Abstract

X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
X-ray luminescence computed tomography imaging based on X-ray distribution model and adaptively split Bregman method

Dongmei Chen, Shouping Zhu, Xu Cao, Fengjun Zhao, and Jimin Liang
Biomed. Opt. Express 6(7) 2649-2663 (2015)

Sensitivity study of x-ray luminescence computed tomography

Michael C. Lun, Wei Zhang, and Changqing Li
Appl. Opt. 56(11) 3010-3019 (2017)

Sparse view cone beam X-ray luminescence tomography based on truncated singular value decomposition

Peng Gao, Junyan Rong, Huangsheng Pu, Tianshuai Liu, Wenli Zhang, Xiaofeng Zhang, and Hongbing Lu
Opt. Express 26(18) 23233-23250 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Pratx, C. M. Carpenter, C. Sun, and L. Xing, “X-Ray Luminescence Computed Tomography via Selective Excitation: A Feasibility Study,” IEEE Trans. Med. Imaging 29(12), 1992–1999 (2010).
    [Crossref] [PubMed]
  2. Y. Lu, H. B. Machado, Q. Bao, D. Stout, H. Herschman, and A. F. Chatziioannou, “In vivo mouse bioluminescence tomography with radionuclide-based imaging validation,” Mol. Imaging Biol. 13(1), 53–58 (2011).
    [Crossref] [PubMed]
  3. J. Du, Y. Yang, E. Berg, X. Bai, A. Gola, A. Ferri, N. Zorzi, C. Piemonte, and S. R. Cherry, “Evaluation of linearly-graded SiPMs for high resolution small-animal PET,” Biomed. Phys. Eng. Express 1(4), 045008 (2015).
    [Crossref]
  4. C. Li, Y. Yang, G. S. Mitchell, and S. R. Cherry, “Simultaneous PET and multispectral 3-dimensional fluorescence optical tomography imaging system,” J. Nucl. Med. 52(8), 1268–1275 (2011).
    [Crossref] [PubMed]
  5. C. Li, K. Di, J. Bec, and S. R. Cherry, “X-ray luminescence optical tomography imaging: experimental studies,” Opt. Lett. 38(13), 2339–2341 (2013).
    [Crossref] [PubMed]
  6. G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, “Tomographic molecular imaging of x-ray-excitable nanoparticles,” Opt. Lett. 35(20), 3345–3347 (2010).
    [Crossref] [PubMed]
  7. D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: a feasibility study,” Med. Phys. 40(3), 031111 (2013).
    [Crossref] [PubMed]
  8. X. Liu, Q. Liao, and H. Wang, “In vivo x-ray luminescence tomographic imaging with single-view data,” Opt. Lett. 38(22), 4530–4533 (2013).
    [Crossref] [PubMed]
  9. W. Cong, F. Liu, C. Wang, and G. Wang, “X-ray micro-modulated luminescence tomography (XMLT),” Opt. Express 22(5), 5572–5580 (2014).
    [Crossref] [PubMed]
  10. W. Cong, Z. Pan, R. Filkins, A. Srivastava, N. Ishaque, P. Stefanov, and G. Wang, “X-ray micromodulated luminescence tomography in dual-cone geometry,” J. Biomed. Opt. 19(7), 076002 (2014).
    [Crossref] [PubMed]
  11. W. Zhang, D. Zhu, K. Zhang, and C. Li, “Microscopic x-ray luminescence computed tomography,” Proc. SPIE 9316, 93160M (2015).
    [Crossref]
  12. C. Li, A. Martínez-Dávalos, and S. R. Cherry, “Numerical simulation of x-ray luminescence optical tomography for small-animal imaging,” J. Biomed. Opt. 19(4), 046002 (2014).
    [Crossref] [PubMed]
  13. C. Li, G. Wang, J. Qi, and S. R. Cherry, “Three-dimensional fluorescence optical tomography in small-animal imaging using simultaneous positron-emission-tomography priors,” Opt. Lett. 34(19), 2933–2935 (2009).
    [Crossref] [PubMed]
  14. D. Zhu and C. Li, “Nonuniform update for sparse target recovery in fluorescence molecular tomography accelerated by ordered subsets,” Biomed. Opt. Express 5(12), 4249–4259 (2014).
    [Crossref] [PubMed]
  15. D. Zhu and C. Li, “Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement,” Phys. Med. Biol. 59(12), 2901–2912 (2014).
    [Crossref] [PubMed]
  16. W. Cong, H. Shen, and G. Wang, “Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography,” J. Biomed. Opt. 16(6), 066014 (2011).
    [Crossref] [PubMed]
  17. D. Chen, S. Zhu, X. Cao, F. Zhao, and J. Liang, “X-ray luminescence computed tomography imaging based on X-ray distribution model and adaptively split Bregman method,” Biomed. Opt. Express 6(7), 2649–2663 (2015).
    [Crossref] [PubMed]
  18. “Standardized methods for measuring diagnostic X-ray exposures,” AAPM Diagnostic X-ray Imaging Committee Task Group #8, Report No. 31, (1991).

