Abstract

We propose an alternative solution to improve visual quality by spatially modulating the amplitude of light passing into the eye (related to the eye's transmittance), in contrast to traditional correction of the wavefront phase (related to the local refractive power). Numerical simulations show that masking the aberrated areas at the pupil plane should enhance visual function, especially in highly aberrated eyes. This correction could be implemented in practice using customized contact or intraocular lenses.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations

Antonio Guirao, David R. Williams, and Ian G. Cox
J. Opt. Soc. Am. A 18(5) 1003-1015 (2001)

Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes

Antonio Guirao, Jason Porter, David R. Williams, and Ian G. Cox
J. Opt. Soc. Am. A 19(1) 1-9 (2002)

Optics of the eye and its impact in vision: a tutorial

Pablo Artal
Adv. Opt. Photon. 6(3) 340-367 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Helmholtz, Popular Lectures on Scientific Subjects (London: Longman, Green, 1873).
  2. J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
    [PubMed]
  3. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
    [Crossref] [PubMed]
  4. J. Osborn, R. M. Myers, and G. D. Love, “PSF halo reduction in adaptive optics using dynamic pupil masking,” Opt. Express 17(20), 17279–17292 (2009).
    [Crossref] [PubMed]
  5. D. Fried, “Probability of getting a lucky short-exposure image through turbulence,” J. Opt. Soc. Am. 68(12), 1651–1657 (1978).
    [Crossref]
  6. N. M. Law, R. G. Dekany, C. D. Mackay, A. M. Moore, M. C. Britton, and V. Velur, “Getting lucky with adaptive optics: diffraction-limited resolution in the visible with current AO systems on large and small telescopes,” Proc. SPIE 7014, I152 (2008).
  7. E. Freeman, “Pinhole contact lenses,” Am. J. Optom. Arch. Am. Acad. Optom. 29(7), 347–352 (1952).
    [Crossref] [PubMed]
  8. W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. Lond., B 112(778), 428–450 (1933).
    [Crossref]
  9. X. Zhang, M. Ye, A. Bradley, and L. Thibos, “Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16(4), 812–820 (1999).
    [Crossref] [PubMed]
  10. R. Navarro, V. Fernández-Sánchez, and N. López-Gil, “Refractive status in eyes with inhomogeneous or irregular pupils,” Optom. Vis. Sci. 91(2), 221–230 (2014).
    [PubMed]
  11. P. Bernal-Molina, J. F. Castejón-Mochón, A. Bradley, and N. López-Gil, “Focus correction in an apodized system with spherical aberration,” J. Opt. Soc. Am. A 32(8), 1556–1563 (2015).
    [Crossref] [PubMed]
  12. D. A. Atchison, A. Joblin, and G. Smith, “Influence of Stiles-Crawford effect apodization on spatial visual performance,” J. Opt. Soc. Am. A 15(9), 2545–2551 (1998).
    [Crossref] [PubMed]
  13. B. Vohnsen, “Photoreceptor waveguides and effective retinal image quality,” J. Opt. Soc. Am. A 24(3), 597–607 (2007).
    [Crossref] [PubMed]
  14. C. Chao, D. R. Iskander, M. J. Collins, and M. Bennamoun, “Modelling directionality of photoreceptors in the human eye as a function of monochromatic aberrations, ” in Proceedings of IEEE Conference on Signals, Systems and Computers (IEEE 2000), pp. 343–347.
    [Crossref]
  15. L. Zheleznyak, H. Jung, and G. Yoon, “Impact of pupil transmission apodization on presbyopic through-focus visual performance with spherical aberration,” Invest. Ophthalmol. Vis. Sci. 55(1), 70–77 (2014).
    [Crossref] [PubMed]
  16. G. O. Waring, “Correction of Presbyopia with a Small Aperture Corneal Inlay,” J. Refract. Surg. 27(11), 842–845 (2011).
    [Crossref] [PubMed]
  17. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
    [PubMed]
  18. L. N. Thibos, X. Hong, A. Bradley, and R. E. Applegate, “Metrics of optical quality of the eye,” J. Vis. 4, 1–15 (2004) doi.
    [Crossref] [PubMed]
  19. J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 322–328 (2004) doi:.
    [Crossref] [PubMed]
  20. M. J. Collins, T. Buehren, and D. R. Iskander, “Retinal image quality, reading and myopia,” Vision Res. 46(1-2), 196–215 (2006).
    [Crossref] [PubMed]
  21. J. Tarrant, A. Roorda, and C. F. Wildsoet, “Determining the accommodative response from wavefront aberrations,” J. Vis. 10(5), 4 (2010).
    [Crossref] [PubMed]
  22. A. Ravikumar, J. D. Marsack, H. E. Bedell, Y. Shi, and R. A. Applegate, “Change in visual acuity is well correlated with change in image-quality metrics for both normal and keratoconic wavefront errors,” J. Vis. 13(13), 28 (2013) doi:.
    [Crossref] [PubMed]
  23. C. Revol and M. Jourlin, “A new minimum variance region growing algorithm for image segmentation,” Pattern Recognit. Lett. 18(3), 249–258 (1997).
    [Crossref]
  24. A. Amigó, S. Bonaque, N. López-Gil, and L. Thibos, “Simulated effect of corneal asphericity increase (Q-factor) as a refractive therapy for presbyopia,” J. Refract. Surg. 28(6), 413–425 (2012).
    [Crossref] [PubMed]
  25. N. López-Gil, J. F. Castejón-Mochón, and V. Fernández-Sánchez, “Limitations of the ocular wavefront correction with contact lenses,” Vision Res. 49(14), 1729–1737 (2009).
    [Crossref] [PubMed]
  26. X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4), 7 (2004) doi:.
    [Crossref] [PubMed]
  27. F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186(3), 558–578 (1966).
    [Crossref] [PubMed]
  28. D. A. Atchison, G. Smith, and N. Efron, “The effect of pupil size on visual acuity in uncorrected and corrected myopia,” Am. J. Optom. Physiol. Opt. 56(5), 315–323 (1979).
    [Crossref] [PubMed]
  29. F. W. Campbell and A. H. Gregory, “Effect of size of pupil on visual acuity,” Nature 187(4743), 1121–1123 (1960).
    [Crossref] [PubMed]
  30. R. Xu, A. Bradley, and L. N. Thibos, “Impact of primary spherical aberration, spatial frequency and Stiles Crawford apodization on wavefront determined refractive error: a computational study,” Ophthalmic Physiol. Opt. 33(4), 444–455 (2013).
    [Crossref] [PubMed]
  31. F. L. Van Nes and M. A. Bouman, “Spatial Modulation Transfer in The Human Eye,” J. Opt. Soc. Am. 57(3), 401–406 (1967).
    [Crossref]
  32. V. Narendran, A. R. Kothari, Principles and Practice of Vitreoretinal Surgery, (JP Medical Ltd., 2014), Chap. 1.
  33. T. Williams, The Optical Transfer Function of Imaging Systems (CRC Press, 1998).
  34. A. Tomlinson, W. H. Ridder, and R. Watanabe, “Blink-induced variations in visual performance with toric soft contact lenses,” Optom. Vis. Sci. 71(9), 545–549 (1994).
    [Crossref] [PubMed]
  35. S. Bonaque-González, P. Bernal-Molina, and N. López-Gil, “Amount of aspheric intraocular lens decentration that maintains the intraocular lens’ optical advantages,” J. Cataract Refract. Surg. 41(5), 1110–1111 (2015).
    [Crossref] [PubMed]
  36. S. Bará, T. Mancebo, and E. Moreno-Barriuso, “Positioning tolerances for phase plates compensating aberrations of the human eye,” Appl. Opt. 39(19), 3413–3420 (2000).
    [Crossref] [PubMed]
  37. T. E. Burris, D. K. Holmes-Higgin, and T. A. Silvestrini, “Lamellar intrastromal corneal tattoo for treating iris defects (artificial iris),” Cornea 17(2), 169–173 (1998).
    [Crossref] [PubMed]
  38. C. G. Thompson, K. Fawzy, I. G. Bryce, and B. A. Noble, “Implantation of a black diaphragm intraocular lens for traumatic aniridia,” J. Cataract Refract. Surg. 25(6), 808–813 (1999).
    [Crossref] [PubMed]
  39. D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36(1), 51–59 (2016).
    [Crossref] [PubMed]
  40. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
    [Crossref] [PubMed]
  41. B. Winn, A. Bradley, N. C. Strang, P. V. McGraw, and L. N. Thibos, “Reversals of the colour-depth illusion explained by ocular chromatic aberration,” Vision Res. 35(19), 2675–2684 (1995).
    [Crossref] [PubMed]
  42. K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 305493 (1998).

