Abstract

Resting state cerebral dynamics has been a useful approach to explore the brain’s functional organization. In this study, we employed graph theory to deeply investigate resting state functional connectivity (rs-FC) as measured by near-infrared spectroscopy (NIRS). Our results suggest that network parameters are very similar across time and subjects. We also identified the most frequent connections between brain regions and the main hubs that participate in the spontaneous activity of brain hemodynamics. Similar to previous findings, we verified that symmetrically located brain areas are highly connected. Overall, our results introduce new insights in NIRS-based functional connectivity at rest.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Resting state functional connectivity of the whole head with near-infrared spectroscopy

Rickson C. Mesquita, Maria A. Franceschini, and David A. Boas
Biomed. Opt. Express 1(1) 324-336 (2010)

Dynamic functional connectivity revealed by resting-state functional near-infrared spectroscopy

Zhen Li, Hanli Liu, Xuhong Liao, Jingping Xu, Wenli Liu, Fenghua Tian, Yong He, and Haijing Niu
Biomed. Opt. Express 6(7) 2337-2352 (2015)

Gender-related effects of prefrontal cortex connectivity: a resting-state functional optical tomography study

Ching-Cheng Chuang and Chia-Wei Sun
Biomed. Opt. Express 5(8) 2503-2516 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Rubinov and O. Sporns, “Complex network measures of brain connectivity: Uses and interpretations,” Neuroimage 52(3), 1059–1069 (2010).
    [Crossref] [PubMed]
  2. Q. K. Telesford, S. L. Simpson, J. H. Burdette, S. Hayasaka, and P. J. Laurienti, “The brain as a complex system: using network science as a tool for understanding the brain,” Brain Connect. 1(4), 295–308 (2011).
    [Crossref] [PubMed]
  3. E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nat. Rev. Neurosci. 10(3), 186–198 (2009).
    [Crossref] [PubMed]
  4. D. Fraiman, P. Balenzuela, J. Foss, and D. R. Chialvo, “Ising-like dynamics in large-scale functional brain networks,” Phys. Rev. E. 79(6), 1–10 (2009).
  5. S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, “A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs,” J. Neurosci. 26(1), 63–72 (2006).
    [Crossref] [PubMed]
  6. U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
    [Crossref] [PubMed]
  7. V. M. Eguíluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and A. V. Apkarian, “Scale-free brain functional networks,” Phys. Rev. Lett. 94(1), 018102 (2005).
    [Crossref] [PubMed]
  8. M. P. van den Heuvel, C. J. Stam, M. Boersma, and H. E. Hulshoff Pol, “Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain,” Neuroimage 43(3), 528–539 (2008).
    [Crossref] [PubMed]
  9. A. R. Carter, S. V. Astafiev, C. E. Lang, L. T. Connor, J. Rengachary, M. J. Strube, D. L. W. Pope, G. L. Shulman, and M. Corbetta, “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Ann. Neurol. 67(3), 365–375 (2010).
    [PubMed]
  10. A. G. Garrity, G. D. Pearlson, K. McKiernan, D. Lloyd, K. A. Kiehl, and V. D. Calhoun, “Aberrant “default mode” functional connectivity in schizophrenia,” Am. J. Psychiatry 164(3), 450–457 (2007).
    [Crossref] [PubMed]
  11. M. J. Lowe, M. D. Phillips, J. T. Lurito, D. Mattson, M. Dzemidzic, and V. P. Mathews, “Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results,” Radiology 224(1), 184–192 (2002).
    [Crossref] [PubMed]
  12. D. P. Kennedy, E. Redcay, and E. Courchesne, “Failing to deactivate: resting functional abnormalities in autism,” Proc. Natl. Acad. Sci. U.S.A. 103(21), 8275–8280 (2006).
    [Crossref] [PubMed]
  13. S. Lui, L. Ouyang, Q. Chen, X. Huang, H. Tang, H. Chen, D. Zhou, G. J. Kemp, and Q. Gong, “Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure,” J. Magn. Reson. Imaging 27(6), 1214–1220 (2008).
    [Crossref] [PubMed]
  14. B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med. 34(4), 537–541 (1995).
    [Crossref] [PubMed]
  15. B. Biswal, J. Van Kylen, and J. S. Hyde, “Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps,” NMR Biomed. 10(4-5), 165–170 (1997).
    [Crossref] [PubMed]
  16. D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “Resting-State” Data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
    [PubMed]
  17. M. J. Lowe, M. Dzemidzic, J. T. Lurito, V. P. Mathews, and M. D. Phillips, “Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections,” Neuroimage 12(5), 582–587 (2000).
    [Crossref] [PubMed]
  18. M. J. Lowe, B. J. Mock, and J. A. Sorenson, “Resting state fMRI signal correlations in multi-slice EPI,” Neuroimage 3(3), S257 (1996).
    [Crossref]
  19. M. P. van den Heuvel and H. E. Hulshoff Pol, “Exploring the brain network: a review on resting-state fMRI functional connectivity,” Eur. Neuropsychopharmacol. 20(8), 519–534 (2010).
    [Crossref] [PubMed]
  20. J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, and C. F. Beckmann, “Consistent resting-state networks across healthy subjects,” Proc. Natl. Acad. Sci. U.S.A. 103(37), 13848–13853 (2006).
    [Crossref] [PubMed]
  21. M. De Luca, C. F. Beckmann, N. De Stefano, P. M. Matthews, and S. M. Smith, “fMRI resting state networks define distinct modes of long-distance interactions in the human brain,” Neuroimage 29(4), 1359–1367 (2006).
    [Crossref] [PubMed]
  22. M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003).
    [Crossref] [PubMed]
  23. M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proc. Natl. Acad. Sci. U.S.A. 102(27), 9673–9678 (2005).
    [Crossref] [PubMed]
  24. C. F. Beckmann, M. DeLuca, J. T. Devlin, and S. M. Smith, “Investigations into resting-state connectivity using independent component analysis,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457), 1001–1013 (2005).
    [Crossref] [PubMed]
  25. V. Kiviniemi, J. H. Kantola, J. Jauhiainen, A. Hyvärinen, and O. Tervonen, “Independent component analysis of nondeterministic fMRI signal sources,” Neuroimage 19(2), 253–260 (2003).
    [Crossref] [PubMed]
  26. M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
    [Crossref] [PubMed]
  27. D. M. Cole, S. M. Smith, and C. F. Beckmann, “Advances and pitfalls in the analysis and interpretation of resting-state FMRI data,” Front. Syst. Neurosci. 4(April), 8 (2010).
    [PubMed]
  28. B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
    [Crossref] [PubMed]
  29. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
    [Crossref] [PubMed]
  30. C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
    [Crossref] [PubMed]
  31. H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
    [Crossref] [PubMed]
  32. H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
    [Crossref] [PubMed]
  33. V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
    [Crossref] [PubMed]
  34. H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
    [Crossref] [PubMed]
  35. S. Aydöre, M. K. Mihçak, K. Ciftçi, and A. Akin, “On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals,” IEEE Trans. Biomed. Eng. 57(3), 761–768 (2010).
    [Crossref] [PubMed]
  36. M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
    [Crossref] [PubMed]
  37. W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
    [Crossref] [PubMed]
  38. M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
    [Crossref] [PubMed]
  39. C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
    [PubMed]
  40. F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
    [Crossref] [PubMed]
  41. H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS One 7(9), e45771 (2012).
    [Crossref] [PubMed]
  42. Z. Li, H. Liu, X. Liao, J. Xu, W. Liu, F. Tian, Y. He, and H. Niu, “Dynamic functional connectivity revealed by resting-state functional near-infrared spectroscopy,” Biomed. Opt. Express 6, 15757–15767 (2015).
  43. H. Niu, Z. Li, X. Liao, J. Wang, T. Zhao, N. Shu, X. Zhao, Y. He, and Y. He, “Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study,” PLoS One 8(9), e72425 (2013).
    [Crossref] [PubMed]
  44. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
    [Crossref] [PubMed]
  45. D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Appl. Opt. 45(31), 8142–8151 (2006).
    [Crossref] [PubMed]
  46. T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
    [Crossref] [PubMed]
  47. F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662 (2010).
    [Crossref] [PubMed]
  48. R. J. Cooper, J. Selb, L. Gagnon, D. Phillip, H. W. Schytz, H. K. Iversen, M. Ashina, and D. A. Boas, “A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy,” Front. Neurosci. 6, 147 (2012).
    [Crossref] [PubMed]
  49. F. Carbonell, P. Bellec, and A. Shmuel, “Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks,” Brain Connect. 1(6), 496–510 (2011).
    [Crossref] [PubMed]
  50. S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
    [Crossref] [PubMed]
  51. M. D. Greicius, K. Supekar, V. Menon, and R. F. Dougherty, “Resting-state functional connectivity reflects structural connectivity in the default mode network,” Cereb. Cortex 19(1), 72–78 (2009).
    [Crossref] [PubMed]
  52. T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
    [Crossref] [PubMed]
  53. R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” Neuroimage 31(4), 1536–1548 (2006).
    [Crossref] [PubMed]
  54. J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion,” Neuroimage 59(3), 2142–2154 (2012).
    [Crossref] [PubMed]
  55. J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Methods to detect, characterize, and remove motion artifact in resting state fMRI,” Neuroimage 84, 320–341 (2014).
    [Crossref] [PubMed]
  56. T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
    [Crossref] [PubMed]
  57. M. E. J. Newman, “Scientific collaboration networks. I. Network construction and fundamental results,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1), 016131 (2001).
    [Crossref] [PubMed]
  58. M. E. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with arbitrary degree distributions and their applications,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(2), 026118 (2001).
    [Crossref] [PubMed]
  59. M. E. J. Newman, “Analysis of weighted networks,” Phys. Rev. E. 70(52), 056131 (2004).
  60. A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted networks,” Proc. Natl. Acad. Sci. U.S.A. 101(11), 3747–3752 (2004).
    [Crossref] [PubMed]
  61. L. Tian, C. Meng, Y. Jiang, Q. Tang, S. Wang, X. Xie, X. Fu, C. Jin, F. Zhang, and J. Wang, “Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study,” Prog. Neuropsychopharmacol. Biol. Psychiatry 66, 104–111 (2016).
    [Crossref] [PubMed]
  62. R. Salvador, J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, and E. Bullmore, “Neurophysiological architecture of functional magnetic resonance images of human brain,” Cereb. Cortex 15(9), 1332–1342 (2004).
    [Crossref] [PubMed]
  63. C. J. Stam, “Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network?” Neurosci. Lett. 355(1-2), 25–28 (2004).
    [Crossref] [PubMed]
  64. D. S. Bassett, A. Meyer-Lindenberg, S. Achard, T. Duke, and E. Bullmore, “Adaptive reconfiguration of fractal small-world human brain functional networks,” Proc. Natl. Acad. Sci. U.S.A. 103(51), 19518–19523 (2006).
    [Crossref] [PubMed]
  65. S. Micheloyannis, E. Pachou, C. J. Stam, M. Vourkas, S. Erimaki, and V. Tsirka, “Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis,” Neurosci. Lett. 402(3), 273–277 (2006).
    [Crossref] [PubMed]
  66. Y. Fukui, Y. Ajichi, and E. Okada, “Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models,” Appl. Opt. 42(16), 2881–2887 (2003).
    [Crossref] [PubMed]
  67. C. L. Yasuda, Z. Chen, G. C. Beltramini, A. C. Coan, M. E. Morita, B. Kubota, F. Bergo, C. Beaulieu, F. Cendes, and D. W. Gross, “Aberrant topological patterns of brain structural network in temporal lobe epilepsy,” Epilepsia 56(12), 1992–2002 (2015).
    [Crossref] [PubMed]

