Abstract

The probability density function (PDF) of light scattering intensity can be used to characterize the scattering medium. We have recently shown that in optical coherence tomography (OCT), a PDF formalism can be sensitive to the number of scatterers in the probed scattering volume and can be represented by the K-distribution, a functional descriptor for non-Gaussian scattering statistics. Expanding on this initial finding, here we examine polystyrene microsphere phantoms with different sphere sizes and concentrations, and also human skin and fingernail in vivo. It is demonstrated that the K-distribution offers an accurate representation for the measured OCT PDFs. The behavior of the shape parameter of K-distribution that best fits the OCT scattering results is investigated in detail, and the applicability of this methodology for biological tissue characterization is demonstrated and discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Probability density function formalism for optical coherence tomography signal analysis: a controlled phantom study

Andrew Weatherbee, Mitsuro Sugita, Kostadinka Bizheva, Ivan Popov, and Alex Vitkin
Opt. Lett. 41(12) 2727-2730 (2016)

Detection of multiple scattering in optical coherence tomography using the spatial distribution of Stokes vectors

Steven G. Adie, Timothy R. Hillman, and David D. Sampson
Opt. Express 15(26) 18033-18049 (2007)

Determination of the scattering anisotropy with optical coherence tomography

V. M. Kodach, D. J. Faber, J. van Marle, T. G. van Leeuwen, and J. Kalkman
Opt. Express 19(7) 6131-6140 (2011)

References

  • View by:
  • |
  • |
  • |

  1. N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
    [Crossref] [PubMed]
  2. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
  3. M. E. Brezinski, Optical Coherence Tomography: Principles and Practice (Newnes, 2015).
  4. W. Strohbehn, T. Wang, and J. P. Speck, “On the probability distribution of line-of-sight fluctuations of optical signals,” Radio Sci. 10(1), 59–70 (1975).
    [Crossref]
  5. J. W. Goodman, Statistical Optics (Wiley, 1985).
  6. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  7. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
    [Crossref] [PubMed]
  8. E. Jakeman and P. Pusey, “Model for Non-Rayleigh Sea Echo,” IEEE Trans. Antenn. Propag. 24(6), 806–814 (1976).
    [Crossref]
  9. E. Jakeman and P. N. Pusey, “Significance of K distributions in scattering experiments,” Phys. Rev. Lett. 40(9), 546–550 (1978).
    [Crossref]
  10. K. D. Ward, “Compound representation of high resolution sea clutter,” Electron. Lett. 17(16), 561–563 (1981).
    [Crossref]
  11. G. Parry and P. N. Puaey, “K distributions in atmospheric propagation of laser light,” J. Opt. Soc. Am. 69(5), 796 (1979).
    [Crossref]
  12. E. Jakeman and R. J. A. Tough, “Non-Gaussian models for the statistics of scattered waves,” Adv. Phys. 37(5), 471–529 (1988).
    [Crossref]
  13. I. A. Popov, N. V. Sidorovsky, and L. M. Veselov, “Experimental study of intensity probability density function in the speckle pattern formed by a small number of scatterers,” Opt. Commun. 97(5-6), 304–306 (1993).
    [Crossref]
  14. A. Weatherbee, M. Sugita, K. Bizheva, I. Popov, and A. Vitkin, “Probability density function formalism for optical coherence tomography signal analysis : A controlled phantom study,” Opt. Lett.in press.
  15. D. W. Schaefer and B. J. Berne, “Light Scattering from Non-Gaussian Concentration Fluctuations,” Phys. Rev. Lett. 28(8), 475–478 (1972).
    [Crossref]
  16. B. Davoudi, A. Lindenmaier, B. A. Standish, G. Allo, K. Bizheva, and A. Vitkin, “Noninvasive in vivo structural and vascular imaging of human oral tissues with spectral domain optical coherence tomography,” Biomed. Opt. Express 3(5), 826–839 (2012).
    [Crossref] [PubMed]
  17. A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised Formulation for the Refractive Index of Water and Steam as a Function of Wavelength, Temperature and Density,” J. Phys. Chem. Ref. Data 27(4), 761 (1998).
    [Crossref]
  18. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in Optical Coherence Tomography,” Opt. Express 20(2), 1337–1359 (2012).
    [Crossref] [PubMed]
  19. J. Izatt and M. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography - Technology and Applications (2008), pp. 47–72.
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  21. S. Prahl, “OMLC Web-Based Calculators,” http://omlc.org/calc/ .
  22. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
    [Crossref] [PubMed]
  23. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32(30), 6032–6042 (1993).
    [Crossref] [PubMed]
  24. D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12(2), 249–259 (2004).
    [Crossref] [PubMed]
  25. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens – Fresnel principle,” J. Opt. Soc. Am. A. 17, 484–490 (2000).
  26. K. K. Bizheva, A. M. Siegel, and D. A. Boas, “The transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7664–7667 (1998).
    [Crossref]
  27. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  28. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788–2797 (1998).
    [Crossref] [PubMed]
  29. W. James, T. Berger, and D. Elston, Andrews’ Diseases of the Skin, 12th ed. (Elsevier, 2015).
  30. J. L. Bolognia, J. L. Jorizzo, and R. P. Rapini, Dermatology (Elsevier Ltd, 2003).
  31. Y. Kobayashi, M. Miyamoto, K. Sugibayashi, and Y. Morimoto, “Drug permeation through the three layers of the human nail plate,” J. Pharm. Pharmacol. 51(3), 271–278 (1999).
    [Crossref] [PubMed]

