-Roldan, P. S. Carney, and R. Hillenbrand, “Quantitative confocal phase imaging by synthetic optical holography,” Opt. Express 22(12), 15267–15276 (2014).
[Crossref] [PubMed]

V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhofer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref] [PubMed]

Optica (1)

PLoS ONE (1)

P. E. Napoli, F. Coronella, G. M. Satta, and M. Fossarello, “A Novel Technique of Contrast-Enhanced Optical Coherence Tomography Imaging in Evaluation of Clearance of Lipids in Human Tears,” PLoS ONE 9(11), e109843 (2014).
[Crossref] [PubMed]

Proc. IEEE (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
[Crossref]

Prog. Retin. Eye Res. (1)

R. J. Braun, P. E. King-Smith, C. G. Begley, L. Li, and N. R. Gewecke, “Dynamics and function of the tear film in relation to the blink cycle,” Prog. Retin. Eye Res. 45, 132–164 (2015).
[Crossref]

Soft Matter (1)

G. A. Georgiev, N. Yokoi, S. Ivanova, V. Tonchev, Y. Nencheva, and R. Krastev, “Surface relaxations as a tool to distinguish the dynamic interfacial properties of films formed by normal and diseased meibomian lipids,” Soft Matter 10(30), 5579–5588 (2014).
[Crossref] [PubMed]

Trans. Am. Ophthalmol. Soc. (1)

E. Wolff, “The mucocutaneous junction of the lidmargin and the distribution of the tear fluid,” Trans. Am. Ophthalmol. Soc. 66, 291–308 (1946).

Other (10)

M. Quinten, A Practical Guide to Optical Metrology for Thin Films (Wiley-VCH, 2012).
[Crossref]

J. Izatt, M. Choma, and A.-H. Dhalla, “Theory of Optical Coherence Tomography”, in Optical Coherence Tomography: Technology and Applications, W. Drexler and G. J. Fujimoto, eds. (Springer, 2015).
[Crossref]

A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing (Pearson, 2010).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007).

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2001).

W. Osten and N. Reingand, Optical Imaging and Metrology: Advanced Technologies (Wiley-VCH, 2012).
[Crossref]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography : Technology and Applications (Springer, 2015).
[Crossref]

R. A. Leitgeb and M. Wojtkowski, “Complex and Coherence-Noise Free Fourier Domain Optical Coherence Tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and G. J. Fujimoto, eds. (Springer, 2015).

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy (Springer, 2011).

I. Amidror, Mastering the Discrete Fourier Transform in One, Two or Several Dimensions: Pitfalls and Artifacts (Springer, 2013).
[Crossref]

Supplementary Material (5)

NameDescription
» Visualization 1: AVI (1617 KB)      Wavelength-swept OCT reflectance
» Visualization 2: AVI (1428 KB)      Tear film lipid layer visualization (subject 1)
» Visualization 3: AVI (1428 KB)      Tear film lipid layer visualization (subject 2)
» Visualization 4: AVI (1428 KB)      Tear film lipid layer visualization (subject 3)
» Visualization 5: AVI (1428 KB)      Tear film lipid layer visualization (subject 4)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the UHR-OCT system with the different interferometer implementations. Interferometer used : (a) for validating the OCT signal model, (b) for measuring the fabricated samples of known thickness. C: collimators; G: coverslip glass plate; PR: prism pair for dispersion compensation; M: mirror; RM: reference mirror; Sc: two-axis galvanometric scanner; Sa :fabricated sample; FC1: 50/50 Fiber-coupler
Fig. 2
Fig. 2 (a) Schematic diagram of a thin film of thickness d (medium 2) on a substrate (medium 3) and of the propagation paths contributing to the total reflection coefficient. (b) Reflectance at normal incidence of an SU-8 photoresist film deposited on a silicon substrate.
Fig. 3
Fig. 3 OCT signal of two terms in incoherent and coherent/super-resolution regime. d is the distance between the two peaks. (a) Experimental OCT signal measured with the interferometer presented in Fig. 1(a). The term 1 corresponds to interferences between the mirror M1 and the mirror M2 and the term 2 corresponds to the interferences of each interface of the glass plate G. One peak is fixed and another is moving, driven by a piezoelectric stack. (b) Simulated OCT signal according to the signal model presented in Eq. (14). (c) OCT reflectance E 12 = U | Γ 12 ( u , d ) | 2 d u as a function of the distance d in experiment and simulation (cf. section 3.5). (d) Comparison between the maximum projection M12 = max u 12(u, d)|2 and the OCT reflectance E12 in the region where d ∈[−0.5, 0.5] μm.
Fig. 4
Fig. 4 (a–d) En face OCT reflectance maps of fabricated samples: (a) silicon substrate only, (b–d) island of SU-8 photoresist film (1 mm × 1 mm) deposited on silicon substrate. Film thicknesses are (b) 46 ± 6 nm (b) 71 ± 2 nm (c) 163 ± 5 nm, as measured with the AFM (mean ± roughness). Comparing the maps (b–d), differences in the OCT reflectance can clearly be observed. (e) Inversion of Rrel to obtain the OCT thickness value. (f) Comparison between the AFM and OCT thicknesses values. Error bars correspond to OCT thickness uncertainty (vertically) and to AFM roughness (horizontally). Lateral scale bar (top-left corner in Fig. 4(a–d)) corresponds to 225 μm. The color scale is the same for each sample. The cross seen on the islands is an artifact of the fabrication process.
Fig. 5
Fig. 5 Flowchart of the processing steps to obtain the maps depicted in Fig. 4 and the thickness of each thin film.
Fig. 6
Fig. 6 Post-processing wavelength-swept optical coherence reflectometry ( Visualization 1). (a) Dashed curve, full light source’s spectral shape; smooth blue curve, narrower spectral band used for calculating the OCT reflectance. (b) Silicon substrate with (c) 46 ±6 nm, (d) 71 ±2 nm and (e) 163 ±5 nm photoresist film layer. (f) Measured relative OCT reflectance as a function of the spectral band. (g) Simulation of the OCT reflectance spectral dependence for each thickness indicated in the legend. Lateral scale bar (top-left corner in Fig. 6(b–e)) corresponds to 225 μm.
Fig. 7
Fig. 7 (A) Comparison between a model of the tear film layers (a) and an in vivo OCT A-scan of the tear film (b). (B–E) In vivo measurements of the raw en face OCT reflectance (in log scale) of the air-tear interface obtained from the front surface of the central cornea in 4 healthy subjects (4 × 4 mm2). Observation of the lipid layer of the tear film, which has a thickness below 150 nm, far below the OCT axial resolution value of 1.2 μm. ( Visualization 2, Visualization 3, Visualization 4, and Visualization 5).
Fig. 8
Fig. 8 Spectral shape and axial PSF A(t) (a) Spectral shapes investigated. (b) Corresponding axial PSF A(t).