2016 (1)

D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36(1), 51–59 (2016).
[Crossref] [PubMed]

2015 (2)

S. Bonaque-González, P. Bernal-Molina, and N. López-Gil, “Amount of aspheric intraocular lens decentration that maintains the intraocular lens’ optical advantages,” J. Cataract Refract. Surg. 41(5), 1110–1111 (2015).
[Crossref] [PubMed]

P. Bernal-Molina, J. F. Castejón-Mochón, A. Bradley, and N. López-Gil, “Focus correction in an apodized system with spherical aberration,” J. Opt. Soc. Am. A 32(8), 1556–1563 (2015).
[Crossref] [PubMed]

2014 (2)

R. Navarro, V. Fernández-Sánchez, and N. López-Gil, “Refractive status in eyes with inhomogeneous or irregular pupils,” Optom. Vis. Sci. 91(2), 221–230 (2014).
[PubMed]

L. Zheleznyak, H. Jung, and G. Yoon, “Impact of pupil transmission apodization on presbyopic through-focus visual performance with spherical aberration,” Invest. Ophthalmol. Vis. Sci. 55(1), 70–77 (2014).
[Crossref] [PubMed]

2013 (2)

A. Ravikumar, J. D. Marsack, H. E. Bedell, Y. Shi, and R. A. Applegate, “Change in visual acuity is well correlated with change in image-quality metrics for both normal and keratoconic wavefront errors,” J. Vis. 13(13), 28 (2013) doi:.
[Crossref] [PubMed]

R. Xu, A. Bradley, and L. N. Thibos, “Impact of primary spherical aberration, spatial frequency and Stiles Crawford apodization on wavefront determined refractive error: a computational study,” Ophthalmic Physiol. Opt. 33(4), 444–455 (2013).
[Crossref] [PubMed]

2012 (1)

A. Amigó, S. Bonaque, N. López-Gil, and L. Thibos, “Simulated effect of corneal asphericity increase (Q-factor) as a refractive therapy for presbyopia,” J. Refract. Surg. 28(6), 413–425 (2012).
[Crossref] [PubMed]

2011 (1)

G. O. Waring, “Correction of Presbyopia with a Small Aperture Corneal Inlay,” J. Refract. Surg. 27(11), 842–845 (2011).
[Crossref] [PubMed]

2010 (1)

J. Tarrant, A. Roorda, and C. F. Wildsoet, “Determining the accommodative response from wavefront aberrations,” J. Vis. 10(5), 4 (2010).
[Crossref] [PubMed]

2009 (2)

N. López-Gil, J. F. Castejón-Mochón, and V. Fernández-Sánchez, “Limitations of the ocular wavefront correction with contact lenses,” Vision Res. 49(14), 1729–1737 (2009).
[Crossref] [PubMed]

J. Osborn, R. M. Myers, and G. D. Love, “PSF halo reduction in adaptive optics using dynamic pupil masking,” Opt. Express 17(20), 17279–17292 (2009).
[Crossref] [PubMed]

2008 (1)

N. M. Law, R. G. Dekany, C. D. Mackay, A. M. Moore, M. C. Britton, and V. Velur, “Getting lucky with adaptive optics: diffraction-limited resolution in the visible with current AO systems on large and small telescopes,” Proc. SPIE 7014, I152 (2008).