2013 (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (2)

2010 (1)

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
[Crossref] [PubMed]

2004 (1)

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[Crossref] [PubMed]

2000 (1)

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens – Fresnel principle,” J. Opt. Soc. Am. A. 17, 484–490 (2000).

1999 (2)

Y. Kobayashi, M. Miyamoto, K. Sugibayashi, and Y. Morimoto, “Drug permeation through the three layers of the human nail plate,” J. Pharm. Pharmacol. 51(3), 271–278 (1999).
[Crossref] [PubMed]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

1998 (3)

J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788–2797 (1998).
[Crossref] [PubMed]

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “The transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7664–7667 (1998).
[Crossref]

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised Formulation for the Refractive Index of Water and Steam as a Function of Wavelength, Temperature and Density,” J. Phys. Chem. Ref. Data 27(4), 761 (1998).
[Crossref]

1993 (2)

J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32(30), 6032–6042 (1993).
[Crossref] [PubMed]

I. A. Popov, N. V. Sidorovsky, and L. M. Veselov, “Experimental study of intensity probability density function in the speckle pattern formed by a small number of scatterers,” Opt. Commun. 97(5-6), 304–306 (1993).
[Crossref]

1988 (1)

E. Jakeman and R. J. A. Tough, “Non-Gaussian models for the statistics of scattered waves,” Adv. Phys. 37(5), 471–529 (1988).
[Crossref]

1981 (1)

K. D. Ward, “Compound representation of high resolution sea clutter,” Electron. Lett. 17(16), 561–563 (1981).
[Crossref]

1979 (1)

1978 (1)

E. Jakeman and P. N. Pusey, “Significance of K distributions in scattering experiments,” Phys. Rev. Lett. 40(9), 546–550 (1978).
[Crossref]

1976 (1)

E. Jakeman and P. Pusey, “Model for Non-Rayleigh Sea Echo,” IEEE Trans. Antenn. Propag. 24(6), 806–814 (1976).
[Crossref]

1975 (1)

W. Strohbehn, T. Wang, and J. P. Speck, “On the probability distribution of line-of-sight fluctuations of optical signals,” Radio Sci. 10(1), 59–70 (1975).
[Crossref]

1972 (1)

D. W. Schaefer and B. J. Berne, “Light Scattering from Non-Gaussian Concentration Fluctuations,” Phys. Rev. Lett. 28(8), 475–478 (1972).
[Crossref]

Allo, G.

Andersen, C.

Andersen, P.

Andersen, P. E.

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens – Fresnel principle,” J. Opt. Soc. Am. A. 17, 484–490 (2000).

Andersson-Engels, S.

Backman, V.

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
[Crossref] [PubMed]

Berne, B. J.