2016 (1)

L. Tian, C. Meng, Y. Jiang, Q. Tang, S. Wang, X. Xie, X. Fu, C. Jin, F. Zhang, and J. Wang, “Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study,” Prog. Neuropsychopharmacol. Biol. Psychiatry 66, 104–111 (2016).
[Crossref] [PubMed]

2015 (3)

C. L. Yasuda, Z. Chen, G. C. Beltramini, A. C. Coan, M. E. Morita, B. Kubota, F. Bergo, C. Beaulieu, F. Cendes, and D. W. Gross, “Aberrant topological patterns of brain structural network in temporal lobe epilepsy,” Epilepsia 56(12), 1992–2002 (2015).
[Crossref] [PubMed]

Z. Li, H. Liu, X. Liao, J. Xu, W. Liu, F. Tian, Y. He, and H. Niu, “Dynamic functional connectivity revealed by resting-state functional near-infrared spectroscopy,” Biomed. Opt. Express 6, 15757–15767 (2015).

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

2014 (1)

J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Methods to detect, characterize, and remove motion artifact in resting state fMRI,” Neuroimage 84, 320–341 (2014).
[Crossref] [PubMed]

2013 (1)

H. Niu, Z. Li, X. Liao, J. Wang, T. Zhao, N. Shu, X. Zhao, Y. He, and Y. He, “Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study,” PLoS One 8(9), e72425 (2013).
[Crossref] [PubMed]

2012 (5)

H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS One 7(9), e45771 (2012).
[Crossref] [PubMed]

R. J. Cooper, J. Selb, L. Gagnon, D. Phillip, H. W. Schytz, H. K. Iversen, M. Ashina, and D. A. Boas, “A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy,” Front. Neurosci. 6, 147 (2012).
[Crossref] [PubMed]

J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion,” Neuroimage 59(3), 2142–2154 (2012).
[Crossref] [PubMed]

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

2011 (3)

Q. K. Telesford, S. L. Simpson, J. H. Burdette, S. Hayasaka, and P. J. Laurienti, “The brain as a complex system: using network science as a tool for understanding the brain,” Brain Connect. 1(4), 295–308 (2011).
[Crossref] [PubMed]

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

F. Carbonell, P. Bellec, and A. Shmuel, “Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks,” Brain Connect. 1(6), 496–510 (2011).
[Crossref] [PubMed]

2010 (11)

F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662 (2010).
[Crossref] [PubMed]

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
[Crossref] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

S. Aydöre, M. K. Mihçak, K. Ciftçi, and A. Akin, “On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals,” IEEE Trans. Biomed. Eng. 57(3), 761–768 (2010).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

M. P. van den Heuvel and H. E. Hulshoff Pol, “Exploring the brain network: a review on resting-state fMRI functional connectivity,” Eur. Neuropsychopharmacol. 20(8), 519–534 (2010).
[Crossref] [PubMed]

D. M. Cole, S. M. Smith, and C. F. Beckmann, “Advances and pitfalls in the analysis and interpretation of resting-state FMRI data,” Front. Syst. Neurosci. 4(April), 8 (2010).
[PubMed]

M. Rubinov and O. Sporns, “Complex network measures of brain connectivity: Uses and interpretations,” Neuroimage 52(3), 1059–1069 (2010).
[Crossref] [PubMed]

A. R. Carter, S. V. Astafiev, C. E. Lang, L. T. Connor, J. Rengachary, M. J. Strube, D. L. W. Pope, G. L. Shulman, and M. Corbetta, “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Ann. Neurol. 67(3), 365–375 (2010).
[PubMed]

2009 (5)

E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nat. Rev. Neurosci. 10(3), 186–198 (2009).
[Crossref] [PubMed]

D. Fraiman, P. Balenzuela, J. Foss, and D. R. Chialvo, “Ising-like dynamics in large-scale functional brain networks,” Phys. Rev. E. 79(6), 1–10 (2009).

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[Crossref] [PubMed]

M. D. Greicius, K. Supekar, V. Menon, and R. F. Dougherty, “Resting-state functional connectivity reflects structural connectivity in the default mode network,” Cereb. Cortex 19(1), 72–78 (2009).
[Crossref] [PubMed]

2008 (2)

M. P. van den Heuvel, C. J. Stam, M. Boersma, and H. E. Hulshoff Pol, “Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain,” Neuroimage 43(3), 528–539 (2008).
[Crossref] [PubMed]

S. Lui, L. Ouyang, Q. Chen, X. Huang, H. Tang, H. Chen, D. Zhou, G. J. Kemp, and Q. Gong, “Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure,” J. Magn. Reson. Imaging 27(6), 1214–1220 (2008).
[Crossref] [PubMed]

2007 (2)

A. G. Garrity, G. D. Pearlson, K. McKiernan, D. Lloyd, K. A. Kiehl, and V. D. Calhoun, “Aberrant “default mode” functional connectivity in schizophrenia,” Am. J. Psychiatry 164(3), 450–457 (2007).
[Crossref] [PubMed]

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

2006 (10)

J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, and C. F. Beckmann, “Consistent resting-state networks across healthy subjects,” Proc. Natl. Acad. Sci. U.S.A. 103(37), 13848–13853 (2006).
[Crossref] [PubMed]

M. De Luca, C. F. Beckmann, N. De Stefano, P. M. Matthews, and S. M. Smith, “fMRI resting state networks define distinct modes of long-distance interactions in the human brain,” Neuroimage 29(4), 1359–1367 (2006).
[Crossref] [PubMed]

D. P. Kennedy, E. Redcay, and E. Courchesne, “Failing to deactivate: resting functional abnormalities in autism,” Proc. Natl. Acad. Sci. U.S.A. 103(21), 8275–8280 (2006).
[Crossref] [PubMed]

S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, “A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs,” J. Neurosci. 26(1), 63–72 (2006).
[Crossref] [PubMed]

T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
[Crossref] [PubMed]

R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” Neuroimage 31(4), 1536–1548 (2006).
[Crossref] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[Crossref] [PubMed]

D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Appl. Opt. 45(31), 8142–8151 (2006).
[Crossref] [PubMed]

D. S. Bassett, A. Meyer-Lindenberg, S. Achard, T. Duke, and E. Bullmore, “Adaptive reconfiguration of fractal small-world human brain functional networks,” Proc. Natl. Acad. Sci. U.S.A. 103(51), 19518–19523 (2006).
[Crossref] [PubMed]

S. Micheloyannis, E. Pachou, C. J. Stam, M. Vourkas, S. Erimaki, and V. Tsirka, “Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis,” Neurosci. Lett. 402(3), 273–277 (2006).
[Crossref] [PubMed]

2005 (3)

V. M. Eguíluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and A. V. Apkarian, “Scale-free brain functional networks,” Phys. Rev. Lett. 94(1), 018102 (2005).
[Crossref] [PubMed]

M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proc. Natl. Acad. Sci. U.S.A. 102(27), 9673–9678 (2005).
[Crossref] [PubMed]

C. F. Beckmann, M. DeLuca, J. T. Devlin, and S. M. Smith, “Investigations into resting-state connectivity using independent component analysis,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457), 1001–1013 (2005).
[Crossref] [PubMed]

2004 (5)

R. Salvador, J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, and E. Bullmore, “Neurophysiological architecture of functional magnetic resonance images of human brain,” Cereb. Cortex 15(9), 1332–1342 (2004).
[Crossref] [PubMed]

C. J. Stam, “Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network?” Neurosci. Lett. 355(1-2), 25–28 (2004).
[Crossref] [PubMed]

M. E. J. Newman, “Analysis of weighted networks,” Phys. Rev. E. 70(52), 056131 (2004).

A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted networks,” Proc. Natl. Acad. Sci. U.S.A. 101(11), 3747–3752 (2004).
[Crossref] [PubMed]

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

2003 (3)

Y. Fukui, Y. Ajichi, and E. Okada, “Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models,” Appl. Opt. 42(16), 2881–2887 (2003).
[Crossref] [PubMed]

V. Kiviniemi, J. H. Kantola, J. Jauhiainen, A. Hyvärinen, and O. Tervonen, “Independent component analysis of nondeterministic fMRI signal sources,” Neuroimage 19(2), 253–260 (2003).
[Crossref] [PubMed]

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003).
[Crossref] [PubMed]

2002 (1)

M. J. Lowe, M. D. Phillips, J. T. Lurito, D. Mattson, M. Dzemidzic, and V. P. Mathews, “Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results,” Radiology 224(1), 184–192 (2002).
[Crossref] [PubMed]

2001 (3)

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “Resting-State” Data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

M. E. J. Newman, “Scientific collaboration networks. I. Network construction and fundamental results,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1), 016131 (2001).
[Crossref] [PubMed]

M. E. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with arbitrary degree distributions and their applications,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(2), 026118 (2001).
[Crossref] [PubMed]

2000 (4)

M. J. Lowe, M. Dzemidzic, J. T. Lurito, V. P. Mathews, and M. D. Phillips, “Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections,” Neuroimage 12(5), 582–587 (2000).
[Crossref] [PubMed]

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[Crossref] [PubMed]

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

1998 (1)

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

1997 (1)

B. Biswal, J. Van Kylen, and J. S. Hyde, “Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps,” NMR Biomed. 10(4-5), 165–170 (1997).
[Crossref] [PubMed]

1996 (1)

M. J. Lowe, B. J. Mock, and J. A. Sorenson, “Resting state fMRI signal correlations in multi-slice EPI,” Neuroimage 3(3), S257 (1996).
[Crossref]

1995 (1)

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med. 34(4), 537–541 (1995).
[Crossref] [PubMed]

Achard, S.

S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, “A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs,” J. Neurosci. 26(1), 63–72 (2006).
[Crossref] [PubMed]

D. S. Bassett, A. Meyer-Lindenberg, S. Achard, T. Duke, and E. Bullmore, “Adaptive reconfiguration of fractal small-world human brain functional networks,” Proc. Natl. Acad. Sci. U.S.A. 103(51), 19518–19523 (2006).
[Crossref] [PubMed]

Adeyemo, B.

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

Ajichi, Y.

Akin, A.

S. Aydöre, M. K. Mihçak, K. Ciftçi, and A. Akin, “On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals,” IEEE Trans. Biomed. Eng. 57(3), 761–768 (2010).
[Crossref] [PubMed]

Apkarian, A. V.