2007 (1)

2006 (1)

M. J. Collins, T. Buehren, and D. R. Iskander, “Retinal image quality, reading and myopia,” Vision Res. 46(1-2), 196–215 (2006).
[Crossref] [PubMed]

2004 (3)

L. N. Thibos, X. Hong, A. Bradley, and R. E. Applegate, “Metrics of optical quality of the eye,” J. Vis. 4, 1–15 (2004) doi.
[Crossref] [PubMed]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 322–328 (2004) doi:.
[Crossref] [PubMed]

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4), 7 (2004) doi:.
[Crossref] [PubMed]

2002 (3)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
[Crossref] [PubMed]

2000 (1)

1999 (2)

X. Zhang, M. Ye, A. Bradley, and L. Thibos, “Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16(4), 812–820 (1999).
[Crossref] [PubMed]

C. G. Thompson, K. Fawzy, I. G. Bryce, and B. A. Noble, “Implantation of a black diaphragm intraocular lens for traumatic aniridia,” J. Cataract Refract. Surg. 25(6), 808–813 (1999).
[Crossref] [PubMed]

1998 (3)

T. E. Burris, D. K. Holmes-Higgin, and T. A. Silvestrini, “Lamellar intrastromal corneal tattoo for treating iris defects (artificial iris),” Cornea 17(2), 169–173 (1998).
[Crossref] [PubMed]

D. A. Atchison, A. Joblin, and G. Smith, “Influence of Stiles-Crawford effect apodization on spatial visual performance,” J. Opt. Soc. Am. A 15(9), 2545–2551 (1998).
[Crossref] [PubMed]

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 305493 (1998).

1997 (1)

C. Revol and M. Jourlin, “A new minimum variance region growing algorithm for image segmentation,” Pattern Recognit. Lett. 18(3), 249–258 (1997).
[Crossref]

1995 (1)

B. Winn, A. Bradley, N. C. Strang, P. V. McGraw, and L. N. Thibos, “Reversals of the colour-depth illusion explained by ocular chromatic aberration,” Vision Res. 35(19), 2675–2684 (1995).
[Crossref] [PubMed]

1994 (1)

A. Tomlinson, W. H. Ridder, and R. Watanabe, “Blink-induced variations in visual performance with toric soft contact lenses,” Optom. Vis. Sci. 71(9), 545–549 (1994).
[Crossref] [PubMed]

1990 (1)

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

1979 (1)

D. A. Atchison, G. Smith, and N. Efron, “The effect of pupil size on visual acuity in uncorrected and corrected myopia,” Am. J. Optom. Physiol. Opt. 56(5), 315–323 (1979).
[Crossref] [PubMed]

1978 (1)

1967 (1)

1966 (1)

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186(3), 558–578 (1966).
[Crossref] [PubMed]

1960 (1)

F. W. Campbell and A. H. Gregory, “Effect of size of pupil on visual acuity,” Nature 187(4743), 1121–1123 (1960).
[Crossref] [PubMed]

1952 (1)

E. Freeman, “Pinhole contact lenses,” Am. J. Optom. Arch. Am. Acad. Optom. 29(7), 347–352 (1952).
[Crossref] [PubMed]

1933 (1)

W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. Lond., B 112(778), 428–450 (1933).
[Crossref]

Amigó, A.

A. Amigó, S. Bonaque, N. López-Gil, and L. Thibos, “Simulated effect of corneal asphericity increase (Q-factor) as a refractive therapy for presbyopia,” J. Refract. Surg. 28(6), 413–425 (2012).
[Crossref] [PubMed]

Applegate, R. A.

A. Ravikumar, J. D. Marsack, H. E. Bedell, Y. Shi, and R. A. Applegate, “Change in visual acuity is well correlated with change in image-quality metrics for both normal and keratoconic wavefront errors,” J. Vis. 13(13), 28 (2013) doi:.
[Crossref] [PubMed]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 322–328 (2004) doi:.
[Crossref] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Applegate, R. E.

L. N. Thibos, X. Hong, A. Bradley, and R. E. Applegate, “Metrics of optical quality of the eye,” J. Vis. 4, 1–15 (2004) doi.
[Crossref] [PubMed]

Atchison, D. A.

D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36(1), 51–59 (2016).
[Crossref] [PubMed]

D. A. Atchison, A. Joblin, and G. Smith, “Influence of Stiles-Crawford effect apodization on spatial visual performance,” J. Opt. Soc. Am. A 15(9), 2545–2551 (1998).
[Crossref] [PubMed]

D. A. Atchison, G. Smith, and N. Efron, “The effect of pupil size on visual acuity in uncorrected and corrected myopia,” Am. J. Optom. Physiol. Opt. 56(5), 315–323 (1979).
[Crossref] [PubMed]

Bará, S.

Bedell, H. E.

A. Ravikumar, J. D. Marsack, H. E. Bedell, Y. Shi, and R. A. Applegate, “Change in visual acuity is well correlated with change in image-quality metrics for both normal and keratoconic wavefront errors,” J. Vis. 13(13), 28 (2013) doi:.
[Crossref] [PubMed]

Bennamoun, M.

