Abstract

Accurate monitoring of blood oxy-saturation level (SO2) in human breast tissues is clinically important for predicting and evaluating possible tumor growth at the site. In this work, four different non-invasive frequency-domain photoacoustic (PA) imaging modalities were compared for their absolute SO2 characterization capability using an in-vitro sheep blood circulation system. Among different PA modes, a new WM-DPAR imaging modality could estimate the SO2 with great accuracy when compared to a commercial blood gas analyzer. The developed WM-DPARI theory was further validated by constructing SO2 tomographic images of a blood-containing plastisol phantom.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoacoustic oximetry imaging performance evaluation using dynamic blood flow phantoms with tunable oxygen saturation

William C. Vogt, Xuewen Zhou, Rudy Andriani, Keith A. Wear, T. Joshua Pfefer, and Brian S. Garra
Biomed. Opt. Express 10(2) 449-464 (2019)

Semi-anthropomorphic photoacoustic breast phantom

Maura Dantuma, Rianne van Dommelen, and Srirang Manohar
Biomed. Opt. Express 10(11) 5921-5939 (2019)

Simultaneous assessment of red blood cell aggregation and oxygen saturation under pulsatile flow using high-frequency photoacoustics

Tae-Hoon Bok, Eno Hysi, and Michael C. Kolios
Biomed. Opt. Express 7(7) 2769-2780 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref] [PubMed]
  2. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [Crossref]
  3. P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical Mammography: Chromophore Concentration And Hemoglobin Saturation Contrast in Breast Cancer,” PLoS One 10(3), e0117322 (2015), doi:.
    [Crossref] [PubMed]
  4. V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
    [Crossref] [PubMed]
  5. R. L. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” J. Biomed. Opt. 9(6), 1129–1136 (2004).
    [Crossref] [PubMed]
  6. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
    [Crossref] [PubMed]
  7. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
    [Crossref] [PubMed]
  8. X. Cheng, J. M. Mao, R. Bush, D. B. Kopans, R. H. Moore, and M. Chorlton, “Breast cancer detection by mapping hemoglobin concentration and oxygen saturation,” Appl. Opt. 42(31), 6412–6421 (2003).
    [Crossref] [PubMed]
  9. D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
    [Crossref] [PubMed]
  10. L. L. Campbell and K. Polyak, “Breast Tumor Heterogeneity: Cancer Stem Cells or Clonal Evolution?” Cell Cycle 6(19), 2332–2338 (2007).
    [Crossref] [PubMed]
  11. K. Polyak, “Heterogeneity in breast cancer,” J. Clin. Invest. 121(10), 3786–3788 (2011).
    [Crossref] [PubMed]
  12. S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-modulated Differential Photoacoustic Spectroscopy (WM-DPAS): Theory of a High-sensitivity Methodology For The Detection of Early-stage Tumors In Tissue,” Int. J. Thermophys. 35(5), 1305–1311 (2014).
  13. S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS) for noninvasive early cancer detection and tissue hypoxia monitoring,” J. Biophotonics 9(4), 388–395 (2016).
    [Crossref] [PubMed]
  14. B. Lashkari and A. Mandelis, “Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity,” Rev. Sci. Instrum. 82(9), 094903 (2011).
    [Crossref] [PubMed]
  15. B. Lashkari, S.S. S. Choi, E. Dovlo, S. Dhody, and A. Mandelis, “Frequency-Domain Photoacoustic Phase Spectroscopy: A Fluence-Independent Approach for Quantitative Probing of Hemoglobin Oxygen Saturation,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6801010 (2016).
    [Crossref]
  16. K. Briley-Sæbø and A. Bjørnerud, “Accurate de-oxygenation of ex-vivo whole blood using sodium dithionite,” Proc. Intl. Soc. Magn. Reson. Med. Sci. Meet. Exhib. 8, 2025 (2000).
  17. W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).