V. M. Eguíluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and A. V. Apkarian, “Scale-free brain functional networks,” Phys. Rev. Lett. 94(1), 018102 (2005).
[Crossref] [PubMed]

Arfanakis, K.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “Resting-State” Data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

Ashina, M.

R. J. Cooper, J. Selb, L. Gagnon, D. Phillip, H. W. Schytz, H. K. Iversen, M. Ashina, and D. A. Boas, “A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy,” Front. Neurosci. 6, 147 (2012).
[Crossref] [PubMed]

Astafiev, S. V.

A. R. Carter, S. V. Astafiev, C. E. Lang, L. T. Connor, J. Rengachary, M. J. Strube, D. L. W. Pope, G. L. Shulman, and M. Corbetta, “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Ann. Neurol. 67(3), 365–375 (2010).
[PubMed]

Aydöre, S.

S. Aydöre, M. K. Mihçak, K. Ciftçi, and A. Akin, “On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals,” IEEE Trans. Biomed. Eng. 57(3), 761–768 (2010).
[Crossref] [PubMed]

Balenzuela, P.

D. Fraiman, P. Balenzuela, J. Foss, and D. R. Chialvo, “Ising-like dynamics in large-scale functional brain networks,” Phys. Rev. E. 79(6), 1–10 (2009).

Baliki, M.

V. M. Eguíluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and A. V. Apkarian, “Scale-free brain functional networks,” Phys. Rev. Lett. 94(1), 018102 (2005).
[Crossref] [PubMed]

Bandettini, P. A.

R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” Neuroimage 31(4), 1536–1548 (2006).
[Crossref] [PubMed]

Barkhof, F.

J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, and C. F. Beckmann, “Consistent resting-state networks across healthy subjects,” Proc. Natl. Acad. Sci. U.S.A. 103(37), 13848–13853 (2006).
[Crossref] [PubMed]

Barnes, K. A.

J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion,” Neuroimage 59(3), 2142–2154 (2012).
[Crossref] [PubMed]

Barrat, A.

A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted networks,” Proc. Natl. Acad. Sci. U.S.A. 101(11), 3747–3752 (2004).
[Crossref] [PubMed]

Barthélemy, M.

A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted networks,” Proc. Natl. Acad. Sci. U.S.A. 101(11), 3747–3752 (2004).
[Crossref] [PubMed]

Bassett, D. S.

D. S. Bassett, A. Meyer-Lindenberg, S. Achard, T. Duke, and E. Bullmore, “Adaptive reconfiguration of fractal small-world human brain functional networks,” Proc. Natl. Acad. Sci. U.S.A. 103(51), 19518–19523 (2006).
[Crossref] [PubMed]

Beaulieu, C.

C. L. Yasuda, Z. Chen, G. C. Beltramini, A. C. Coan, M. E. Morita, B. Kubota, F. Bergo, C. Beaulieu, F. Cendes, and D. W. Gross, “Aberrant topological patterns of brain structural network in temporal lobe epilepsy,” Epilepsia 56(12), 1992–2002 (2015).
[Crossref] [PubMed]

Beckmann, C. F.

D. M. Cole, S. M. Smith, and C. F. Beckmann, “Advances and pitfalls in the analysis and interpretation of resting-state FMRI data,” Front. Syst. Neurosci. 4(April), 8 (2010).
[PubMed]

M. De Luca, C. F. Beckmann, N. De Stefano, P. M. Matthews, and S. M. Smith, “fMRI resting state networks define distinct modes of long-distance interactions in the human brain,” Neuroimage 29(4), 1359–1367 (2006).
[Crossref] [PubMed]

J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, and C. F. Beckmann, “Consistent resting-state networks across healthy subjects,” Proc. Natl. Acad. Sci. U.S.A. 103(37), 13848–13853 (2006).
[Crossref] [PubMed]

C. F. Beckmann, M. DeLuca, J. T. Devlin, and S. M. Smith, “Investigations into resting-state connectivity using independent component analysis,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457), 1001–1013 (2005).
[Crossref] [PubMed]

Bellec, P.

F. Carbonell, P. Bellec, and A. Shmuel, “Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks,” Brain Connect. 1(6), 496–510 (2011).
[Crossref] [PubMed]

Beltramini, G. C.

C. L. Yasuda, Z. Chen, G. C. Beltramini, A. C. Coan, M. E. Morita, B. Kubota, F. Bergo, C. Beaulieu, F. Cendes, and D. W. Gross, “Aberrant topological patterns of brain structural network in temporal lobe epilepsy,” Epilepsia 56(12), 1992–2002 (2015).
[Crossref] [PubMed]

Bergo, F.

C. L. Yasuda, Z. Chen, G. C. Beltramini, A. C. Coan, M. E. Morita, B. Kubota, F. Bergo, C. Beaulieu, F. Cendes, and D. W. Gross, “Aberrant topological patterns of brain structural network in temporal lobe epilepsy,” Epilepsia 56(12), 1992–2002 (2015).
[Crossref] [PubMed]

Birn, R. M.

R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” Neuroimage 31(4), 1536–1548 (2006).
[Crossref] [PubMed]

Biswal, B.

B. Biswal, J. Van Kylen, and J. S. Hyde, “Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps,” NMR Biomed. 10(4-5), 165–170 (1997).
[Crossref] [PubMed]

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med. 34(4), 537–541 (1995).
[Crossref] [PubMed]

Biswal, B. B.

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Boas, D. A.

Boersma, M.

M. P. van den Heuvel, C. J. Stam, M. Boersma, and H. E. Hulshoff Pol, “Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain,” Neuroimage 43(3), 528–539 (2008).
[Crossref] [PubMed]

Bramer, S.

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

Braun, U.

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

Buckley, E. M.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Bullmore, E.

E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nat. Rev. Neurosci. 10(3), 186–198 (2009).
[Crossref] [PubMed]

S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, “A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs,” J. Neurosci. 26(1), 63–72 (2006).
[Crossref] [PubMed]

D. S. Bassett, A. Meyer-Lindenberg, S. Achard, T. Duke, and E. Bullmore, “Adaptive reconfiguration of fractal small-world human brain functional networks,” Proc. Natl. Acad. Sci. U.S.A. 103(51), 19518–19523 (2006).
[Crossref] [PubMed]

R. Salvador, J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, and E. Bullmore, “Neurophysiological architecture of functional magnetic resonance images of human brain,” Cereb. Cortex 15(9), 1332–1342 (2004).
[Crossref] [PubMed]

Burdette, J. H.

Q. K. Telesford, S. L. Simpson, J. H. Burdette, S. Hayasaka, and P. J. Laurienti, “The brain as a complex system: using network science as a tool for understanding the brain,” Brain Connect. 1(4), 295–308 (2011).
[Crossref] [PubMed]

Calhoun, V. D.

A. G. Garrity, G. D. Pearlson, K. McKiernan, D. Lloyd, K. A. Kiehl, and V. D. Calhoun, “Aberrant “default mode” functional connectivity in schizophrenia,” Am. J. Psychiatry 164(3), 450–457 (2007).
[Crossref] [PubMed]

Carbonell, F.

F. Carbonell, P. Bellec, and A. Shmuel, “Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks,” Brain Connect. 1(6), 496–510 (2011).
[Crossref] [PubMed]

Carew, J. D.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “Resting-State” Data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

Carter, A. R.

A. R. Carter, S. V. Astafiev, C. E. Lang, L. T. Connor, J. Rengachary, M. J. Strube, D. L. W. Pope, G. L. Shulman, and M. Corbetta, “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Ann. Neurol. 67(3), 365–375 (2010).
[PubMed]

Cecchi, G. A.

V. M. Eguíluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and A. V. Apkarian, “Scale-free brain functional networks,” Phys. Rev. Lett. 94(1), 018102 (2005).
[Crossref] [PubMed]

Cendes, F.

C. L. Yasuda, Z. Chen, G. C. Beltramini, A. C. Coan, M. E. Morita, B. Kubota, F. Bergo, C. Beaulieu, F. Cendes, and D. W. Gross, “Aberrant topological patterns of brain structural network in temporal lobe epilepsy,” Epilepsia 56(12), 1992–2002 (2015).
[Crossref] [PubMed]

Chen, H.

S. Lui, L. Ouyang, Q. Chen, X. Huang, H. Tang, H. Chen, D. Zhou, G. J. Kemp, and Q. Gong, “Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure,” J. Magn. Reson. Imaging 27(6), 1214–1220 (2008).
[Crossref] [PubMed]

Chen, M. Y.

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

Chen, Q.

S. Lui, L. Ouyang, Q. Chen, X. Huang, H. Tang, H. Chen, D. Zhou, G. J. Kemp, and Q. Gong, “Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure,” J. Magn. Reson. Imaging 27(6), 1214–1220 (2008).
[Crossref] [PubMed]

Chen, Z.

C. L. Yasuda, Z. Chen, G. C. Beltramini, A. C. Coan, M. E. Morita, B. Kubota, F. Bergo, C. Beaulieu, F. Cendes, and D. W. Gross, “Aberrant topological patterns of brain structural network in temporal lobe epilepsy,” Epilepsia 56(12), 1992–2002 (2015).
[Crossref] [PubMed]

Chialvo, D. R.

D. Fraiman, P. Balenzuela, J. Foss, and D. R. Chialvo, “Ising-like dynamics in large-scale functional brain networks,” Phys. Rev. E. 79(6), 1–10 (2009).

V. M. Eguíluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and A. V. Apkarian, “Scale-free brain functional networks,” Phys. Rev. Lett. 94(1), 018102 (2005).
[Crossref] [PubMed]

Choe, R.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Ciftçi, K.

S. Aydöre, M. K. Mihçak, K. Ciftçi, and A. Akin, “On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals,” IEEE Trans. Biomed. Eng. 57(3), 761–768 (2010).
[Crossref] [PubMed]

Coan, A. C.

C. L. Yasuda, Z. Chen, G. C. Beltramini, A. C. Coan, M. E. Morita, B. Kubota, F. Bergo, C. Beaulieu, F. Cendes, and D. W. Gross, “Aberrant topological patterns of brain structural network in temporal lobe epilepsy,” Epilepsia 56(12), 1992–2002 (2015).
[Crossref] [PubMed]

Cohen, A. L.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

Cole, D. M.

D. M. Cole, S. M. Smith, and C. F. Beckmann, “Advances and pitfalls in the analysis and interpretation of resting-state FMRI data,” Front. Syst. Neurosci. 4(April), 8 (2010).
[PubMed]

Coleman, M. R.

R. Salvador, J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, and E. Bullmore, “Neurophysiological architecture of functional magnetic resonance images of human brain,” Cereb. Cortex 15(9), 1332–1342 (2004).
[Crossref] [PubMed]

Connor, L. T.

A. R. Carter, S. V. Astafiev, C. E. Lang, L. T. Connor, J. Rengachary, M. J. Strube, D. L. W. Pope, G. L. Shulman, and M. Corbetta, “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Ann. Neurol. 67(3), 365–375 (2010).
[PubMed]

Cooper, R. J.