D. W. Schaefer and B. J. Berne, “Light Scattering from Non-Gaussian Concentration Fluctuations,” Phys. Rev. Lett. 28(8), 475–478 (1972).
[Crossref]

Bizheva, K.

B. Davoudi, A. Lindenmaier, B. A. Standish, G. Allo, K. Bizheva, and A. Vitkin, “Noninvasive in vivo structural and vascular imaging of human oral tissues with spectral domain optical coherence tomography,” Biomed. Opt. Express 3(5), 826–839 (2012).
[Crossref] [PubMed]

A. Weatherbee, M. Sugita, K. Bizheva, I. Popov, and A. Vitkin, “Probability density function formalism for optical coherence tomography signal analysis : A controlled phantom study,” Opt. Lett.in press.

Bizheva, K. K.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “The transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7664–7667 (1998).
[Crossref]

Boas, D. A.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “The transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7664–7667 (1998).
[Crossref]

Bonner, R. F.

Boppart, S. A.

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
[Crossref] [PubMed]

Boustany, N. N.

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
[Crossref] [PubMed]

Brock, R. S.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[Crossref] [PubMed]

Davoudi, B.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Frosz, M.

Gallagher, J. S.

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised Formulation for the Refractive Index of Water and Steam as a Function of Wavelength, Temperature and Density,” J. Phys. Chem. Ref. Data 27(4), 761 (1998).
[Crossref]

Gorczynska, I.

Hansen, P.

Harvey, A. H.

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised Formulation for the Refractive Index of Water and Steam as a Function of Wavelength, Temperature and Density,” J. Phys. Chem. Ref. Data 27(4), 761 (1998).
[Crossref]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Hu, X.-H.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[Crossref] [PubMed]

Jacobs, K. M.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jakeman, E.

E. Jakeman and R. J. A. Tough, “Non-Gaussian models for the statistics of scattered waves,” Adv. Phys. 37(5), 471–529 (1988).
[Crossref]

E. Jakeman and P. N. Pusey, “Significance of K distributions in scattering experiments,” Phys. Rev. Lett. 40(9), 546–550 (1978).
[Crossref]

E. Jakeman and P. Pusey, “Model for Non-Rayleigh Sea Echo,” IEEE Trans. Antenn. Propag. 24(6), 806–814 (1976).
[Crossref]

Knüttel, A.

Kobayashi, Y.

Y. Kobayashi, M. Miyamoto, K. Sugibayashi, and Y. Morimoto, “Drug permeation through the three layers of the human nail plate,” J. Pharm. Pharmacol. 51(3), 271–278 (1999).
[Crossref] [PubMed]

Kowalczyk, A.

Kumar, G.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Levitz, D.

Lindenmaier, A.

Lu, J. Q.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[Crossref] [PubMed]

Ma, X.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[Crossref] [PubMed]

Miyamoto, M.

Y. Kobayashi, M. Miyamoto, K. Sugibayashi, and Y. Morimoto, “Drug permeation through the three layers of the human nail plate,” J. Pharm. Pharmacol. 51(3), 271–278 (1999).
[Crossref] [PubMed]

Morimoto, Y.

Y. Kobayashi, M. Miyamoto, K. Sugibayashi, and Y. Morimoto, “Drug permeation through the three layers of the human nail plate,” J. Pharm. Pharmacol. 51(3), 271–278 (1999).
[Crossref] [PubMed]

Parry, G.

Popov, I.

A. Weatherbee, M. Sugita, K. Bizheva, I. Popov, and A. Vitkin, “Probability density function formalism for optical coherence tomography signal analysis : A controlled phantom study,” Opt. Lett.in press.

Popov, I. A.

I. A. Popov, N. V. Sidorovsky, and L. M. Veselov, “Experimental study of intensity probability density function in the speckle pattern formed by a small number of scatterers,” Opt. Commun. 97(5-6), 304–306 (1993).
[Crossref]

Puaey, P. N.

Pusey, P.

E. Jakeman and P. Pusey, “Model for Non-Rayleigh Sea Echo,” IEEE Trans. Antenn. Propag. 24(6), 806–814 (1976).
[Crossref]

Pusey, P. N.