C. Chao, D. R. Iskander, M. J. Collins, and M. Bennamoun, “Modelling directionality of photoreceptors in the human eye as a function of monochromatic aberrations, ” in Proceedings of IEEE Conference on Signals, Systems and Computers (IEEE 2000), pp. 343–347.
[Crossref]

Bernal-Molina, P.

S. Bonaque-González, P. Bernal-Molina, and N. López-Gil, “Amount of aspheric intraocular lens decentration that maintains the intraocular lens’ optical advantages,” J. Cataract Refract. Surg. 41(5), 1110–1111 (2015).
[Crossref] [PubMed]

P. Bernal-Molina, J. F. Castejón-Mochón, A. Bradley, and N. López-Gil, “Focus correction in an apodized system with spherical aberration,” J. Opt. Soc. Am. A 32(8), 1556–1563 (2015).
[Crossref] [PubMed]

Bierden, P.

Blazaki, S.

D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36(1), 51–59 (2016).
[Crossref] [PubMed]

Bonaque, S.

A. Amigó, S. Bonaque, N. López-Gil, and L. Thibos, “Simulated effect of corneal asphericity increase (Q-factor) as a refractive therapy for presbyopia,” J. Refract. Surg. 28(6), 413–425 (2012).
[Crossref] [PubMed]

Bonaque-González, S.

S. Bonaque-González, P. Bernal-Molina, and N. López-Gil, “Amount of aspheric intraocular lens decentration that maintains the intraocular lens’ optical advantages,” J. Cataract Refract. Surg. 41(5), 1110–1111 (2015).
[Crossref] [PubMed]

Bouman, M. A.

Bradley, A.

P. Bernal-Molina, J. F. Castejón-Mochón, A. Bradley, and N. López-Gil, “Focus correction in an apodized system with spherical aberration,” J. Opt. Soc. Am. A 32(8), 1556–1563 (2015).
[Crossref] [PubMed]

R. Xu, A. Bradley, and L. N. Thibos, “Impact of primary spherical aberration, spatial frequency and Stiles Crawford apodization on wavefront determined refractive error: a computational study,” Ophthalmic Physiol. Opt. 33(4), 444–455 (2013).
[Crossref] [PubMed]

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4), 7 (2004) doi:.
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. E. Applegate, “Metrics of optical quality of the eye,” J. Vis. 4, 1–15 (2004) doi.
[Crossref] [PubMed]

X. Zhang, M. Ye, A. Bradley, and L. Thibos, “Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16(4), 812–820 (1999).
[Crossref] [PubMed]

B. Winn, A. Bradley, N. C. Strang, P. V. McGraw, and L. N. Thibos, “Reversals of the colour-depth illusion explained by ocular chromatic aberration,” Vision Res. 35(19), 2675–2684 (1995).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Britton, M. C.

N. M. Law, R. G. Dekany, C. D. Mackay, A. M. Moore, M. C. Britton, and V. Velur, “Getting lucky with adaptive optics: diffraction-limited resolution in the visible with current AO systems on large and small telescopes,” Proc. SPIE 7014, I152 (2008).

Bryce, I. G.

C. G. Thompson, K. Fawzy, I. G. Bryce, and B. A. Noble, “Implantation of a black diaphragm intraocular lens for traumatic aniridia,” J. Cataract Refract. Surg. 25(6), 808–813 (1999).
[Crossref] [PubMed]

Buehren, T.

M. J. Collins, T. Buehren, and D. R. Iskander, “Retinal image quality, reading and myopia,” Vision Res. 46(1-2), 196–215 (2006).
[Crossref] [PubMed]

Burris, T. E.

T. E. Burris, D. K. Holmes-Higgin, and T. A. Silvestrini, “Lamellar intrastromal corneal tattoo for treating iris defects (artificial iris),” Cornea 17(2), 169–173 (1998).
[Crossref] [PubMed]

Campbell, F. W.

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186(3), 558–578 (1966).
[Crossref] [PubMed]

F. W. Campbell and A. H. Gregory, “Effect of size of pupil on visual acuity,” Nature 187(4743), 1121–1123 (1960).
[Crossref] [PubMed]

Castejón-Mochón, J. F.

P. Bernal-Molina, J. F. Castejón-Mochón, A. Bradley, and N. López-Gil, “Focus correction in an apodized system with spherical aberration,” J. Opt. Soc. Am. A 32(8), 1556–1563 (2015).
[Crossref] [PubMed]

N. López-Gil, J. F. Castejón-Mochón, and V. Fernández-Sánchez, “Limitations of the ocular wavefront correction with contact lenses,” Vision Res. 49(14), 1729–1737 (2009).
[Crossref] [PubMed]

Chao, C.

C. Chao, D. R. Iskander, M. J. Collins, and M. Bennamoun, “Modelling directionality of photoreceptors in the human eye as a function of monochromatic aberrations, ” in Proceedings of IEEE Conference on Signals, Systems and Computers (IEEE 2000), pp. 343–347.
[Crossref]

Charman, W. N.

D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36(1), 51–59 (2016).
[Crossref] [PubMed]

Chen, L.

Cheng, X.

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4), 7 (2004) doi:.
[Crossref] [PubMed]

Collins, M. J.

M. J. Collins, T. Buehren, and D. R. Iskander, “Retinal image quality, reading and myopia,” Vision Res. 46(1-2), 196–215 (2006).
[Crossref] [PubMed]

C. Chao, D. R. Iskander, M. J. Collins, and M. Bennamoun, “Modelling directionality of photoreceptors in the human eye as a function of monochromatic aberrations, ” in Proceedings of IEEE Conference on Signals, Systems and Computers (IEEE 2000), pp. 343–347.
[Crossref]

Crawford, B. H.