R. J. Cooper, J. Selb, L. Gagnon, D. Phillip, H. W. Schytz, H. K. Iversen, M. Ashina, and D. A. Boas, “A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy,” Front. Neurosci. 6, 147 (2012).
[Crossref] [PubMed]

Corbetta, M.

A. R. Carter, S. V. Astafiev, C. E. Lang, L. T. Connor, J. Rengachary, M. J. Strube, D. L. W. Pope, G. L. Shulman, and M. Corbetta, “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Ann. Neurol. 67(3), 365–375 (2010).
[PubMed]

M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proc. Natl. Acad. Sci. U.S.A. 102(27), 9673–9678 (2005).
[Crossref] [PubMed]

Cordes, D.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “Resting-State” Data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

Courchesne, E.

D. P. Kennedy, E. Redcay, and E. Courchesne, “Failing to deactivate: resting functional abnormalities in autism,” Proc. Natl. Acad. Sci. U.S.A. 103(21), 8275–8280 (2006).
[Crossref] [PubMed]

Crocker, R.

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

Culver, J. P.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

Damoiseaux, J. S.

J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, and C. F. Beckmann, “Consistent resting-state networks across healthy subjects,” Proc. Natl. Acad. Sci. U.S.A. 103(37), 13848–13853 (2006).
[Crossref] [PubMed]

De Luca, M.

M. De Luca, C. F. Beckmann, N. De Stefano, P. M. Matthews, and S. M. Smith, “fMRI resting state networks define distinct modes of long-distance interactions in the human brain,” Neuroimage 29(4), 1359–1367 (2006).
[Crossref] [PubMed]

De Stefano, N.

M. De Luca, C. F. Beckmann, N. De Stefano, P. M. Matthews, and S. M. Smith, “fMRI resting state networks define distinct modes of long-distance interactions in the human brain,” Neuroimage 29(4), 1359–1367 (2006).
[Crossref] [PubMed]

DeLuca, M.

C. F. Beckmann, M. DeLuca, J. T. Devlin, and S. M. Smith, “Investigations into resting-state connectivity using independent component analysis,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457), 1001–1013 (2005).
[Crossref] [PubMed]

Detre, J. A.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Devlin, J. T.

C. F. Beckmann, M. DeLuca, J. T. Devlin, and S. M. Smith, “Investigations into resting-state connectivity using independent component analysis,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457), 1001–1013 (2005).
[Crossref] [PubMed]

Diamond, J. B.

R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” Neuroimage 31(4), 1536–1548 (2006).
[Crossref] [PubMed]

Diamond, S. G.

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[Crossref] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[Crossref] [PubMed]

Dosenbach, N. U. F.

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

Dougherty, R. F.

M. D. Greicius, K. Supekar, V. Menon, and R. F. Dougherty, “Resting-state functional connectivity reflects structural connectivity in the default mode network,” Cereb. Cortex 19(1), 72–78 (2009).
[Crossref] [PubMed]

du Plessis, A.

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

Duan, L.

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

Duke, T.

D. S. Bassett, A. Meyer-Lindenberg, S. Achard, T. Duke, and E. Bullmore, “Adaptive reconfiguration of fractal small-world human brain functional networks,” Proc. Natl. Acad. Sci. U.S.A. 103(51), 19518–19523 (2006).
[Crossref] [PubMed]

Durduran, T.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Dzemidzic, M.

M. J. Lowe, M. D. Phillips, J. T. Lurito, D. Mattson, M. Dzemidzic, and V. P. Mathews, “Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results,” Radiology 224(1), 184–192 (2002).
[Crossref] [PubMed]

M. J. Lowe, M. Dzemidzic, J. T. Lurito, V. P. Mathews, and M. D. Phillips, “Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections,” Neuroimage 12(5), 582–587 (2000).
[Crossref] [PubMed]

Edlow, B. L.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Eguíluz, V. M.

V. M. Eguíluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and A. V. Apkarian, “Scale-free brain functional networks,” Phys. Rev. Lett. 94(1), 018102 (2005).
[Crossref] [PubMed]

Eichenwald, E.

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

Einhäupl, K.

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

Erimaki, S.

S. Micheloyannis, E. Pachou, C. J. Stam, M. Vourkas, S. Erimaki, and V. Tsirka, “Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis,” Neurosci. Lett. 402(3), 273–277 (2006).
[Crossref] [PubMed]

Erk, S.

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

Esslinger, C.

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

Fantini, S.

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[Crossref] [PubMed]

Filiaci, M.

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[Crossref] [PubMed]

Foss, J.

D. Fraiman, P. Balenzuela, J. Foss, and D. R. Chialvo, “Ising-like dynamics in large-scale functional brain networks,” Phys. Rev. E. 79(6), 1–10 (2009).

Fox, M. D.

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proc. Natl. Acad. Sci. U.S.A. 102(27), 9673–9678 (2005).
[Crossref] [PubMed]

Fraiman, D.

D. Fraiman, P. Balenzuela, J. Foss, and D. R. Chialvo, “Ising-like dynamics in large-scale functional brain networks,” Phys. Rev. E. 79(6), 1–10 (2009).

Franceschini, M. A.

Frangos, S.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Fu, X.

L. Tian, C. Meng, Y. Jiang, Q. Tang, S. Wang, X. Xie, X. Fu, C. Jin, F. Zhang, and J. Wang, “Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study,” Prog. Neuropsychopharmacol. Biol. Psychiatry 66, 104–111 (2016).
[Crossref] [PubMed]

Fukui, Y.

Gagnon, L.

R. J. Cooper, J. Selb, L. Gagnon, D. Phillip, H. W. Schytz, H. K. Iversen, M. Ashina, and D. A. Boas, “A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy,” Front. Neurosci. 6, 147 (2012).
[Crossref] [PubMed]

Garrity, A. G.

A. G. Garrity, G. D. Pearlson, K. McKiernan, D. Lloyd, K. A. Kiehl, and V. D. Calhoun, “Aberrant “default mode” functional connectivity in schizophrenia,” Am. J. Psychiatry 164(3), 450–457 (2007).
[Crossref] [PubMed]

Gilmore, A. W.

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

Go, T.

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

Goetz, A. E.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Gong, Q.

S. Lui, L. Ouyang, Q. Chen, X. Huang, H. Tang, H. Chen, D. Zhou, G. J. Kemp, and Q. Gong, “Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure,” J. Magn. Reson. Imaging 27(6), 1214–1220 (2008).
[Crossref] [PubMed]

Gordon, E. M.

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

Grady, M. S.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Gratton, E.

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[Crossref] [PubMed]

Greenberg, J. H.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Greicius, M. D.

M. D. Greicius, K. Supekar, V. Menon, and R. F. Dougherty, “Resting-state functional connectivity reflects structural connectivity in the default mode network,” Cereb. Cortex 19(1), 72–78 (2009).
[Crossref] [PubMed]

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003).
[Crossref] [PubMed]

Grimm, O.

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

Gross, D. W.

C. L. Yasuda, Z. Chen, G. C. Beltramini, A. C. Coan, M. E. Morita, B. Kubota, F. Bergo, C. Beaulieu, F. Cendes, and D. W. Gross, “Aberrant topological patterns of brain structural network in temporal lobe epilepsy,” Epilepsia 56(12), 1992–2002 (2015).
[Crossref] [PubMed]

Habler, O.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Haddad, L.

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

Harscher, S.

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

Haughton, V. M.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “Resting-State” Data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med. 34(4), 537–541 (1995).
[Crossref] [PubMed]

Hayasaka, S.

Q. K. Telesford, S. L. Simpson, J. H. Burdette, S. Hayasaka, and P. J. Laurienti, “The brain as a complex system: using network science as a tool for understanding the brain,” Brain Connect. 1(4), 295–308 (2011).
[Crossref] [PubMed]

He, Y.

Z. Li, H. Liu, X. Liao, J. Xu, W. Liu, F. Tian, Y. He, and H. Niu, “Dynamic functional connectivity revealed by resting-state functional near-infrared spectroscopy,” Biomed. Opt. Express 6, 15757–15767 (2015).

H. Niu, Z. Li, X. Liao, J. Wang, T. Zhao, N. Shu, X. Zhao, Y. He, and Y. He, “Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study,” PLoS One 8(9), e72425 (2013).
[Crossref] [PubMed]

H. Niu, Z. Li, X. Liao, J. Wang, T. Zhao, N. Shu, X. Zhao, Y. He, and Y. He, “Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study,” PLoS One 8(9), e72425 (2013).
[Crossref] [PubMed]

H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS One 7(9), e45771 (2012).
[Crossref] [PubMed]

Heinz, A.

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

Homae, F.

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

Huang, X.

S. Lui, L. Ouyang, Q. Chen, X. Huang, H. Tang, H. Chen, D. Zhou, G. J. Kemp, and Q. Gong, “Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure,” J. Magn. Reson. Imaging 27(6), 1214–1220 (2008).
[Crossref] [PubMed]

Hulshoff Pol, H. E.

M. P. van den Heuvel and H. E. Hulshoff Pol, “Exploring the brain network: a review on resting-state fMRI functional connectivity,” Eur. Neuropsychopharmacol. 20(8), 519–534 (2010).
[Crossref] [PubMed]

M. P. van den Heuvel, C. J. Stam, M. Boersma, and H. E. Hulshoff Pol, “Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain,” Neuroimage 43(3), 528–539 (2008).
[Crossref] [PubMed]

Huppert, T. J.

Hyde, J. S.

B. Biswal, J. Van Kylen, and J. S. Hyde, “Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps,” NMR Biomed. 10(4-5), 165–170 (1997).
[Crossref] [PubMed]

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med. 34(4), 537–541 (1995).
[Crossref] [PubMed]

Hyvärinen, A.

V. Kiviniemi, J. H. Kantola, J. Jauhiainen, A. Hyvärinen, and O. Tervonen, “Independent component analysis of nondeterministic fMRI signal sources,” Neuroimage 19(2), 253–260 (2003).
[Crossref] [PubMed]

Iversen, H. K.

R. J. Cooper, J. Selb, L. Gagnon, D. Phillip, H. W. Schytz, H. K. Iversen, M. Ashina, and D. A. Boas, “A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy,” Front. Neurosci. 6, 147 (2012).
[Crossref] [PubMed]

Jauhiainen, J.

V. Kiviniemi, J. H. Kantola, J. Jauhiainen, A. Hyvärinen, and O. Tervonen, “Independent component analysis of nondeterministic fMRI signal sources,” Neuroimage 19(2), 253–260 (2003).
[Crossref] [PubMed]

Jiang, Y.

L. Tian, C. Meng, Y. Jiang, Q. Tang, S. Wang, X. Xie, X. Fu, C. Jin, F. Zhang, and J. Wang, “Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study,” Prog. Neuropsychopharmacol. Biol. Psychiatry 66, 104–111 (2016).
[Crossref] [PubMed]

Jin, C.