2016 (2)

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS) for noninvasive early cancer detection and tissue hypoxia monitoring,” J. Biophotonics 9(4), 388–395 (2016).
[Crossref] [PubMed]

B. Lashkari, S.S. S. Choi, E. Dovlo, S. Dhody, and A. Mandelis, “Frequency-Domain Photoacoustic Phase Spectroscopy: A Fluence-Independent Approach for Quantitative Probing of Hemoglobin Oxygen Saturation,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6801010 (2016).
[Crossref]

2015 (1)

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical Mammography: Chromophore Concentration And Hemoglobin Saturation Contrast in Breast Cancer,” PLoS One 10(3), e0117322 (2015), doi:.
[Crossref] [PubMed]

2014 (1)

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-modulated Differential Photoacoustic Spectroscopy (WM-DPAS): Theory of a High-sensitivity Methodology For The Detection of Early-stage Tumors In Tissue,” Int. J. Thermophys. 35(5), 1305–1311 (2014).

2011 (3)

B. Lashkari and A. Mandelis, “Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity,” Rev. Sci. Instrum. 82(9), 094903 (2011).
[Crossref] [PubMed]

K. Polyak, “Heterogeneity in breast cancer,” J. Clin. Invest. 121(10), 3786–3788 (2011).
[Crossref] [PubMed]

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

2008 (1)

V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
[Crossref] [PubMed]

2007 (1)

L. L. Campbell and K. Polyak, “Breast Tumor Heterogeneity: Cancer Stem Cells or Clonal Evolution?” Cell Cycle 6(19), 2332–2338 (2007).
[Crossref] [PubMed]

2006 (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

2004 (3)

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

R. L. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” J. Biomed. Opt. 9(6), 1129–1136 (2004).
[Crossref] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

2003 (1)

2001 (1)

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

2000 (1)

K. Briley-Sæbø and A. Bjørnerud, “Accurate de-oxygenation of ex-vivo whole blood using sodium dithionite,” Proc. Intl. Soc. Magn. Reson. Med. Sci. Meet. Exhib. 8, 2025 (2000).

Anderson, P. G.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical Mammography: Chromophore Concentration And Hemoglobin Saturation Contrast in Breast Cancer,” PLoS One 10(3), e0117322 (2015), doi:.
[Crossref] [PubMed]

Backhaus, J.

V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
[Crossref] [PubMed]

Beard, P.

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

Berger, A. J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Bevilacqua, F.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Bjørnerud, A.

K. Briley-Sæbø and A. Bjørnerud, “Accurate de-oxygenation of ex-vivo whole blood using sodium dithionite,” Proc. Intl. Soc. Magn. Reson. Med. Sci. Meet. Exhib. 8, 2025 (2000).

Briley-Sæbø, K.

K. Briley-Sæbø and A. Bjørnerud, “Accurate de-oxygenation of ex-vivo whole blood using sodium dithionite,” Proc. Intl. Soc. Magn. Reson. Med. Sci. Meet. Exhib. 8, 2025 (2000).

Bush, R.

Butler, J.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Campbell, L. L.

L. L. Campbell and K. Polyak, “Breast Tumor Heterogeneity: Cancer Stem Cells or Clonal Evolution?” Cell Cycle 6(19), 2332–2338 (2007).
[Crossref] [PubMed]

Cerussi, A. E.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Cheng, X.

Choi, S.S. S.

B. Lashkari, S.S. S. Choi, E. Dovlo, S. Dhody, and A. Mandelis, “Frequency-Domain Photoacoustic Phase Spectroscopy: A Fluence-Independent Approach for Quantitative Probing of Hemoglobin Oxygen Saturation,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6801010 (2016).
[Crossref]

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS) for noninvasive early cancer detection and tissue hypoxia monitoring,” J. Biophotonics 9(4), 388–395 (2016).
[Crossref] [PubMed]

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-modulated Differential Photoacoustic Spectroscopy (WM-DPAS): Theory of a High-sensitivity Methodology For The Detection of Early-stage Tumors In Tissue,” Int. J. Thermophys. 35(5), 1305–1311 (2014).

Chorlton, M.