2015 (3)

J. Du, Y. Yang, E. Berg, X. Bai, A. Gola, A. Ferri, N. Zorzi, C. Piemonte, and S. R. Cherry, “Evaluation of linearly-graded SiPMs for high resolution small-animal PET,” Biomed. Phys. Eng. Express 1(4), 045008 (2015).
[Crossref]

W. Zhang, D. Zhu, K. Zhang, and C. Li, “Microscopic x-ray luminescence computed tomography,” Proc. SPIE 9316, 93160M (2015).
[Crossref]

D. Chen, S. Zhu, X. Cao, F. Zhao, and J. Liang, “X-ray luminescence computed tomography imaging based on X-ray distribution model and adaptively split Bregman method,” Biomed. Opt. Express 6(7), 2649–2663 (2015).
[Crossref] [PubMed]

2014 (5)

D. Zhu and C. Li, “Nonuniform update for sparse target recovery in fluorescence molecular tomography accelerated by ordered subsets,” Biomed. Opt. Express 5(12), 4249–4259 (2014).
[Crossref] [PubMed]

D. Zhu and C. Li, “Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement,” Phys. Med. Biol. 59(12), 2901–2912 (2014).
[Crossref] [PubMed]

C. Li, A. Martínez-Dávalos, and S. R. Cherry, “Numerical simulation of x-ray luminescence optical tomography for small-animal imaging,” J. Biomed. Opt. 19(4), 046002 (2014).
[Crossref] [PubMed]

W. Cong, F. Liu, C. Wang, and G. Wang, “X-ray micro-modulated luminescence tomography (XMLT),” Opt. Express 22(5), 5572–5580 (2014).
[Crossref] [PubMed]

W. Cong, Z. Pan, R. Filkins, A. Srivastava, N. Ishaque, P. Stefanov, and G. Wang, “X-ray micromodulated luminescence tomography in dual-cone geometry,” J. Biomed. Opt. 19(7), 076002 (2014).
[Crossref] [PubMed]

2013 (3)

2011 (3)

C. Li, Y. Yang, G. S. Mitchell, and S. R. Cherry, “Simultaneous PET and multispectral 3-dimensional fluorescence optical tomography imaging system,” J. Nucl. Med. 52(8), 1268–1275 (2011).
[Crossref] [PubMed]

Y. Lu, H. B. Machado, Q. Bao, D. Stout, H. Herschman, and A. F. Chatziioannou, “In vivo mouse bioluminescence tomography with radionuclide-based imaging validation,” Mol. Imaging Biol. 13(1), 53–58 (2011).
[Crossref] [PubMed]

W. Cong, H. Shen, and G. Wang, “Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography,” J. Biomed. Opt. 16(6), 066014 (2011).
[Crossref] [PubMed]

2010 (2)

G. Pratx, C. M. Carpenter, C. Sun, and L. Xing, “X-Ray Luminescence Computed Tomography via Selective Excitation: A Feasibility Study,” IEEE Trans. Med. Imaging 29(12), 1992–1999 (2010).
[Crossref] [PubMed]

G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, “Tomographic molecular imaging of x-ray-excitable nanoparticles,” Opt. Lett. 35(20), 3345–3347 (2010).
[Crossref] [PubMed]

2009 (1)

Bai, X.

J. Du, Y. Yang, E. Berg, X. Bai, A. Gola, A. Ferri, N. Zorzi, C. Piemonte, and S. R. Cherry, “Evaluation of linearly-graded SiPMs for high resolution small-animal PET,” Biomed. Phys. Eng. Express 1(4), 045008 (2015).
[Crossref]

Bao, Q.

Y. Lu, H. B. Machado, Q. Bao, D. Stout, H. Herschman, and A. F. Chatziioannou, “In vivo mouse bioluminescence tomography with radionuclide-based imaging validation,” Mol. Imaging Biol. 13(1), 53–58 (2011).
[Crossref] [PubMed]

Bec, J.

Berg, E.

J. Du, Y. Yang, E. Berg, X. Bai, A. Gola, A. Ferri, N. Zorzi, C. Piemonte, and S. R. Cherry, “Evaluation of linearly-graded SiPMs for high resolution small-animal PET,” Biomed. Phys. Eng. Express 1(4), 045008 (2015).
[Crossref]

Cao, X.