L. Tian, C. Meng, Y. Jiang, Q. Tang, S. Wang, X. Xie, X. Fu, C. Jin, F. Zhang, and J. Wang, “Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study,” Prog. Neuropsychopharmacol. Biol. Psychiatry 66, 104–111 (2016).
[Crossref] [PubMed]

Joo, S. J.

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

Joseph, D. K.

Kantola, J. H.

V. Kiviniemi, J. H. Kantola, J. Jauhiainen, A. Hyvärinen, and O. Tervonen, “Independent component analysis of nondeterministic fMRI signal sources,” Neuroimage 19(2), 253–260 (2003).
[Crossref] [PubMed]

Kemp, G. J.

S. Lui, L. Ouyang, Q. Chen, X. Huang, H. Tang, H. Chen, D. Zhou, G. J. Kemp, and Q. Gong, “Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure,” J. Magn. Reson. Imaging 27(6), 1214–1220 (2008).
[Crossref] [PubMed]

Kennedy, D. P.

D. P. Kennedy, E. Redcay, and E. Courchesne, “Failing to deactivate: resting functional abnormalities in autism,” Proc. Natl. Acad. Sci. U.S.A. 103(21), 8275–8280 (2006).
[Crossref] [PubMed]

Kiehl, K. A.

A. G. Garrity, G. D. Pearlson, K. McKiernan, D. Lloyd, K. A. Kiehl, and V. D. Calhoun, “Aberrant “default mode” functional connectivity in schizophrenia,” Am. J. Psychiatry 164(3), 450–457 (2007).
[Crossref] [PubMed]

Kim, M. N.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Kirsch, P.

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

Kiviniemi, V.

V. Kiviniemi, J. H. Kantola, J. Jauhiainen, A. Hyvärinen, and O. Tervonen, “Independent component analysis of nondeterministic fMRI signal sources,” Neuroimage 19(2), 253–260 (2003).
[Crossref] [PubMed]

Kleen, M.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Kofke, W. A.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Kohl, M.

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

Konishi, Y.

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

Krasnow, B.

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003).
[Crossref] [PubMed]

Kubota, B.

C. L. Yasuda, Z. Chen, G. C. Beltramini, A. C. Coan, M. E. Morita, B. Kubota, F. Bergo, C. Beaulieu, F. Cendes, and D. W. Gross, “Aberrant topological patterns of brain structural network in temporal lobe epilepsy,” Epilepsia 56(12), 1992–2002 (2015).
[Crossref] [PubMed]

Kuebler, W. M.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Kuhnle, G. E. H.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Lang, C. E.

A. R. Carter, S. V. Astafiev, C. E. Lang, L. T. Connor, J. Rengachary, M. J. Strube, D. L. W. Pope, G. L. Shulman, and M. Corbetta, “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Ann. Neurol. 67(3), 365–375 (2010).
[PubMed]

Laumann, T. O.

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Methods to detect, characterize, and remove motion artifact in resting state fMRI,” Neuroimage 84, 320–341 (2014).
[Crossref] [PubMed]

Laurienti, P. J.

Q. K. Telesford, S. L. Simpson, J. H. Burdette, S. Hayasaka, and P. J. Laurienti, “The brain as a complex system: using network science as a tool for understanding the brain,” Brain Connect. 1(4), 295–308 (2011).
[Crossref] [PubMed]

Levine, J. M.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Li, Z.

Z. Li, H. Liu, X. Liao, J. Xu, W. Liu, F. Tian, Y. He, and H. Niu, “Dynamic functional connectivity revealed by resting-state functional near-infrared spectroscopy,” Biomed. Opt. Express 6, 15757–15767 (2015).

H. Niu, Z. Li, X. Liao, J. Wang, T. Zhao, N. Shu, X. Zhao, Y. He, and Y. He, “Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study,” PLoS One 8(9), e72425 (2013).
[Crossref] [PubMed]

Liao, X.

Z. Li, H. Liu, X. Liao, J. Xu, W. Liu, F. Tian, Y. He, and H. Niu, “Dynamic functional connectivity revealed by resting-state functional near-infrared spectroscopy,” Biomed. Opt. Express 6, 15757–15767 (2015).

H. Niu, Z. Li, X. Liao, J. Wang, T. Zhao, N. Shu, X. Zhao, Y. He, and Y. He, “Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study,” PLoS One 8(9), e72425 (2013).
[Crossref] [PubMed]

Liu, H.

Z. Li, H. Liu, X. Liao, J. Xu, W. Liu, F. Tian, Y. He, and H. Niu, “Dynamic functional connectivity revealed by resting-state functional near-infrared spectroscopy,” Biomed. Opt. Express 6, 15757–15767 (2015).

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

Liu, W.

Z. Li, H. Liu, X. Liao, J. Xu, W. Liu, F. Tian, Y. He, and H. Niu, “Dynamic functional connectivity revealed by resting-state functional near-infrared spectroscopy,” Biomed. Opt. Express 6, 15757–15767 (2015).

Lloyd, D.

A. G. Garrity, G. D. Pearlson, K. McKiernan, D. Lloyd, K. A. Kiehl, and V. D. Calhoun, “Aberrant “default mode” functional connectivity in schizophrenia,” Am. J. Psychiatry 164(3), 450–457 (2007).
[Crossref] [PubMed]

Lowe, M. J.

M. J. Lowe, M. D. Phillips, J. T. Lurito, D. Mattson, M. Dzemidzic, and V. P. Mathews, “Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results,” Radiology 224(1), 184–192 (2002).
[Crossref] [PubMed]

M. J. Lowe, M. Dzemidzic, J. T. Lurito, V. P. Mathews, and M. D. Phillips, “Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections,” Neuroimage 12(5), 582–587 (2000).
[Crossref] [PubMed]

M. J. Lowe, B. J. Mock, and J. A. Sorenson, “Resting state fMRI signal correlations in multi-slice EPI,” Neuroimage 3(3), S257 (1996).
[Crossref]

Lu, C. M.

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Lui, S.

S. Lui, L. Ouyang, Q. Chen, X. Huang, H. Tang, H. Chen, D. Zhou, G. J. Kemp, and Q. Gong, “Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure,” J. Magn. Reson. Imaging 27(6), 1214–1220 (2008).
[Crossref] [PubMed]

Lund, T. E.

T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
[Crossref] [PubMed]

Luo, W. L.

T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
[Crossref] [PubMed]

Lurito, J. T.

M. J. Lowe, M. D. Phillips, J. T. Lurito, D. Mattson, M. Dzemidzic, and V. P. Mathews, “Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results,” Radiology 224(1), 184–192 (2002).
[Crossref] [PubMed]

M. J. Lowe, M. Dzemidzic, J. T. Lurito, V. P. Mathews, and M. D. Phillips, “Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections,” Neuroimage 12(5), 582–587 (2000).
[Crossref] [PubMed]

Ma, S. Y.

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

Madsen, K. H.

T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
[Crossref] [PubMed]

Maloney-Wilensky, E.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Mathews, V. P.

M. J. Lowe, M. D. Phillips, J. T. Lurito, D. Mattson, M. Dzemidzic, and V. P. Mathews, “Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results,” Radiology 224(1), 184–192 (2002).
[Crossref] [PubMed]

M. J. Lowe, M. Dzemidzic, J. T. Lurito, V. P. Mathews, and M. D. Phillips, “Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections,” Neuroimage 12(5), 582–587 (2000).
[Crossref] [PubMed]

Matthews, P. M.

M. De Luca, C. F. Beckmann, N. De Stefano, P. M. Matthews, and S. M. Smith, “fMRI resting state networks define distinct modes of long-distance interactions in the human brain,” Neuroimage 29(4), 1359–1367 (2006).
[Crossref] [PubMed]

Mattson, D.

M. J. Lowe, M. D. Phillips, J. T. Lurito, D. Mattson, M. Dzemidzic, and V. P. Mathews, “Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results,” Radiology 224(1), 184–192 (2002).
[Crossref] [PubMed]

McDermott, K. B.

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

McKiernan, K.

A. G. Garrity, G. D. Pearlson, K. McKiernan, D. Lloyd, K. A. Kiehl, and V. D. Calhoun, “Aberrant “default mode” functional connectivity in schizophrenia,” Am. J. Psychiatry 164(3), 450–457 (2007).
[Crossref] [PubMed]

Meng, C.

L. Tian, C. Meng, Y. Jiang, Q. Tang, S. Wang, X. Xie, X. Fu, C. Jin, F. Zhang, and J. Wang, “Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study,” Prog. Neuropsychopharmacol. Biol. Psychiatry 66, 104–111 (2016).
[Crossref] [PubMed]

Menon, D.

R. Salvador, J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, and E. Bullmore, “Neurophysiological architecture of functional magnetic resonance images of human brain,” Cereb. Cortex 15(9), 1332–1342 (2004).
[Crossref] [PubMed]

Menon, V.

M. D. Greicius, K. Supekar, V. Menon, and R. F. Dougherty, “Resting-state functional connectivity reflects structural connectivity in the default mode network,” Cereb. Cortex 19(1), 72–78 (2009).
[Crossref] [PubMed]

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003).
[Crossref] [PubMed]

Mesquita, R. C.

Messmer, K.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Meyerand, M. E.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “Resting-State” Data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

Meyer-Lindenberg, A.

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

D. S. Bassett, A. Meyer-Lindenberg, S. Achard, T. Duke, and E. Bullmore, “Adaptive reconfiguration of fractal small-world human brain functional networks,” Proc. Natl. Acad. Sci. U.S.A. 103(51), 19518–19523 (2006).
[Crossref] [PubMed]

Michalos, A.

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[Crossref] [PubMed]

Micheloyannis, S.

S. Micheloyannis, E. Pachou, C. J. Stam, M. Vourkas, S. Erimaki, and V. Tsirka, “Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis,” Neurosci. Lett. 402(3), 273–277 (2006).
[Crossref] [PubMed]

Mier, D.

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

Mihçak, M. K.

S. Aydöre, M. K. Mihçak, K. Ciftçi, and A. Akin, “On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals,” IEEE Trans. Biomed. Eng. 57(3), 761–768 (2010).
[Crossref] [PubMed]

Mitra, A.

J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Methods to detect, characterize, and remove motion artifact in resting state fMRI,” Neuroimage 84, 320–341 (2014).
[Crossref] [PubMed]

Mock, B. J.

M. J. Lowe, B. J. Mock, and J. A. Sorenson, “Resting state fMRI signal correlations in multi-slice EPI,” Neuroimage 3(3), S257 (1996).
[Crossref]

Mohnke, S.

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

Morita, M. E.

C. L. Yasuda, Z. Chen, G. C. Beltramini, A. C. Coan, M. E. Morita, B. Kubota, F. Bergo, C. Beaulieu, F. Cendes, and D. W. Gross, “Aberrant topological patterns of brain structural network in temporal lobe epilepsy,” Epilepsia 56(12), 1992–2002 (2015).
[Crossref] [PubMed]

Moritz, C. H.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “Resting-State” Data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

Moss, H. E.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Muehlemann, T.

F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662 (2010).
[Crossref] [PubMed]

Mumford, J. A.