E. Jakeman and P. N. Pusey, “Significance of K distributions in scattering experiments,” Phys. Rev. Lett. 40(9), 546–550 (1978).
[Crossref]

Schaefer, D. W.

D. W. Schaefer and B. J. Berne, “Light Scattering from Non-Gaussian Concentration Fluctuations,” Phys. Rev. Lett. 28(8), 475–478 (1972).
[Crossref]

Schmitt, J. M.

Sengers, J. M. H. L.

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised Formulation for the Refractive Index of Water and Steam as a Function of Wavelength, Temperature and Density,” J. Phys. Chem. Ref. Data 27(4), 761 (1998).
[Crossref]

Sidorovsky, N. V.

I. A. Popov, N. V. Sidorovsky, and L. M. Veselov, “Experimental study of intensity probability density function in the speckle pattern formed by a small number of scatterers,” Opt. Commun. 97(5-6), 304–306 (1993).
[Crossref]

Siegel, A. M.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “The transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7664–7667 (1998).
[Crossref]

Speck, J. P.

W. Strohbehn, T. Wang, and J. P. Speck, “On the probability distribution of line-of-sight fluctuations of optical signals,” Radio Sci. 10(1), 59–70 (1975).
[Crossref]

Standish, B. A.

Strohbehn, W.

W. Strohbehn, T. Wang, and J. P. Speck, “On the probability distribution of line-of-sight fluctuations of optical signals,” Radio Sci. 10(1), 59–70 (1975).
[Crossref]

Sugibayashi, K.

Y. Kobayashi, M. Miyamoto, K. Sugibayashi, and Y. Morimoto, “Drug permeation through the three layers of the human nail plate,” J. Pharm. Pharmacol. 51(3), 271–278 (1999).
[Crossref] [PubMed]

Sugita, M.

A. Weatherbee, M. Sugita, K. Bizheva, I. Popov, and A. Vitkin, “Probability density function formalism for optical coherence tomography signal analysis : A controlled phantom study,” Opt. Lett.in press.

Swartling, J.

Sylwestrzak, M.

Szkulmowski, M.

Szlag, D.

Thrane, L.

Tough, R. J. A.

E. Jakeman and R. J. A. Tough, “Non-Gaussian models for the statistics of scattered waves,” Adv. Phys. 37(5), 471–529 (1988).
[Crossref]

Valanciunaite, J.

Veselov, L. M.

I. A. Popov, N. V. Sidorovsky, and L. M. Veselov, “Experimental study of intensity probability density function in the speckle pattern formed by a small number of scatterers,” Opt. Commun. 97(5-6), 304–306 (1993).
[Crossref]

Vitkin, A.

B. Davoudi, A. Lindenmaier, B. A. Standish, G. Allo, K. Bizheva, and A. Vitkin, “Noninvasive in vivo structural and vascular imaging of human oral tissues with spectral domain optical coherence tomography,” Biomed. Opt. Express 3(5), 826–839 (2012).
[Crossref] [PubMed]

A. Weatherbee, M. Sugita, K. Bizheva, I. Popov, and A. Vitkin, “Probability density function formalism for optical coherence tomography signal analysis : A controlled phantom study,” Opt. Lett.in press.

Wang, T.

W. Strohbehn, T. Wang, and J. P. Speck, “On the probability distribution of line-of-sight fluctuations of optical signals,” Radio Sci. 10(1), 59–70 (1975).
[Crossref]

Ward, K. D.

K. D. Ward, “Compound representation of high resolution sea clutter,” Electron. Lett. 17(16), 561–563 (1981).
[Crossref]

Weatherbee, A.

A. Weatherbee, M. Sugita, K. Bizheva, I. Popov, and A. Vitkin, “Probability density function formalism for optical coherence tomography signal analysis : A controlled phantom study,” Opt. Lett.in press.

Wojtkowski, M.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Yang, P.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[Crossref] [PubMed]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Yura, H. T.

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens – Fresnel principle,” J. Opt. Soc. Am. A. 17, 484–490 (2000).