Dhody, S.

B. Lashkari, S.S. S. Choi, E. Dovlo, S. Dhody, and A. Mandelis, “Frequency-Domain Photoacoustic Phase Spectroscopy: A Fluence-Independent Approach for Quantitative Probing of Hemoglobin Oxygen Saturation,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6801010 (2016).
[Crossref]

Dovlo, E.

B. Lashkari, S.S. S. Choi, E. Dovlo, S. Dhody, and A. Mandelis, “Frequency-Domain Photoacoustic Phase Spectroscopy: A Fluence-Independent Approach for Quantitative Probing of Hemoglobin Oxygen Saturation,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6801010 (2016).
[Crossref]

Fantini, S.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical Mammography: Chromophore Concentration And Hemoglobin Saturation Contrast in Breast Cancer,” PLoS One 10(3), e0117322 (2015), doi:.
[Crossref] [PubMed]

Graham, R. A.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical Mammography: Chromophore Concentration And Hemoglobin Saturation Contrast in Breast Cancer,” PLoS One 10(3), e0117322 (2015), doi:.
[Crossref] [PubMed]

Guo, X.

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS) for noninvasive early cancer detection and tissue hypoxia monitoring,” J. Biophotonics 9(4), 388–395 (2016).
[Crossref] [PubMed]

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-modulated Differential Photoacoustic Spectroscopy (WM-DPAS): Theory of a High-sensitivity Methodology For The Detection of Early-stage Tumors In Tissue,” Int. J. Thermophys. 35(5), 1305–1311 (2014).

Heise, H. M.

V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
[Crossref] [PubMed]

Holcombe, R. F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Homer, M. J.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical Mammography: Chromophore Concentration And Hemoglobin Saturation Contrast in Breast Cancer,” PLoS One 10(3), e0117322 (2015), doi:.
[Crossref] [PubMed]

Hsiang, D.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

Jakubowski, D.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Jakubowski, D. B.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

Kainerstorfer, J. M.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical Mammography: Chromophore Concentration And Hemoglobin Saturation Contrast in Breast Cancer,” PLoS One 10(3), e0117322 (2015), doi:.
[Crossref] [PubMed]

Kellnberger, S.

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS) for noninvasive early cancer detection and tissue hypoxia monitoring,” J. Biophotonics 9(4), 388–395 (2016).
[Crossref] [PubMed]

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-modulated Differential Photoacoustic Spectroscopy (WM-DPAS): Theory of a High-sensitivity Methodology For The Detection of Early-stage Tumors In Tissue,” Int. J. Thermophys. 35(5), 1305–1311 (2014).

Kondepati, V. R.

V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
[Crossref] [PubMed]

Kopans, D. B.

Krishnamurthy, N.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical Mammography: Chromophore Concentration And Hemoglobin Saturation Contrast in Breast Cancer,” PLoS One 10(3), e0117322 (2015), doi:.
[Crossref] [PubMed]

Lashkari, B.

B. Lashkari, S.S. S. Choi, E. Dovlo, S. Dhody, and A. Mandelis, “Frequency-Domain Photoacoustic Phase Spectroscopy: A Fluence-Independent Approach for Quantitative Probing of Hemoglobin Oxygen Saturation,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6801010 (2016).
[Crossref]

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS) for noninvasive early cancer detection and tissue hypoxia monitoring,” J. Biophotonics 9(4), 388–395 (2016).
[Crossref] [PubMed]

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-modulated Differential Photoacoustic Spectroscopy (WM-DPAS): Theory of a High-sensitivity Methodology For The Detection of Early-stage Tumors In Tissue,” Int. J. Thermophys. 35(5), 1305–1311 (2014).

B. Lashkari and A. Mandelis, “Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity,” Rev. Sci. Instrum. 82(9), 094903 (2011).
[Crossref] [PubMed]

Mandelis, A.