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

Nakano, T.

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

Nelson, S. M.

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

Neufang, M.

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

Newman, M. E.

M. E. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with arbitrary degree distributions and their applications,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(2), 026118 (2001).
[Crossref] [PubMed]

Newman, M. E. J.

M. E. J. Newman, “Analysis of weighted networks,” Phys. Rev. E. 70(52), 056131 (2004).

M. E. J. Newman, “Scientific collaboration networks. I. Network construction and fundamental results,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1), 016131 (2001).
[Crossref] [PubMed]

Nichols, T. E.

T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
[Crossref] [PubMed]

Niu, H.

Z. Li, H. Liu, X. Liao, J. Xu, W. Liu, F. Tian, Y. He, and H. Niu, “Dynamic functional connectivity revealed by resting-state functional near-infrared spectroscopy,” Biomed. Opt. Express 6, 15757–15767 (2015).

H. Niu, Z. Li, X. Liao, J. Wang, T. Zhao, N. Shu, X. Zhao, Y. He, and Y. He, “Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study,” PLoS One 8(9), e72425 (2013).
[Crossref] [PubMed]

H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS One 7(9), e45771 (2012).
[Crossref] [PubMed]

Obrig, H.

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

Okada, E.

Otobe, T.

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

Ouyang, L.

S. Lui, L. Ouyang, Q. Chen, X. Huang, H. Tang, H. Chen, D. Zhou, G. J. Kemp, and Q. Gong, “Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure,” J. Magn. Reson. Imaging 27(6), 1214–1220 (2008).
[Crossref] [PubMed]

Pachou, E.

S. Micheloyannis, E. Pachou, C. J. Stam, M. Vourkas, S. Erimaki, and V. Tsirka, “Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis,” Neurosci. Lett. 402(3), 273–277 (2006).
[Crossref] [PubMed]

Pastor-Satorras, R.

A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted networks,” Proc. Natl. Acad. Sci. U.S.A. 101(11), 3747–3752 (2004).
[Crossref] [PubMed]

Pearlson, G. D.

A. G. Garrity, G. D. Pearlson, K. McKiernan, D. Lloyd, K. A. Kiehl, and V. D. Calhoun, “Aberrant “default mode” functional connectivity in schizophrenia,” Am. J. Psychiatry 164(3), 450–457 (2007).
[Crossref] [PubMed]

Peng, D. L.

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Petersen, S. E.

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Methods to detect, characterize, and remove motion artifact in resting state fMRI,” Neuroimage 84, 320–341 (2014).
[Crossref] [PubMed]

J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion,” Neuroimage 59(3), 2142–2154 (2012).
[Crossref] [PubMed]

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

Phillip, D.

R. J. Cooper, J. Selb, L. Gagnon, D. Phillip, H. W. Schytz, H. K. Iversen, M. Ashina, and D. A. Boas, “A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy,” Front. Neurosci. 6, 147 (2012).
[Crossref] [PubMed]

Phillips, M. D.

M. J. Lowe, M. D. Phillips, J. T. Lurito, D. Mattson, M. Dzemidzic, and V. P. Mathews, “Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results,” Radiology 224(1), 184–192 (2002).
[Crossref] [PubMed]

M. J. Lowe, M. Dzemidzic, J. T. Lurito, V. P. Mathews, and M. D. Phillips, “Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections,” Neuroimage 12(5), 582–587 (2000).
[Crossref] [PubMed]

Pickard, J. D.

R. Salvador, J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, and E. Bullmore, “Neurophysiological architecture of functional magnetic resonance images of human brain,” Cereb. Cortex 15(9), 1332–1342 (2004).
[Crossref] [PubMed]

Plichta, M. M.

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

Poldrack, R. A.

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

Pope, D. L. W.

A. R. Carter, S. V. Astafiev, C. E. Lang, L. T. Connor, J. Rengachary, M. J. Strube, D. L. W. Pope, G. L. Shulman, and M. Corbetta, “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Ann. Neurol. 67(3), 365–375 (2010).
[PubMed]

Power, J. D.

J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Methods to detect, characterize, and remove motion artifact in resting state fMRI,” Neuroimage 84, 320–341 (2014).
[Crossref] [PubMed]

J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion,” Neuroimage 59(3), 2142–2154 (2012).
[Crossref] [PubMed]

Quigley, M. A.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “Resting-State” Data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

Raichle, M. E.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proc. Natl. Acad. Sci. U.S.A. 102(27), 9673–9678 (2005).
[Crossref] [PubMed]

Redcay, E.

D. P. Kennedy, E. Redcay, and E. Courchesne, “Failing to deactivate: resting functional abnormalities in autism,” Proc. Natl. Acad. Sci. U.S.A. 103(21), 8275–8280 (2006).
[Crossref] [PubMed]

Reiss, A. L.

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003).
[Crossref] [PubMed]

Rengachary, J.

A. R. Carter, S. V. Astafiev, C. E. Lang, L. T. Connor, J. Rengachary, M. J. Strube, D. L. W. Pope, G. L. Shulman, and M. Corbetta, “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Ann. Neurol. 67(3), 365–375 (2010).
[PubMed]

Rombouts, S. A. R. B.

J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, and C. F. Beckmann, “Consistent resting-state networks across healthy subjects,” Proc. Natl. Acad. Sci. U.S.A. 103(37), 13848–13853 (2006).
[Crossref] [PubMed]

Rubinov, M.

M. Rubinov and O. Sporns, “Complex network measures of brain connectivity: Uses and interpretations,” Neuroimage 52(3), 1059–1069 (2010).
[Crossref] [PubMed]

Sadato, N.

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

Salvador, R.

S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, “A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs,” J. Neurosci. 26(1), 63–72 (2006).
[Crossref] [PubMed]

R. Salvador, J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, and E. Bullmore, “Neurophysiological architecture of functional magnetic resonance images of human brain,” Cereb. Cortex 15(9), 1332–1342 (2004).
[Crossref] [PubMed]

Sasai, S.

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

Sasaki, A. T.

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

Sauer, C.

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

Saul, J. P.

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

Scheltens, P.

J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, and C. F. Beckmann, “Consistent resting-state networks across healthy subjects,” Proc. Natl. Acad. Sci. U.S.A. 103(37), 13848–13853 (2006).
[Crossref] [PubMed]

Schlaggar, B. L.

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Methods to detect, characterize, and remove motion artifact in resting state fMRI,” Neuroimage 84, 320–341 (2014).
[Crossref] [PubMed]

J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion,” Neuroimage 59(3), 2142–2154 (2012).
[Crossref] [PubMed]

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

Scholkmann, F.

F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662 (2010).
[Crossref] [PubMed]

Schytz, H. W.

R. J. Cooper, J. Selb, L. Gagnon, D. Phillip, H. W. Schytz, H. K. Iversen, M. Ashina, and D. A. Boas, “A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy,” Front. Neurosci. 6, 147 (2012).
[Crossref] [PubMed]

Sckell, A.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Seiferth, N.

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

Selb, J.

R. J. Cooper, J. Selb, L. Gagnon, D. Phillip, H. W. Schytz, H. K. Iversen, M. Ashina, and D. A. Boas, “A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy,” Front. Neurosci. 6, 147 (2012).
[Crossref] [PubMed]

Shmuel, A.

F. Carbonell, P. Bellec, and A. Shmuel, “Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks,” Brain Connect. 1(6), 496–510 (2011).
[Crossref] [PubMed]

Shu, N.

H. Niu, Z. Li, X. Liao, J. Wang, T. Zhao, N. Shu, X. Zhao, Y. He, and Y. He, “Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study,” PLoS One 8(9), e72425 (2013).
[Crossref] [PubMed]

H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS One 7(9), e45771 (2012).
[Crossref] [PubMed]

Shulman, G. L.

A. R. Carter, S. V. Astafiev, C. E. Lang, L. T. Connor, J. Rengachary, M. J. Strube, D. L. W. Pope, G. L. Shulman, and M. Corbetta, “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Ann. Neurol. 67(3), 365–375 (2010).
[PubMed]

Sidaros, K.

T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
[Crossref] [PubMed]

Simon, M.

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

Simpson, S. L.

Q. K. Telesford, S. L. Simpson, J. H. Burdette, S. Hayasaka, and P. J. Laurienti, “The brain as a complex system: using network science as a tool for understanding the brain,” Brain Connect. 1(4), 295–308 (2011).
[Crossref] [PubMed]

Smith, M. A.

R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” Neuroimage 31(4), 1536–1548 (2006).
[Crossref] [PubMed]

Smith, S. M.

D. M. Cole, S. M. Smith, and C. F. Beckmann, “Advances and pitfalls in the analysis and interpretation of resting-state FMRI data,” Front. Syst. Neurosci. 4(April), 8 (2010).
[PubMed]

M. De Luca, C. F. Beckmann, N. De Stefano, P. M. Matthews, and S. M. Smith, “fMRI resting state networks define distinct modes of long-distance interactions in the human brain,” Neuroimage 29(4), 1359–1367 (2006).
[Crossref] [PubMed]

J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, and C. F. Beckmann, “Consistent resting-state networks across healthy subjects,” Proc. Natl. Acad. Sci. U.S.A. 103(37), 13848–13853 (2006).
[Crossref] [PubMed]

C. F. Beckmann, M. DeLuca, J. T. Devlin, and S. M. Smith, “Investigations into resting-state connectivity using independent component analysis,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457), 1001–1013 (2005).
[Crossref] [PubMed]

Snyder, A. Z.

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Methods to detect, characterize, and remove motion artifact in resting state fMRI,” Neuroimage 84, 320–341 (2014).
[Crossref] [PubMed]

J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion,” Neuroimage 59(3), 2142–2154 (2012).
[Crossref] [PubMed]

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proc. Natl. Acad. Sci. U.S.A. 102(27), 9673–9678 (2005).
[Crossref] [PubMed]

Sobh, J.

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

Sorenson, J. A.

M. J. Lowe, B. J. Mock, and J. A. Sorenson, “Resting state fMRI signal correlations in multi-slice EPI,” Neuroimage 3(3), S257 (1996).
[Crossref]

Spichtig, S.

F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662 (2010).
[Crossref] [PubMed]

Sporns, O.

M. Rubinov and O. Sporns, “Complex network measures of brain connectivity: Uses and interpretations,” Neuroimage 52(3), 1059–1069 (2010).
[Crossref] [PubMed]

E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nat. Rev. Neurosci. 10(3), 186–198 (2009).
[Crossref] [PubMed]

Stam, C. J.

M. P. van den Heuvel, C. J. Stam, M. Boersma, and H. E. Hulshoff Pol, “Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain,” Neuroimage 43(3), 528–539 (2008).
[Crossref] [PubMed]

J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, and C. F. Beckmann, “Consistent resting-state networks across healthy subjects,” Proc. Natl. Acad. Sci. U.S.A. 103(37), 13848–13853 (2006).
[Crossref] [PubMed]

S. Micheloyannis, E. Pachou, C. J. Stam, M. Vourkas, S. Erimaki, and V. Tsirka, “Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis,” Neurosci. Lett. 402(3), 273–277 (2006).
[Crossref] [PubMed]

C. J. Stam, “Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network?” Neurosci. Lett. 355(1-2), 25–28 (2004).
[Crossref] [PubMed]

Steinbrink, J.