Adv. Phys. (1)

E. Jakeman and R. J. A. Tough, “Non-Gaussian models for the statistics of scattered waves,” Adv. Phys. 37(5), 471–529 (1988).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Electron. Lett. (1)

K. D. Ward, “Compound representation of high resolution sea clutter,” Electron. Lett. 17(16), 561–563 (1981).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

E. Jakeman and P. Pusey, “Model for Non-Rayleigh Sea Echo,” IEEE Trans. Antenn. Propag. 24(6), 806–814 (1976).
[Crossref]

J. Biomed. Opt. (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A. (1)

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens – Fresnel principle,” J. Opt. Soc. Am. A. 17, 484–490 (2000).

J. Pharm. Pharmacol. (1)

Y. Kobayashi, M. Miyamoto, K. Sugibayashi, and Y. Morimoto, “Drug permeation through the three layers of the human nail plate,” J. Pharm. Pharmacol. 51(3), 271–278 (1999).
[Crossref] [PubMed]

J. Phys. Chem. Ref. Data (1)

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised Formulation for the Refractive Index of Water and Steam as a Function of Wavelength, Temperature and Density,” J. Phys. Chem. Ref. Data 27(4), 761 (1998).
[Crossref]

Opt. Commun. (1)

I. A. Popov, N. V. Sidorovsky, and L. M. Veselov, “Experimental study of intensity probability density function in the speckle pattern formed by a small number of scatterers,” Opt. Commun. 97(5-6), 304–306 (1993).
[Crossref]

Opt. Express (2)

Phys. Med. Biol. (2)

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “The transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7664–7667 (1998).
[Crossref]

Phys. Rev. Lett. (2)

D. W. Schaefer and B. J. Berne, “Light Scattering from Non-Gaussian Concentration Fluctuations,” Phys. Rev. Lett. 28(8), 475–478 (1972).
[Crossref]

E. Jakeman and P. N. Pusey, “Significance of K distributions in scattering experiments,” Phys. Rev. Lett. 40(9), 546–550 (1978).
[Crossref]

Radio Sci. (1)

W. Strohbehn, T. Wang, and J. P. Speck, “On the probability distribution of line-of-sight fluctuations of optical signals,” Radio Sci. 10(1), 59–70 (1975).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Other (9)

J. W. Goodman, Statistical Optics (Wiley, 1985).

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).

M. E. Brezinski, Optical Coherence Tomography: Principles and Practice (Newnes, 2015).

J. Izatt and M. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography - Technology and Applications (2008), pp. 47–72.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

S. Prahl, “OMLC Web-Based Calculators,” http://omlc.org/calc/ .

A. Weatherbee, M. Sugita, K. Bizheva, I. Popov, and A. Vitkin, “Probability density function formalism for optical coherence tomography signal analysis : A controlled phantom study,” Opt. Lett.in press.