Carpenter, C. M.

G. Pratx, C. M. Carpenter, C. Sun, and L. Xing, “X-Ray Luminescence Computed Tomography via Selective Excitation: A Feasibility Study,” IEEE Trans. Med. Imaging 29(12), 1992–1999 (2010).
[Crossref] [PubMed]

G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, “Tomographic molecular imaging of x-ray-excitable nanoparticles,” Opt. Lett. 35(20), 3345–3347 (2010).
[Crossref] [PubMed]

Chatziioannou, A. F.

Y. Lu, H. B. Machado, Q. Bao, D. Stout, H. Herschman, and A. F. Chatziioannou, “In vivo mouse bioluminescence tomography with radionuclide-based imaging validation,” Mol. Imaging Biol. 13(1), 53–58 (2011).
[Crossref] [PubMed]

Chen, D.

D. Chen, S. Zhu, X. Cao, F. Zhao, and J. Liang, “X-ray luminescence computed tomography imaging based on X-ray distribution model and adaptively split Bregman method,” Biomed. Opt. Express 6(7), 2649–2663 (2015).
[Crossref] [PubMed]

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: a feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: a feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

Cherry, S. R.

J. Du, Y. Yang, E. Berg, X. Bai, A. Gola, A. Ferri, N. Zorzi, C. Piemonte, and S. R. Cherry, “Evaluation of linearly-graded SiPMs for high resolution small-animal PET,” Biomed. Phys. Eng. Express 1(4), 045008 (2015).
[Crossref]

C. Li, A. Martínez-Dávalos, and S. R. Cherry, “Numerical simulation of x-ray luminescence optical tomography for small-animal imaging,” J. Biomed. Opt. 19(4), 046002 (2014).
[Crossref] [PubMed]

C. Li, K. Di, J. Bec, and S. R. Cherry, “X-ray luminescence optical tomography imaging: experimental studies,” Opt. Lett. 38(13), 2339–2341 (2013).
[Crossref] [PubMed]

C. Li, Y. Yang, G. S. Mitchell, and S. R. Cherry, “Simultaneous PET and multispectral 3-dimensional fluorescence optical tomography imaging system,” J. Nucl. Med. 52(8), 1268–1275 (2011).
[Crossref] [PubMed]

C. Li, G. Wang, J. Qi, and S. R. Cherry, “Three-dimensional fluorescence optical tomography in small-animal imaging using simultaneous positron-emission-tomography priors,” Opt. Lett. 34(19), 2933–2935 (2009).
[Crossref] [PubMed]

Cong, W.

W. Cong, F. Liu, C. Wang, and G. Wang, “X-ray micro-modulated luminescence tomography (XMLT),” Opt. Express 22(5), 5572–5580 (2014).
[Crossref] [PubMed]

W. Cong, Z. Pan, R. Filkins, A. Srivastava, N. Ishaque, P. Stefanov, and G. Wang, “X-ray micromodulated luminescence tomography in dual-cone geometry,” J. Biomed. Opt. 19(7), 076002 (2014).
[Crossref] [PubMed]

W. Cong, H. Shen, and G. Wang, “Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography,” J. Biomed. Opt. 16(6), 066014 (2011).
[Crossref] [PubMed]

Di, K.

Du, J.

J. Du, Y. Yang, E. Berg, X. Bai, A. Gola, A. Ferri, N. Zorzi, C. Piemonte, and S. R. Cherry, “Evaluation of linearly-graded SiPMs for high resolution small-animal PET,” Biomed. Phys. Eng. Express 1(4), 045008 (2015).
[Crossref]

Ferri, A.

J. Du, Y. Yang, E. Berg, X. Bai, A. Gola, A. Ferri, N. Zorzi, C. Piemonte, and S. R. Cherry, “Evaluation of linearly-graded SiPMs for high resolution small-animal PET,” Biomed. Phys. Eng. Express 1(4), 045008 (2015).
[Crossref]

Filkins, R.

W. Cong, Z. Pan, R. Filkins, A. Srivastava, N. Ishaque, P. Stefanov, and G. Wang, “X-ray micromodulated luminescence tomography in dual-cone geometry,” J. Biomed. Opt. 19(7), 076002 (2014).
[Crossref] [PubMed]

Gola, A.