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

Strogatz, S. H.

M. E. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with arbitrary degree distributions and their applications,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(2), 026118 (2001).
[Crossref] [PubMed]

Strube, M. J.

A. R. Carter, S. V. Astafiev, C. E. Lang, L. T. Connor, J. Rengachary, M. J. Strube, D. L. W. Pope, G. L. Shulman, and M. Corbetta, “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Ann. Neurol. 67(3), 365–375 (2010).
[PubMed]

Suckling, J.

S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, “A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs,” J. Neurosci. 26(1), 63–72 (2006).
[Crossref] [PubMed]

R. Salvador, J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, and E. Bullmore, “Neurophysiological architecture of functional magnetic resonance images of human brain,” Cereb. Cortex 15(9), 1332–1342 (2004).
[Crossref] [PubMed]

Supekar, K.

M. D. Greicius, K. Supekar, V. Menon, and R. F. Dougherty, “Resting-state functional connectivity reflects structural connectivity in the default mode network,” Cereb. Cortex 19(1), 72–78 (2009).
[Crossref] [PubMed]

Taga, G.

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

Tanabe, H. C.

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

Tang, H.

S. Lui, L. Ouyang, Q. Chen, X. Huang, H. Tang, H. Chen, D. Zhou, G. J. Kemp, and Q. Gong, “Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure,” J. Magn. Reson. Imaging 27(6), 1214–1220 (2008).
[Crossref] [PubMed]

Tang, Q.

L. Tian, C. Meng, Y. Jiang, Q. Tang, S. Wang, X. Xie, X. Fu, C. Jin, F. Zhang, and J. Wang, “Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study,” Prog. Neuropsychopharmacol. Biol. Psychiatry 66, 104–111 (2016).
[Crossref] [PubMed]

Telesford, Q. K.

Q. K. Telesford, S. L. Simpson, J. H. Burdette, S. Hayasaka, and P. J. Laurienti, “The brain as a complex system: using network science as a tool for understanding the brain,” Brain Connect. 1(4), 295–308 (2011).
[Crossref] [PubMed]

Terborg, C.

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

Tervonen, O.

V. Kiviniemi, J. H. Kantola, J. Jauhiainen, A. Hyvärinen, and O. Tervonen, “Independent component analysis of nondeterministic fMRI signal sources,” Neuroimage 19(2), 253–260 (2003).
[Crossref] [PubMed]

Tian, F.

Z. Li, H. Liu, X. Liao, J. Xu, W. Liu, F. Tian, Y. He, and H. Niu, “Dynamic functional connectivity revealed by resting-state functional near-infrared spectroscopy,” Biomed. Opt. Express 6, 15757–15767 (2015).

Tian, L.

L. Tian, C. Meng, Y. Jiang, Q. Tang, S. Wang, X. Xie, X. Fu, C. Jin, F. Zhang, and J. Wang, “Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study,” Prog. Neuropsychopharmacol. Biol. Psychiatry 66, 104–111 (2016).
[Crossref] [PubMed]

Toronov, V.

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[Crossref] [PubMed]

Tsirka, V.

S. Micheloyannis, E. Pachou, C. J. Stam, M. Vourkas, S. Erimaki, and V. Tsirka, “Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis,” Neurosci. Lett. 402(3), 273–277 (2006).
[Crossref] [PubMed]

Tsuji, M.

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

Turski, P. A.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “Resting-State” Data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

van den Heuvel, M. P.

M. P. van den Heuvel and H. E. Hulshoff Pol, “Exploring the brain network: a review on resting-state fMRI functional connectivity,” Eur. Neuropsychopharmacol. 20(8), 519–534 (2010).
[Crossref] [PubMed]

M. P. van den Heuvel, C. J. Stam, M. Boersma, and H. E. Hulshoff Pol, “Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain,” Neuroimage 43(3), 528–539 (2008).
[Crossref] [PubMed]

Van Essen, D. C.

M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proc. Natl. Acad. Sci. U.S.A. 102(27), 9673–9678 (2005).
[Crossref] [PubMed]

Van Kylen, J.

B. Biswal, J. Van Kylen, and J. S. Hyde, “Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps,” NMR Biomed. 10(4-5), 165–170 (1997).
[Crossref] [PubMed]

Vespignani, A.

A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted networks,” Proc. Natl. Acad. Sci. U.S.A. 101(11), 3747–3752 (2004).
[Crossref] [PubMed]

Villringer, A.

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

Vincent, J. L.

M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proc. Natl. Acad. Sci. U.S.A. 102(27), 9673–9678 (2005).
[Crossref] [PubMed]

Volpe, J. J.

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

Vourkas, M.

S. Micheloyannis, E. Pachou, C. J. Stam, M. Vourkas, S. Erimaki, and V. Tsirka, “Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis,” Neurosci. Lett. 402(3), 273–277 (2006).
[Crossref] [PubMed]

Walter, H.

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

Wang, J.

L. Tian, C. Meng, Y. Jiang, Q. Tang, S. Wang, X. Xie, X. Fu, C. Jin, F. Zhang, and J. Wang, “Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study,” Prog. Neuropsychopharmacol. Biol. Psychiatry 66, 104–111 (2016).
[Crossref] [PubMed]

H. Niu, Z. Li, X. Liao, J. Wang, T. Zhao, N. Shu, X. Zhao, Y. He, and Y. He, “Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study,” PLoS One 8(9), e72425 (2013).
[Crossref] [PubMed]

H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS One 7(9), e45771 (2012).
[Crossref] [PubMed]

Wang, S.

L. Tian, C. Meng, Y. Jiang, Q. Tang, S. Wang, X. Xie, X. Fu, C. Jin, F. Zhang, and J. Wang, “Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study,” Prog. Neuropsychopharmacol. Biol. Psychiatry 66, 104–111 (2016).
[Crossref] [PubMed]

Watanabe, H.

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

Watts, D. J.

M. E. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with arbitrary degree distributions and their applications,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(2), 026118 (2001).
[Crossref] [PubMed]

Welte, M.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Wenzel, R.

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

Whitcher, B.

S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, “A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs,” J. Neurosci. 26(1), 63–72 (2006).
[Crossref] [PubMed]

White, B. R.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

Witte, O. W.

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

Wolf, M.

F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662 (2010).
[Crossref] [PubMed]

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[Crossref] [PubMed]

Wolf, R. L.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Xie, X.

L. Tian, C. Meng, Y. Jiang, Q. Tang, S. Wang, X. Xie, X. Fu, C. Jin, F. Zhang, and J. Wang, “Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study,” Prog. Neuropsychopharmacol. Biol. Psychiatry 66, 104–111 (2016).
[Crossref] [PubMed]

Xu, J.

Z. Li, H. Liu, X. Liao, J. Xu, W. Liu, F. Tian, Y. He, and H. Niu, “Dynamic functional connectivity revealed by resting-state functional near-infrared spectroscopy,” Biomed. Opt. Express 6, 15757–15767 (2015).

Yasuda, C. L.

C. L. Yasuda, Z. Chen, G. C. Beltramini, A. C. Coan, M. E. Morita, B. Kubota, F. Bergo, C. Beaulieu, F. Cendes, and D. W. Gross, “Aberrant topological patterns of brain structural network in temporal lobe epilepsy,” Epilepsia 56(12), 1992–2002 (2015).
[Crossref] [PubMed]

Yetkin, F. Z.

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med. 34(4), 537–541 (1995).
[Crossref] [PubMed]

Yodh, A. G.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Yu, G.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Zang, Y. F.

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

Zhang, F.

L. Tian, C. Meng, Y. Jiang, Q. Tang, S. Wang, X. Xie, X. Fu, C. Jin, F. Zhang, and J. Wang, “Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study,” Prog. Neuropsychopharmacol. Biol. Psychiatry 66, 104–111 (2016).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

Zhang, Y. J.

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Zhao, T.

H. Niu, Z. Li, X. Liao, J. Wang, T. Zhao, N. Shu, X. Zhao, Y. He, and Y. He, “Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study,” PLoS One 8(9), e72425 (2013).
[Crossref] [PubMed]

H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS One 7(9), e45771 (2012).
[Crossref] [PubMed]

Zhao, X.

H. Niu, Z. Li, X. Liao, J. Wang, T. Zhao, N. Shu, X. Zhao, Y. He, and Y. He, “Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study,” PLoS One 8(9), e72425 (2013).
[Crossref] [PubMed]

Zhou, C.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Zhou, D.

S. Lui, L. Ouyang, Q. Chen, X. Huang, H. Tang, H. Chen, D. Zhou, G. J. Kemp, and Q. Gong, “Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure,” J. Magn. Reson. Imaging 27(6), 1214–1220 (2008).
[Crossref] [PubMed]

Zhu, C. Z.

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

AJNR Am. J. Neuroradiol. (1)

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “Resting-State” Data,” AJNR Am. J. Neuroradiol. 22(7), 1326–1333 (2001).
[PubMed]

Am. J. Psychiatry (1)

A. G. Garrity, G. D. Pearlson, K. McKiernan, D. Lloyd, K. A. Kiehl, and V. D. Calhoun, “Aberrant “default mode” functional connectivity in schizophrenia,” Am. J. Psychiatry 164(3), 450–457 (2007).
[Crossref] [PubMed]

Ann. Neurol. (1)

A. R. Carter, S. V. Astafiev, C. E. Lang, L. T. Connor, J. Rengachary, M. J. Strube, D. L. W. Pope, G. L. Shulman, and M. Corbetta, “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Ann. Neurol. 67(3), 365–375 (2010).
[PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (2)

Z. Li, H. Liu, X. Liao, J. Xu, W. Liu, F. Tian, Y. He, and H. Niu, “Dynamic functional connectivity revealed by resting-state functional near-infrared spectroscopy,” Biomed. Opt. Express 6, 15757–15767 (2015).