W. James, T. Berger, and D. Elston, Andrews’ Diseases of the Skin, 12th ed. (Elsevier, 2015).

J. L. Bolognia, J. L. Jorizzo, and R. P. Rapini, Dermatology (Elsevier Ltd, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 K-distributions with different shape parameter α. (a) Probability density functions (PDFs) of OCT intensity (squared amplitude of complex OCT signal), (b) PDF differences from χ2-distribution. For both graphs, horizontal axis represents OCT intensity normalized by mean value (mean equals unity for this example). Insets: detailed view for high intensity range (3 ≤ I ≤ 10). Note the deviation between K-distribution and χ2-distribution is more pronounced in low and intermediate intensity range (indicated by (i) and (ii)), while smaller but distinct features can be seen in high intensity range (indicated by (iii) in insets). See text for more details.
Fig. 2
Fig. 2 OCT sample scan protocol and B-scan image example. (a) scan protocol: a part of inner cylinder of capillary (diameter: 200 μm), containing sample suspension is schematically illustrated. Dashed lines indicate the length of OCT B-scans (310 μm). Acquired three B-scans with the x-direction as fast-scan axis are illustrated, containing 153 data sampling points indicated by red circles (separation of 6.2 μm and 37 μm in x and y directions, respectively; only ~10 x-points are shown for clarity). (b)-(d) OCT B-scan images of the capillary, with frame colors corresponding to (a). Scale bar: 50 μm.
Fig. 3
Fig. 3 Model scattering media results and PDF analysis (suspension of 0.96 µm diameter polystyrene particles in water (0.1%solids; 2.1 particles per cube ten microns on the side; N = 5-6). (a) PDF of OCT intensity, (b) PDF differences from χ2-distribution. As seen, the χ2-distribution (green line) does not describe the data that well, whereas the K-distribution (red line) fits the results better (R2 quantification in figure legend).
Fig. 4
Fig. 4 K-distribution shape parameters. (a) shape parameter αF by K-distribution fit of Eq. (2), (b) shape parameter αV calculated by measured variance using Eq. (6) Both graphs are plotted as functions of N, the average number of particles in coherence volume. Dotted line in (a) indicates the upper limit of the fitting parameter αF = 170 (computational limitation). Orange circles indicate the two samples used for the admixing experiment (see details in text and Fig. 8). (c) parametric plot exploring the αFαV relationship. Error bars show standard deviations. Reasonable agreement with the theoretical prediction α = 2N (dashed line) is observed in both (a) and (b), with deviations at low and high concentrations for each particle size also visible. Overall agreement with some outliers in the αFαV plot are also observed in (c). For details, see text.
Fig. 5
Fig. 5 Dependence of SNR for various scatterrer sizes and concentrations (SNR of the OCT measurements via Eq. (7) and backscattering coefficients calculated by Mie theory and Eq. (8)). (a) SNR on the left ordinate (solid symbols) and backscattering coefficient µb,NA on the right abscissa (hollow symbols and lines) as a function of N. Relevant µs values for each particle size are listed in Table 1. Orange circles indicate the two samples used for the admixing experiment (see text, and Fig. 4 and Fig. 8). (b) parametric plot comparing experiment (SNR) and theory (µb,NA). Error bars show standard deviations. Orange dashed lines represents the noise floor equal to the SNR in the control water sample case.
Fig. 6
Fig. 6 in vivo OCT B-scan images in (a) human finger skin and (b) nail plate. Three smaller arrows indicate the depth positions used for data sampling, located 90, 180, 270 μm below the surface (top arrow corresponds to the stratum corneum in (a) and the dorsal nail plate in (b)). In (a), the depth positions are in the stratum spinosum and the stratum basale layers of the epidermis. In (b), they are within the intermediate nail plate (indicated by asterisk) above the ventral nail plate (bottom arrow). Scale bars: 100 μm.
Fig. 7
Fig. 7 Example PDF analysis of the OCT image data in Fig. 6, at a depth = 180 μm in (a), (b) human finger skin and (c), (d) nail plate. (a), (c) PDF of OCT intensity; (b), (d) PDF differences from χ2-distribution. Insets: detailed view for high intensity range (3 ≤ I ≤ 10). The K-distributions (red lines) with resultant shape parameters αskin = 3 and αnail = 9 fit the measured results (blue points) better than χ2-distributions (green dashed lines), suggesting these tissue layers have relatively small number (N = α/2 ~2-5) of effective scatterers in the OCT coherence volume.
Fig. 8
Fig. 8 Admixture experiment with two different scatterer sizes in suspension. (a) K-distribution fitted shape parameter αF, and (b) backscattering coefficient, µb,NA, (obtained from the measured SNR and system parameter S = 2.7 × 106 cm; see text for details). The suspensions were with 0.42 µm and 0.96 µm particles containing 0.01% and 0.3% solids, respectively (indicated by orange circles in Fig. 4 and Fig. 5); these exhibited similar α and N, and different backscattering coefficients. Error bars show standard deviations.

Tables (2)

Tables Icon

Table 1 Aqueous polystyrene microsphere suspensions

Tables Icon

Table 2 K-distribution and OCT parameters in human in vivo tissuesa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P( I ) = e I ,
P( I ) = 2α Γ( α ) ( αI ) ( α1 )/2 K α1 (2 αI ),
σ 2 ( I I ) 2 I 2 =1+ 2 α .
σ 2 =1+ ( n n ) 2 n 2 =1+ 1 N ,
V= 4π r 1 2 r 2 3 n water ,
α V = 2 σ 2 1 .
SNR = 20 lo g 10 ( <| A m |> SD( | A m ,noise | ) ),
μ b,NA = μ s θ=πNA π p( θ ) sin( θ )dθ,

Metrics