B. Lashkari, S.S. S. Choi, E. Dovlo, S. Dhody, and A. Mandelis, “Frequency-Domain Photoacoustic Phase Spectroscopy: A Fluence-Independent Approach for Quantitative Probing of Hemoglobin Oxygen Saturation,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6801010 (2016).
[Crossref]

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS) for noninvasive early cancer detection and tissue hypoxia monitoring,” J. Biophotonics 9(4), 388–395 (2016).
[Crossref] [PubMed]

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-modulated Differential Photoacoustic Spectroscopy (WM-DPAS): Theory of a High-sensitivity Methodology For The Detection of Early-stage Tumors In Tissue,” Int. J. Thermophys. 35(5), 1305–1311 (2014).

B. Lashkari and A. Mandelis, “Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity,” Rev. Sci. Instrum. 82(9), 094903 (2011).
[Crossref] [PubMed]

Mao, J. M.

Marinelli, A. W. K. S.

R. L. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” J. Biomed. Opt. 9(6), 1129–1136 (2004).
[Crossref] [PubMed]

Menke-Pluymers, M.

R. L. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” J. Biomed. Opt. 9(6), 1129–1136 (2004).
[Crossref] [PubMed]

Moore, R. H.

Ntziachristos, V.

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS) for noninvasive early cancer detection and tissue hypoxia monitoring,” J. Biophotonics 9(4), 388–395 (2016).
[Crossref] [PubMed]

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-modulated Differential Photoacoustic Spectroscopy (WM-DPAS): Theory of a High-sensitivity Methodology For The Detection of Early-stage Tumors In Tissue,” Int. J. Thermophys. 35(5), 1305–1311 (2014).

Polyak, K.

K. Polyak, “Heterogeneity in breast cancer,” J. Clin. Invest. 121(10), 3786–3788 (2011).
[Crossref] [PubMed]

L. L. Campbell and K. Polyak, “Breast Tumor Heterogeneity: Cancer Stem Cells or Clonal Evolution?” Cell Cycle 6(19), 2332–2338 (2007).
[Crossref] [PubMed]

Sassaroli, A.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical Mammography: Chromophore Concentration And Hemoglobin Saturation Contrast in Breast Cancer,” PLoS One 10(3), e0117322 (2015), doi:.
[Crossref] [PubMed]

Shah, N.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Sterenborg, H. J. C. M.

R. L. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” J. Biomed. Opt. 9(6), 1129–1136 (2004).
[Crossref] [PubMed]

Tromberg, B. J.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

van Veen, R. L.

R. L. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” J. Biomed. Opt. 9(6), 1129–1136 (2004).
[Crossref] [PubMed]

Wang, L. V.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Acad. Radiol. (1)

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Cell Cycle (1)

L. L. Campbell and K. Polyak, “Breast Tumor Heterogeneity: Cancer Stem Cells or Clonal Evolution?” Cell Cycle 6(19), 2332–2338 (2007).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Lashkari, S.S. S. Choi, E. Dovlo, S. Dhody, and A. Mandelis, “Frequency-Domain Photoacoustic Phase Spectroscopy: A Fluence-Independent Approach for Quantitative Probing of Hemoglobin Oxygen Saturation,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6801010 (2016).
[Crossref]

Int. J. Thermophys. (1)

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-modulated Differential Photoacoustic Spectroscopy (WM-DPAS): Theory of a High-sensitivity Methodology For The Detection of Early-stage Tumors In Tissue,” Int. J. Thermophys. 35(5), 1305–1311 (2014).