W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. Lond., B 112(778), 428–450 (1933).
[Crossref]

Dekany, R. G.

N. M. Law, R. G. Dekany, C. D. Mackay, A. M. Moore, M. C. Britton, and V. Velur, “Getting lucky with adaptive optics: diffraction-limited resolution in the visible with current AO systems on large and small telescopes,” Proc. SPIE 7014, I152 (2008).

Doble, N.

Efron, N.

D. A. Atchison, G. Smith, and N. Efron, “The effect of pupil size on visual acuity in uncorrected and corrected myopia,” Am. J. Optom. Physiol. Opt. 56(5), 315–323 (1979).
[Crossref] [PubMed]

Fawzy, K.

C. G. Thompson, K. Fawzy, I. G. Bryce, and B. A. Noble, “Implantation of a black diaphragm intraocular lens for traumatic aniridia,” J. Cataract Refract. Surg. 25(6), 808–813 (1999).
[Crossref] [PubMed]

Fernández-Sánchez, V.

R. Navarro, V. Fernández-Sánchez, and N. López-Gil, “Refractive status in eyes with inhomogeneous or irregular pupils,” Optom. Vis. Sci. 91(2), 221–230 (2014).
[PubMed]

N. López-Gil, J. F. Castejón-Mochón, and V. Fernández-Sánchez, “Limitations of the ocular wavefront correction with contact lenses,” Vision Res. 49(14), 1729–1737 (2009).
[Crossref] [PubMed]

Freeman, E.

E. Freeman, “Pinhole contact lenses,” Am. J. Optom. Arch. Am. Acad. Optom. 29(7), 347–352 (1952).
[Crossref] [PubMed]

Fried, D.

Gregory, A. H.

F. W. Campbell and A. H. Gregory, “Effect of size of pupil on visual acuity,” Nature 187(4743), 1121–1123 (1960).
[Crossref] [PubMed]

Gubisch, R. W.

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186(3), 558–578 (1966).
[Crossref] [PubMed]

Holladay, J. T.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

Holmes-Higgin, D. K.

T. E. Burris, D. K. Holmes-Higgin, and T. A. Silvestrini, “Lamellar intrastromal corneal tattoo for treating iris defects (artificial iris),” Cornea 17(2), 169–173 (1998).
[Crossref] [PubMed]

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and R. E. Applegate, “Metrics of optical quality of the eye,” J. Vis. 4, 1–15 (2004) doi.
[Crossref] [PubMed]

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Iskander, D. R.

M. J. Collins, T. Buehren, and D. R. Iskander, “Retinal image quality, reading and myopia,” Vision Res. 46(1-2), 196–215 (2006).
[Crossref] [PubMed]

C. Chao, D. R. Iskander, M. J. Collins, and M. Bennamoun, “Modelling directionality of photoreceptors in the human eye as a function of monochromatic aberrations, ” in Proceedings of IEEE Conference on Signals, Systems and Computers (IEEE 2000), pp. 343–347.
[Crossref]

Joblin, A.

Jourlin, M.

C. Revol and M. Jourlin, “A new minimum variance region growing algorithm for image segmentation,” Pattern Recognit. Lett. 18(3), 249–258 (1997).
[Crossref]

Jung, H.

L. Zheleznyak, H. Jung, and G. Yoon, “Impact of pupil transmission apodization on presbyopic through-focus visual performance with spherical aberration,” Invest. Ophthalmol. Vis. Sci. 55(1), 70–77 (2014).
[Crossref] [PubMed]

Kearney, K. J.

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 305493 (1998).

Koranyi, G.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

Law, N. M.

N. M. Law, R. G. Dekany, C. D. Mackay, A. M. Moore, M. C. Britton, and V. Velur, “Getting lucky with adaptive optics: diffraction-limited resolution in the visible with current AO systems on large and small telescopes,” Proc. SPIE 7014, I152 (2008).

López-Gil, N.

S. Bonaque-González, P. Bernal-Molina, and N. López-Gil, “Amount of aspheric intraocular lens decentration that maintains the intraocular lens’ optical advantages,” J. Cataract Refract. Surg. 41(5), 1110–1111 (2015).
[Crossref] [PubMed]

P. Bernal-Molina, J. F. Castejón-Mochón, A. Bradley, and N. López-Gil, “Focus correction in an apodized system with spherical aberration,” J. Opt. Soc. Am. A 32(8), 1556–1563 (2015).
[Crossref] [PubMed]

R. Navarro, V. Fernández-Sánchez, and N. López-Gil, “Refractive status in eyes with inhomogeneous or irregular pupils,” Optom. Vis. Sci. 91(2), 221–230 (2014).
[PubMed]

A. Amigó, S. Bonaque, N. López-Gil, and L. Thibos, “Simulated effect of corneal asphericity increase (Q-factor) as a refractive therapy for presbyopia,” J. Refract. Surg. 28(6), 413–425 (2012).
[Crossref] [PubMed]

N. López-Gil, J. F. Castejón-Mochón, and V. Fernández-Sánchez, “Limitations of the ocular wavefront correction with contact lenses,” Vision Res. 49(14), 1729–1737 (2009).
[Crossref] [PubMed]

Love, G. D.

Mackay, C. D.

N. M. Law, R. G. Dekany, C. D. Mackay, A. M. Moore, M. C. Britton, and V. Velur, “Getting lucky with adaptive optics: diffraction-limited resolution in the visible with current AO systems on large and small telescopes,” Proc. SPIE 7014, I152 (2008).