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
[Crossref] [PubMed]

Brain Connect. (2)

Q. K. Telesford, S. L. Simpson, J. H. Burdette, S. Hayasaka, and P. J. Laurienti, “The brain as a complex system: using network science as a tool for understanding the brain,” Brain Connect. 1(4), 295–308 (2011).
[Crossref] [PubMed]

F. Carbonell, P. Bellec, and A. Shmuel, “Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks,” Brain Connect. 1(6), 496–510 (2011).
[Crossref] [PubMed]

Cereb. Cortex (2)

R. Salvador, J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, and E. Bullmore, “Neurophysiological architecture of functional magnetic resonance images of human brain,” Cereb. Cortex 15(9), 1332–1342 (2004).
[Crossref] [PubMed]

M. D. Greicius, K. Supekar, V. Menon, and R. F. Dougherty, “Resting-state functional connectivity reflects structural connectivity in the default mode network,” Cereb. Cortex 19(1), 72–78 (2009).
[Crossref] [PubMed]

Epilepsia (1)

C. L. Yasuda, Z. Chen, G. C. Beltramini, A. C. Coan, M. E. Morita, B. Kubota, F. Bergo, C. Beaulieu, F. Cendes, and D. W. Gross, “Aberrant topological patterns of brain structural network in temporal lobe epilepsy,” Epilepsia 56(12), 1992–2002 (2015).
[Crossref] [PubMed]

Eur. Neuropsychopharmacol. (1)

M. P. van den Heuvel and H. E. Hulshoff Pol, “Exploring the brain network: a review on resting-state fMRI functional connectivity,” Eur. Neuropsychopharmacol. 20(8), 519–534 (2010).
[Crossref] [PubMed]

Front. Neurosci. (1)

R. J. Cooper, J. Selb, L. Gagnon, D. Phillip, H. W. Schytz, H. K. Iversen, M. Ashina, and D. A. Boas, “A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy,” Front. Neurosci. 6, 147 (2012).
[Crossref] [PubMed]

Front. Syst. Neurosci. (1)

D. M. Cole, S. M. Smith, and C. F. Beckmann, “Advances and pitfalls in the analysis and interpretation of resting-state FMRI data,” Front. Syst. Neurosci. 4(April), 8 (2010).
[PubMed]

IEEE Trans. Biomed. Eng. (1)

S. Aydöre, M. K. Mihçak, K. Ciftçi, and A. Akin, “On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals,” IEEE Trans. Biomed. Eng. 57(3), 761–768 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

J. Magn. Reson. Imaging (1)

S. Lui, L. Ouyang, Q. Chen, X. Huang, H. Tang, H. Chen, D. Zhou, G. J. Kemp, and Q. Gong, “Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure,” J. Magn. Reson. Imaging 27(6), 1214–1220 (2008).
[Crossref] [PubMed]

J. Neurol. Neurosurg. Psychiatry (1)

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

J. Neurosci. (2)

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, “A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs,” J. Neurosci. 26(1), 63–72 (2006).
[Crossref] [PubMed]

J. Neurosci. Methods (1)

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Magn. Reson. Med. (1)

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med. 34(4), 537–541 (1995).
[Crossref] [PubMed]

Med. Phys. (1)

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (2)

E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nat. Rev. Neurosci. 10(3), 186–198 (2009).
[Crossref] [PubMed]

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

Neurocrit. Care (1)

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Neuroimage (16)

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[Crossref] [PubMed]

H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage 51(3), 1150–1161 (2010).
[Crossref] [PubMed]

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage 55(2), 607–615 (2011).
[Crossref] [PubMed]

M. De Luca, C. F. Beckmann, N. De Stefano, P. M. Matthews, and S. M. Smith, “fMRI resting state networks define distinct modes of long-distance interactions in the human brain,” Neuroimage 29(4), 1359–1367 (2006).
[Crossref] [PubMed]

V. Kiviniemi, J. H. Kantola, J. Jauhiainen, A. Hyvärinen, and O. Tervonen, “Independent component analysis of nondeterministic fMRI signal sources,” Neuroimage 19(2), 253–260 (2003).
[Crossref] [PubMed]

U. Braun, M. M. Plichta, C. Esslinger, C. Sauer, L. Haddad, O. Grimm, D. Mier, S. Mohnke, A. Heinz, S. Erk, H. Walter, N. Seiferth, P. Kirsch, and A. Meyer-Lindenberg, “Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures,” Neuroimage 59(2), 1404–1412 (2012).
[Crossref] [PubMed]

M. Rubinov and O. Sporns, “Complex network measures of brain connectivity: Uses and interpretations,” Neuroimage 52(3), 1059–1069 (2010).
[Crossref] [PubMed]

M. P. van den Heuvel, C. J. Stam, M. Boersma, and H. E. Hulshoff Pol, “Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain,” Neuroimage 43(3), 528–539 (2008).
[Crossref] [PubMed]

M. J. Lowe, M. Dzemidzic, J. T. Lurito, V. P. Mathews, and M. D. Phillips, “Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections,” Neuroimage 12(5), 582–587 (2000).
[Crossref] [PubMed]

M. J. Lowe, B. J. Mock, and J. A. Sorenson, “Resting state fMRI signal correlations in multi-slice EPI,” Neuroimage 3(3), S257 (1996).
[Crossref]

T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: does modelling have an impact?” Neuroimage 29(1), 54–66 (2006).
[Crossref] [PubMed]

R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” Neuroimage 31(4), 1536–1548 (2006).
[Crossref] [PubMed]

J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion,” Neuroimage 59(3), 2142–2154 (2012).
[Crossref] [PubMed]

J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Methods to detect, characterize, and remove motion artifact in resting state fMRI,” Neuroimage 84, 320–341 (2014).
[Crossref] [PubMed]

S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage 63(1), 179–193 (2012).
[Crossref] [PubMed]

Neuron (1)

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack, and S. E. Petersen, “Functional system and areal organization of a highly sampled individual human brain,” Neuron 87(3), 657–670 (2015).
[Crossref] [PubMed]

Neurosci. Lett. (2)

C. J. Stam, “Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network?” Neurosci. Lett. 355(1-2), 25–28 (2004).
[Crossref] [PubMed]

S. Micheloyannis, E. Pachou, C. J. Stam, M. Vourkas, S. Erimaki, and V. Tsirka, “Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis,” Neurosci. Lett. 402(3), 273–277 (2006).
[Crossref] [PubMed]

NMR Biomed. (1)

B. Biswal, J. Van Kylen, and J. S. Hyde, “Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps,” NMR Biomed. 10(4-5), 165–170 (1997).
[Crossref] [PubMed]

Pediatrics (1)

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

C. F. Beckmann, M. DeLuca, J. T. Devlin, and S. M. Smith, “Investigations into resting-state connectivity using independent component analysis,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457), 1001–1013 (2005).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

M. E. J. Newman, “Scientific collaboration networks. I. Network construction and fundamental results,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1), 016131 (2001).
[Crossref] [PubMed]

M. E. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with arbitrary degree distributions and their applications,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(2), 026118 (2001).
[Crossref] [PubMed]

Phys. Rev. E. (2)

M. E. J. Newman, “Analysis of weighted networks,” Phys. Rev. E. 70(52), 056131 (2004).

D. Fraiman, P. Balenzuela, J. Foss, and D. R. Chialvo, “Ising-like dynamics in large-scale functional brain networks,” Phys. Rev. E. 79(6), 1–10 (2009).

Phys. Rev. Lett. (1)

V. M. Eguíluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and A. V. Apkarian, “Scale-free brain functional networks,” Phys. Rev. Lett. 94(1), 018102 (2005).
[Crossref] [PubMed]

Physiol. Meas. (1)

F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31(5), 649–662 (2010).
[Crossref] [PubMed]

PLoS One (2)

H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS One 7(9), e45771 (2012).
[Crossref] [PubMed]

H. Niu, Z. Li, X. Liao, J. Wang, T. Zhao, N. Shu, X. Zhao, Y. He, and Y. He, “Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study,” PLoS One 8(9), e72425 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (6)

A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted networks,” Proc. Natl. Acad. Sci. U.S.A. 101(11), 3747–3752 (2004).
[Crossref] [PubMed]

D. S. Bassett, A. Meyer-Lindenberg, S. Achard, T. Duke, and E. Bullmore, “Adaptive reconfiguration of fractal small-world human brain functional networks,” Proc. Natl. Acad. Sci. U.S.A. 103(51), 19518–19523 (2006).
[Crossref] [PubMed]

D. P. Kennedy, E. Redcay, and E. Courchesne, “Failing to deactivate: resting functional abnormalities in autism,” Proc. Natl. Acad. Sci. U.S.A. 103(21), 8275–8280 (2006).
[Crossref] [PubMed]

J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, and C. F. Beckmann, “Consistent resting-state networks across healthy subjects,” Proc. Natl. Acad. Sci. U.S.A. 103(37), 13848–13853 (2006).
[Crossref] [PubMed]

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003).
[Crossref] [PubMed]

M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proc. Natl. Acad. Sci. U.S.A. 102(27), 9673–9678 (2005).
[Crossref] [PubMed]

Prog. Neuropsychopharmacol. Biol. Psychiatry (1)

L. Tian, C. Meng, Y. Jiang, Q. Tang, S. Wang, X. Xie, X. Fu, C. Jin, F. Zhang, and J. Wang, “Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study,” Prog. Neuropsychopharmacol. Biol. Psychiatry 66, 104–111 (2016).
[Crossref] [PubMed]

Radiology (1)

M. J. Lowe, M. D. Phillips, J. T. Lurito, D. Mattson, M. Dzemidzic, and V. P. Mathews, “Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results,” Radiology 224(1), 184–192 (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Procedure to construct the topological resting state NIRS networks. (A) Optical geometry of the NIRS experiment showing sources (red crosses), detectors (blue circles) and channels or source-detector pairs (full black circles). For each hemoglobin concentration time-course, we computed the Pearson correlation coefficient, r, among all channels to extract (B) the correlation matrix of a single run of a subject. (C) The adjacency matrix was obtained after choosing a correlation coefficient threshold, rT. (D) The network was backprojected onto a topographic map of the optical geometry for visualization. (HbO: oxy-hemoglobin, HbR: deoxy-hemoglobin; HbT: total hemoglobin).
Fig. 2
Fig. 2 Resting-state functional connectivity maps performed with the seed-based approach. A) Correlation matrices derived from deoxy-hemoglobin concentration changes in three different runs for one illustrative subject. The black rectangle highlights the seed chosen for analysis. B) Backprojected functional connectivity topographic maps for the seed chosen in all three runs. The black lines represent the source-detector separation (i.e., channels). The thicker line represents the channel picked as the seed.
Fig. 3
Fig. 3 Number of all connected links (N) in the network as function of the correlation threshold, rT, for all NIRS contrasts of a representative subject. In the figure, each color represents a different 5-minute run from the same subject.
Fig. 4
Fig. 4 Average degree (K), standard deviation of the degree (StdK), clustering coefficient (CC), characteristic pathlength (L) and the diameter (D) as function of the correlation threshold for a representative subject over four different runs. All network parameters are highly reproducible over time.
Fig. 5
Fig. 5 Network parameters for HbO (red circles), HbR (blue squares) and HbT (green triangles) data as function of the correlation threshold across all subjects. The error bars represent the standard deviation across all runs of all volunteers.
Fig. 6
Fig. 6 Most frequent links across all subjects for all NIRS contrasts. The colorbar indicates the normalized frequency of each link across all subjects. Black dots represent the nodes (i.e., the channels) of the network. Hubs in the networks are represented by the bigger gray dots.

Tables (1)

Tables Icon

Table 1 Variability of the network parameters across all subjects. Variability was quantified by the largest range and standard deviation of the parameters at a given threshold, rT. The maximum variation represents the ratio of the standard deviation and the mean value.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C= 1 n i=0 n 1 k i ( k i 1) j,m a ij a jm a mi ;

Metrics