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

R. L. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” J. Biomed. Opt. 9(6), 1129–1136 (2004).
[Crossref] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534–540 (2004).
[Crossref] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

J. Biophotonics (1)

S.S. S. Choi, A. Mandelis, X. Guo, B. Lashkari, S. Kellnberger, and V. Ntziachristos, “Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS) for noninvasive early cancer detection and tissue hypoxia monitoring,” J. Biophotonics 9(4), 388–395 (2016).
[Crossref] [PubMed]

J. Clin. Invest. (1)

K. Polyak, “Heterogeneity in breast cancer,” J. Clin. Invest. 121(10), 3786–3788 (2011).
[Crossref] [PubMed]

PLoS One (1)

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical Mammography: Chromophore Concentration And Hemoglobin Saturation Contrast in Breast Cancer,” PLoS One 10(3), e0117322 (2015), doi:.
[Crossref] [PubMed]

Proc. Intl. Soc. Magn. Reson. Med. Sci. Meet. Exhib. (1)

K. Briley-Sæbø and A. Bjørnerud, “Accurate de-oxygenation of ex-vivo whole blood using sodium dithionite,” Proc. Intl. Soc. Magn. Reson. Med. Sci. Meet. Exhib. 8, 2025 (2000).

Rev. Sci. Instrum. (2)

B. Lashkari and A. Mandelis, “Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity,” Rev. Sci. Instrum. 82(9), 094903 (2011).
[Crossref] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Other (1)

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the blood circulation system. This system is isolated from the air to prevent any blood coagulation during the experiment.
Fig. 2
Fig. 2 (a) Schematic diagram of the WM-DPARI system. The sample was fixed at the center while other components rotated around to obtain cross-sectional images. (b) PVCP sample containing blood with variable SO2.
Fig. 3
Fig. 3 (a) normalized PA amplitude of single-ended signals for decreasing SO2. (b) raw differential PA amplitude signals of the two pair differential system for decreasing SO2. Each data point was obtained from 200 signal averages. Lines are the linear best fits for each set of data points.
Fig. 4
Fig. 4 Measured absolute SO2 from various PA modes. For the two-wavelength differential system, the CHb of the 93% sample (mostly oxygenated) and the 62% sample (mostly deoxygenated) were used for sample calibration to show the CHb effect on SO2 estimation. Estimated values were compared to SO2 obtained from the commercial blood gas analyzer. Each data point was obtained from 200 signal averages.
Fig. 5
Fig. 5 (a) 808 nm single-ended PA amplitude image. (b) 680 nm&808 nm WM-DPARI absolute SO2 image with CHb = 1.737 mM. The values from the blood gas analyzer were 91.4%, 87.5% and 84.0%.
Fig. 6
Fig. 6 (a) 808 nm single-ended PA amplitude image. (b) 680 nm&808 nm WM-DPARI absolute SO2 image with CHb = 1.706 mM. The values from the blood gas analyzer were 91.3%, 90.0% and 87.2%.

Tables (3)

Tables Icon

Table 1 The measured absolute blood SO2 from three different PA modes

Tables Icon

Table 2 Comparison of different PA modes for in-vivo SO2 quantification potential

Tables Icon

Table 3 The measured absolute blood SO2 from an in-vitro PVCP image generated by the WM-DPARI method

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

PA μ a ΓΦ
μ a (λ, C ox , C de )=ln(10)( C ox ε oxλ + C de ε deλ )
μ a (λ, C Hb ,S O 2 )= C Hb ln(10)[ S O 2 ε oxλ +(1S O 2 ) ε deλ ]
P A 680 Φ 680 P A 808 Φ 808 μ a680 μ a808 = S O 2 ε ox680 +(1S O 2 ) ε de680 S O 2 ε ox808 +(1S O 2 ) ε de808
S O 2 = ε de680 ε de808 R ( ε ox808 ε de808 )R( ε ox680 ε de680 )
θ 680 (τ) θ 808 (τ) B ch C a 2π( f c 2 B ch 2 4 )ln( f c + B ch 2 f c B ch 2 ) ( μ a680 μ a808 )
P A diff μ a680 k μ a808 =ln(10)[ C ox ( ε ox680 k ε ox808 )+ C de ( ε de680 k ε de808 ) ]
S O 2 = S O 2(ref) (αP A diff η+ln(10) C Hb(ref) β)+ ε de808 η( P A diff P A diff(ref) ) αP A diff(ref) η+ln(10) C Hb(ref) β
α= ε ox808 ε de808 ,
β= ε ox680 ε de808 ε de680 ε ox808 .

Metrics