Mancebo, T.

Marsack, J. D.

A. Ravikumar, J. D. Marsack, H. E. Bedell, Y. Shi, and R. A. Applegate, “Change in visual acuity is well correlated with change in image-quality metrics for both normal and keratoconic wavefront errors,” J. Vis. 13(13), 28 (2013) doi:.
[Crossref] [PubMed]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 322–328 (2004) doi:.
[Crossref] [PubMed]

McGraw, P. V.

B. Winn, A. Bradley, N. C. Strang, P. V. McGraw, and L. N. Thibos, “Reversals of the colour-depth illusion explained by ocular chromatic aberration,” Vision Res. 35(19), 2675–2684 (1995).
[Crossref] [PubMed]

Moore, A. M.

N. M. Law, R. G. Dekany, C. D. Mackay, A. M. Moore, M. C. Britton, and V. Velur, “Getting lucky with adaptive optics: diffraction-limited resolution in the visible with current AO systems on large and small telescopes,” Proc. SPIE 7014, I152 (2008).

Moreno-Barriuso, E.

Myers, R. M.

Navarro, R.

R. Navarro, V. Fernández-Sánchez, and N. López-Gil, “Refractive status in eyes with inhomogeneous or irregular pupils,” Optom. Vis. Sci. 91(2), 221–230 (2014).
[PubMed]

Ninkov, Z.

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 305493 (1998).

Noble, B. A.

C. G. Thompson, K. Fawzy, I. G. Bryce, and B. A. Noble, “Implantation of a black diaphragm intraocular lens for traumatic aniridia,” J. Cataract Refract. Surg. 25(6), 808–813 (1999).
[Crossref] [PubMed]

Norrby, N. E.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

Olivier, S.

Osborn, J.

Piers, P. A.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

Plainis, S.

D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36(1), 51–59 (2016).
[Crossref] [PubMed]

Ravikumar, A.

A. Ravikumar, J. D. Marsack, H. E. Bedell, Y. Shi, and R. A. Applegate, “Change in visual acuity is well correlated with change in image-quality metrics for both normal and keratoconic wavefront errors,” J. Vis. 13(13), 28 (2013) doi:.
[Crossref] [PubMed]

Revol, C.

C. Revol and M. Jourlin, “A new minimum variance region growing algorithm for image segmentation,” Pattern Recognit. Lett. 18(3), 249–258 (1997).
[Crossref]

Ridder, W. H.

A. Tomlinson, W. H. Ridder, and R. Watanabe, “Blink-induced variations in visual performance with toric soft contact lenses,” Optom. Vis. Sci. 71(9), 545–549 (1994).
[Crossref] [PubMed]

Roorda, A.

J. Tarrant, A. Roorda, and C. F. Wildsoet, “Determining the accommodative response from wavefront aberrations,” J. Vis. 10(5), 4 (2010).
[Crossref] [PubMed]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Shi, Y.

A. Ravikumar, J. D. Marsack, H. E. Bedell, Y. Shi, and R. A. Applegate, “Change in visual acuity is well correlated with change in image-quality metrics for both normal and keratoconic wavefront errors,” J. Vis. 13(13), 28 (2013) doi:.
[Crossref] [PubMed]

Silvestrini, T. A.

T. E. Burris, D. K. Holmes-Higgin, and T. A. Silvestrini, “Lamellar intrastromal corneal tattoo for treating iris defects (artificial iris),” Cornea 17(2), 169–173 (1998).
[Crossref] [PubMed]

Singer, B.

Smith, G.

D. A. Atchison, A. Joblin, and G. Smith, “Influence of Stiles-Crawford effect apodization on spatial visual performance,” J. Opt. Soc. Am. A 15(9), 2545–2551 (1998).
[Crossref] [PubMed]

D. A. Atchison, G. Smith, and N. Efron, “The effect of pupil size on visual acuity in uncorrected and corrected myopia,” Am. J. Optom. Physiol. Opt. 56(5), 315–323 (1979).
[Crossref] [PubMed]

Stiles, W. S.

W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. Lond., B 112(778), 428–450 (1933).
[Crossref]

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Strang, N. C.

B. Winn, A. Bradley, N. C. Strang, P. V. McGraw, and L. N. Thibos, “Reversals of the colour-depth illusion explained by ocular chromatic aberration,” Vision Res. 35(19), 2675–2684 (1995).
[Crossref] [PubMed]

Suheimat, M.

D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36(1), 51–59 (2016).
[Crossref] [PubMed]

Tarrant, J.

J. Tarrant, A. Roorda, and C. F. Wildsoet, “Determining the accommodative response from wavefront aberrations,” J. Vis. 10(5), 4 (2010).
[Crossref] [PubMed]

Thibos, L.

A. Amigó, S. Bonaque, N. López-Gil, and L. Thibos, “Simulated effect of corneal asphericity increase (Q-factor) as a refractive therapy for presbyopia,” J. Refract. Surg. 28(6), 413–425 (2012).
[Crossref] [PubMed]

X. Zhang, M. Ye, A. Bradley, and L. Thibos, “Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16(4), 812–820 (1999).
[Crossref] [PubMed]

Thibos, L. N.

R. Xu, A. Bradley, and L. N. Thibos, “Impact of primary spherical aberration, spatial frequency and Stiles Crawford apodization on wavefront determined refractive error: a computational study,” Ophthalmic Physiol. Opt. 33(4), 444–455 (2013).
[Crossref] [PubMed]

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4), 7 (2004) doi:.
[Crossref] [PubMed]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 322–328 (2004) doi:.
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. E. Applegate, “Metrics of optical quality of the eye,” J. Vis. 4, 1–15 (2004) doi.
[Crossref] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

B. Winn, A. Bradley, N. C. Strang, P. V. McGraw, and L. N. Thibos, “Reversals of the colour-depth illusion explained by ocular chromatic aberration,” Vision Res. 35(19), 2675–2684 (1995).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Thompson, C. G.