Tables (1)

Tables Icon

Table 1 Analysis of the effect of windowing on the axial resolution, the highest sidelobe level and the average SNR of a test measurement. The FWHM axial resolution is expressed in DFT bins. The measured spectral array is multiplied in order to obtain the following window. Raw: raw Ti:Sapphire spectral array; Boxcar: 2048-pixels rectangular window; Hann.: 2048-pixels Hanning window; Hamm.: 2048-pixels Hamming window; Hamm. cent. : 1800-pixels Hamming window centered on the raw spectrum.; Designed wind. : designed window based on a modified Hanning window used for most of the experimental measurement presented in this paper.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

r 12 = n 1 n 2 n 1 + n 2
t 12 = 2 n 1 n 1 + n 2 = r 12 + 1
r = r 12 + t 12 r 23 p ( 1 + q + q 2 + q 3 + ) t 21
R = | r | 2
s [ m ] = a [ m ] ( k , l ) D r k r l * exp ( i Δ φ k l [ m ] ) + n [ m ]
Γ ( t ) = DTFT { s [ m ] } = m = 0 M 1 s [ m ] e i t m
A ( t ) = DTFT { a [ m ] }
s 1 [ m ] = a [ m ] r 0 * r 1 [ m ] exp ( i Δ φ 01 [ m ] ) .
Γ 1 ( t ) = DTFT { s 1 [ m ] } .
E 1 = 1 2 π π π | Γ 1 ( t ) | 2 d t = R 0 m = 0 M 1 a [ m ] 2 R 1 [ m ]
Δ φ d [ m ] = 2 π ( d d 0 + d d 1 m ) = ϕ + τ m
s 12 [ m ] = s 1 [ m ] + s 2 [ m ] = a [ m ] exp ( i Δ φ ( 1 ) [ m ] ) [ 1 + r 0 exp ( i Δ φ ( p ) [ m ] ) ]
Γ 12 ( t , d ) = e i ϕ 1 ( A ( t τ 1 ) + r 0 e i ϕ p A ( t τ 1 τ p ) )
| Γ 12 ( u , d ) | 2 = | A ( u ) + r 0 e i ϕ p ( d ) A ( u τ p ( d ) ) | 2
E out ( ω ) = E in ( ω ) H ( ω )
H ( ω ) = j B r j ( ω ) exp ( i φ j ( ω ) )
S out ( ω ) = S in ( ω ) | H ( ω ) | 2
S out ( ω ) = S in ( ω ) ( i , j ) B 2 r i ( ω ) r j ( ω ) * exp ( i [ φ i ( ω ) φ j ( ω ) ] )
s [ m ] = a [ m ] ( k , l ) D r k [ m ] r l [ m ] * exp ( i Δ φ k l [ m ] ) + n [ m ]
z air [ c π / δ ω , c π / δ ω ] .
FDR = c 2 π / δ ω
DTFT { e i t 0 m a [ m ] } = A ( t t 0 ) .
m = 0 M 1 | x [ m ] | 2 = 1 2 π π π | X ( t ) | 2 d t
Δ φ = k ( ω ) d
k ( ω ) = k 0 + k 1 ( ω ω 0 )
ω [ m ] = ω min + m δ ω
Δ φ d [ m ] = 2 π ( d d 0 + d d 1 m ) ,
d 0 = 2 π k 0 + k 1 ( ω min ω 0 ) .
d 1 = 2 π δ ω k 1 = 2 π c δ ω N g = FDR N g ,

Metrics