C. G. Thompson, K. Fawzy, I. G. Bryce, and B. A. Noble, “Implantation of a black diaphragm intraocular lens for traumatic aniridia,” J. Cataract Refract. Surg. 25(6), 808–813 (1999).
[Crossref] [PubMed]

Tomlinson, A.

A. Tomlinson, W. H. Ridder, and R. Watanabe, “Blink-induced variations in visual performance with toric soft contact lenses,” Optom. Vis. Sci. 71(9), 545–549 (1994).
[Crossref] [PubMed]

van der Mooren, M.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

Van Nes, F. L.

Velur, V.

N. M. Law, R. G. Dekany, C. D. Mackay, A. M. Moore, M. C. Britton, and V. Velur, “Getting lucky with adaptive optics: diffraction-limited resolution in the visible with current AO systems on large and small telescopes,” Proc. SPIE 7014, I152 (2008).

Vohnsen, B.

Waring, G. O.

G. O. Waring, “Correction of Presbyopia with a Small Aperture Corneal Inlay,” J. Refract. Surg. 27(11), 842–845 (2011).
[Crossref] [PubMed]

Watanabe, R.

A. Tomlinson, W. H. Ridder, and R. Watanabe, “Blink-induced variations in visual performance with toric soft contact lenses,” Optom. Vis. Sci. 71(9), 545–549 (1994).
[Crossref] [PubMed]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Wildsoet, C. F.

J. Tarrant, A. Roorda, and C. F. Wildsoet, “Determining the accommodative response from wavefront aberrations,” J. Vis. 10(5), 4 (2010).
[Crossref] [PubMed]

Williams, D. R.

Winn, B.

B. Winn, A. Bradley, N. C. Strang, P. V. McGraw, and L. N. Thibos, “Reversals of the colour-depth illusion explained by ocular chromatic aberration,” Vision Res. 35(19), 2675–2684 (1995).
[Crossref] [PubMed]

Xu, R.

R. Xu, A. Bradley, and L. N. Thibos, “Impact of primary spherical aberration, spatial frequency and Stiles Crawford apodization on wavefront determined refractive error: a computational study,” Ophthalmic Physiol. Opt. 33(4), 444–455 (2013).
[Crossref] [PubMed]

Ye, M.

Yoon, G.

L. Zheleznyak, H. Jung, and G. Yoon, “Impact of pupil transmission apodization on presbyopic through-focus visual performance with spherical aberration,” Invest. Ophthalmol. Vis. Sci. 55(1), 70–77 (2014).
[Crossref] [PubMed]

N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, M. Ye, A. Bradley, and L. Thibos, “Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16(4), 812–820 (1999).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Zheleznyak, L.

L. Zheleznyak, H. Jung, and G. Yoon, “Impact of pupil transmission apodization on presbyopic through-focus visual performance with spherical aberration,” Invest. Ophthalmol. Vis. Sci. 55(1), 70–77 (2014).
[Crossref] [PubMed]

Am. J. Optom. Arch. Am. Acad. Optom. (1)

E. Freeman, “Pinhole contact lenses,” Am. J. Optom. Arch. Am. Acad. Optom. 29(7), 347–352 (1952).
[Crossref] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

D. A. Atchison, G. Smith, and N. Efron, “The effect of pupil size on visual acuity in uncorrected and corrected myopia,” Am. J. Optom. Physiol. Opt. 56(5), 315–323 (1979).
[Crossref] [PubMed]

Appl. Opt. (1)

Cornea (1)

T. E. Burris, D. K. Holmes-Higgin, and T. A. Silvestrini, “Lamellar intrastromal corneal tattoo for treating iris defects (artificial iris),” Cornea 17(2), 169–173 (1998).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

L. Zheleznyak, H. Jung, and G. Yoon, “Impact of pupil transmission apodization on presbyopic through-focus visual performance with spherical aberration,” Invest. Ophthalmol. Vis. Sci. 55(1), 70–77 (2014).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (2)

C. G. Thompson, K. Fawzy, I. G. Bryce, and B. A. Noble, “Implantation of a black diaphragm intraocular lens for traumatic aniridia,” J. Cataract Refract. Surg. 25(6), 808–813 (1999).
[Crossref] [PubMed]

S. Bonaque-González, P. Bernal-Molina, and N. López-Gil, “Amount of aspheric intraocular lens decentration that maintains the intraocular lens’ optical advantages,” J. Cataract Refract. Surg. 41(5), 1110–1111 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

J. Physiol. (1)

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186(3), 558–578 (1966).
[Crossref] [PubMed]

J. Refract. Surg. (4)

G. O. Waring, “Correction of Presbyopia with a Small Aperture Corneal Inlay,” J. Refract. Surg. 27(11), 842–845 (2011).
[Crossref] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

A. Amigó, S. Bonaque, N. López-Gil, and L. Thibos, “Simulated effect of corneal asphericity increase (Q-factor) as a refractive therapy for presbyopia,” J. Refract. Surg. 28(6), 413–425 (2012).
[Crossref] [PubMed]

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

J. Vis. (5)

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4), 7 (2004) doi:.
[Crossref] [PubMed]

J. Tarrant, A. Roorda, and C. F. Wildsoet, “Determining the accommodative response from wavefront aberrations,” J. Vis. 10(5), 4 (2010).
[Crossref] [PubMed]

A. Ravikumar, J. D. Marsack, H. E. Bedell, Y. Shi, and R. A. Applegate, “Change in visual acuity is well correlated with change in image-quality metrics for both normal and keratoconic wavefront errors,” J. Vis. 13(13), 28 (2013) doi:.
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. E. Applegate, “Metrics of optical quality of the eye,” J. Vis. 4, 1–15 (2004) doi.
[Crossref] [PubMed]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 322–328 (2004) doi:.
[Crossref] [PubMed]

Nature (1)

F. W. Campbell and A. H. Gregory, “Effect of size of pupil on visual acuity,” Nature 187(4743), 1121–1123 (1960).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (2)

R. Xu, A. Bradley, and L. N. Thibos, “Impact of primary spherical aberration, spatial frequency and Stiles Crawford apodization on wavefront determined refractive error: a computational study,” Ophthalmic Physiol. Opt. 33(4), 444–455 (2013).
[Crossref] [PubMed]

D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36(1), 51–59 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Optom. Vis. Sci. (2)

A. Tomlinson, W. H. Ridder, and R. Watanabe, “Blink-induced variations in visual performance with toric soft contact lenses,” Optom. Vis. Sci. 71(9), 545–549 (1994).
[Crossref] [PubMed]

R. Navarro, V. Fernández-Sánchez, and N. López-Gil, “Refractive status in eyes with inhomogeneous or irregular pupils,” Optom. Vis. Sci. 91(2), 221–230 (2014).
[PubMed]

Pattern Recognit. Lett. (1)

C. Revol and M. Jourlin, “A new minimum variance region growing algorithm for image segmentation,” Pattern Recognit. Lett. 18(3), 249–258 (1997).
[Crossref]

Proc. R. Soc. Lond., B (1)

W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. Lond., B 112(778), 428–450 (1933).
[Crossref]

Proc. SPIE (2)

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 305493 (1998).

N. M. Law, R. G. Dekany, C. D. Mackay, A. M. Moore, M. C. Britton, and V. Velur, “Getting lucky with adaptive optics: diffraction-limited resolution in the visible with current AO systems on large and small telescopes,” Proc. SPIE 7014, I152 (2008).

Vision Res. (4)

N. López-Gil, J. F. Castejón-Mochón, and V. Fernández-Sánchez, “Limitations of the ocular wavefront correction with contact lenses,” Vision Res. 49(14), 1729–1737 (2009).
[Crossref] [PubMed]

M. J. Collins, T. Buehren, and D. R. Iskander, “Retinal image quality, reading and myopia,” Vision Res. 46(1-2), 196–215 (2006).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

B. Winn, A. Bradley, N. C. Strang, P. V. McGraw, and L. N. Thibos, “Reversals of the colour-depth illusion explained by ocular chromatic aberration,” Vision Res. 35(19), 2675–2684 (1995).
[Crossref] [PubMed]

Other (4)

V. Narendran, A. R. Kothari, Principles and Practice of Vitreoretinal Surgery, (JP Medical Ltd., 2014), Chap. 1.

T. Williams, The Optical Transfer Function of Imaging Systems (CRC Press, 1998).

C. Chao, D. R. Iskander, M. J. Collins, and M. Bennamoun, “Modelling directionality of photoreceptors in the human eye as a function of monochromatic aberrations, ” in Proceedings of IEEE Conference on Signals, Systems and Computers (IEEE 2000), pp. 343–347.
[Crossref]

H. Helmholtz, Popular Lectures on Scientific Subjects (London: Longman, Green, 1873).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Left: Ocular wavefront (in μm) for a 6 mm pupil diameter (primary astigmatism terms were removed and defocus adjusted to simulate the best spectacle correction). Right: Optimized pupil computed by the algorithm (white area). Data corresponds to the healthy (A) and the keratoconic eye (B).
Fig. 2
Fig. 2 Logarithm radially averaged Modulation Transfer Function (MTF) for the optimized pupil (black) and for the best centered circular pupil (grey, 4 mm pupil diameter). A retinal contrast threshold curve for a retinal illuminance of 500 Td was also included (dotted line). Data corresponds to the healthy (A) and the keratoconic eye (B)), with equivalent areas of circular pupils of 4.08 and 4.07 mm diameter respectively.
Fig. 3
Fig. 3 Monochromatic point spread function for the best centered circular pupil (left, 4 mm pupil diameter) and for the optimized pupil (right). Data corresponds to the healthy (A) and the keratoconic eye (B), with equivalent areas of circular pupils of 4.08 and 4.07 mm diameter respectively.
Fig. 4
Fig. 4 Convolution of the monochromatic PSF with an image of an eye-chart with Landolt Cs with letters visual acuity of 0.1 logMAR. Images correspond to the best centered circular pupil (left, 4 mm pupil diameter) and the optimized pupil (right). Data corresponds to the healthy (A) and the keratoconic eye (B), with equivalent areas of circular pupils of 4.08 and 4.07 mm diameter respectively.
Fig. 5
Fig. 5 VSMTF_ABS of the optimized pupil as a function of the rotation angle around z-axis of the pupil. The horizontal line represents the value of VSMTF_ABS of the best centered circular pupil (4 mm diameter). Data corresponds to the healthy (A) and the keratoconic eye (B), with equivalent areas of circular pupils of 4.08 and 4.07 mm diameter respectively.

Tables (2)

Tables Icon

Table 1 Scheduled aberrations coefficients (microns) for a 6 mm pupil diameter

Tables Icon

Table 2 Results for the optimized pupil and for the best centered circular pupil for each eye. HORMS = high order root mean square.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P(x,y)=A(x,y) e ikW(x,y)
VSMTF_ABS= CS F N MTFd f x d f y

Metrics