J. Du, Y. Yang, E. Berg, X. Bai, A. Gola, A. Ferri, N. Zorzi, C. Piemonte, and S. R. Cherry, “Evaluation of linearly-graded SiPMs for high resolution small-animal PET,” Biomed. Phys. Eng. Express 1(4), 045008 (2015).
[Crossref]

Herschman, H.

Y. Lu, H. B. Machado, Q. Bao, D. Stout, H. Herschman, and A. F. Chatziioannou, “In vivo mouse bioluminescence tomography with radionuclide-based imaging validation,” Mol. Imaging Biol. 13(1), 53–58 (2011).
[Crossref] [PubMed]

Ishaque, N.

W. Cong, Z. Pan, R. Filkins, A. Srivastava, N. Ishaque, P. Stefanov, and G. Wang, “X-ray micromodulated luminescence tomography in dual-cone geometry,” J. Biomed. Opt. 19(7), 076002 (2014).
[Crossref] [PubMed]

Li, C.

W. Zhang, D. Zhu, K. Zhang, and C. Li, “Microscopic x-ray luminescence computed tomography,” Proc. SPIE 9316, 93160M (2015).
[Crossref]

C. Li, A. Martínez-Dávalos, and S. R. Cherry, “Numerical simulation of x-ray luminescence optical tomography for small-animal imaging,” J. Biomed. Opt. 19(4), 046002 (2014).
[Crossref] [PubMed]

D. Zhu and C. Li, “Nonuniform update for sparse target recovery in fluorescence molecular tomography accelerated by ordered subsets,” Biomed. Opt. Express 5(12), 4249–4259 (2014).
[Crossref] [PubMed]

D. Zhu and C. Li, “Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement,” Phys. Med. Biol. 59(12), 2901–2912 (2014).
[Crossref] [PubMed]

C. Li, K. Di, J. Bec, and S. R. Cherry, “X-ray luminescence optical tomography imaging: experimental studies,” Opt. Lett. 38(13), 2339–2341 (2013).
[Crossref] [PubMed]

C. Li, Y. Yang, G. S. Mitchell, and S. R. Cherry, “Simultaneous PET and multispectral 3-dimensional fluorescence optical tomography imaging system,” J. Nucl. Med. 52(8), 1268–1275 (2011).
[Crossref] [PubMed]

C. Li, G. Wang, J. Qi, and S. R. Cherry, “Three-dimensional fluorescence optical tomography in small-animal imaging using simultaneous positron-emission-tomography priors,” Opt. Lett. 34(19), 2933–2935 (2009).
[Crossref] [PubMed]

Liang, J.

D. Chen, S. Zhu, X. Cao, F. Zhao, and J. Liang, “X-ray luminescence computed tomography imaging based on X-ray distribution model and adaptively split Bregman method,” Biomed. Opt. Express 6(7), 2649–2663 (2015).
[Crossref] [PubMed]

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: a feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

Liao, Q.

Liu, F.

Liu, X.

Lu, Y.

Y. Lu, H. B. Machado, Q. Bao, D. Stout, H. Herschman, and A. F. Chatziioannou, “In vivo mouse bioluminescence tomography with radionuclide-based imaging validation,” Mol. Imaging Biol. 13(1), 53–58 (2011).
[Crossref] [PubMed]

Machado, H. B.

Y. Lu, H. B. Machado, Q. Bao, D. Stout, H. Herschman, and A. F. Chatziioannou, “In vivo mouse bioluminescence tomography with radionuclide-based imaging validation,” Mol. Imaging Biol. 13(1), 53–58 (2011).
[Crossref] [PubMed]

Martínez-Dávalos, A.

C. Li, A. Martínez-Dávalos, and S. R. Cherry, “Numerical simulation of x-ray luminescence optical tomography for small-animal imaging,” J. Biomed. Opt. 19(4), 046002 (2014).
[Crossref] [PubMed]

Mitchell, G. S.

C. Li, Y. Yang, G. S. Mitchell, and S. R. Cherry, “Simultaneous PET and multispectral 3-dimensional fluorescence optical tomography imaging system,” J. Nucl. Med. 52(8), 1268–1275 (2011).
[Crossref] [PubMed]

Pan, Z.

W. Cong, Z. Pan, R. Filkins, A. Srivastava, N. Ishaque, P. Stefanov, and G. Wang, “X-ray micromodulated luminescence tomography in dual-cone geometry,” J. Biomed. Opt. 19(7), 076002 (2014).
[Crossref] [PubMed]

Piemonte, C.

J. Du, Y. Yang, E. Berg, X. Bai, A. Gola, A. Ferri, N. Zorzi, C. Piemonte, and S. R. Cherry, “Evaluation of linearly-graded SiPMs for high resolution small-animal PET,” Biomed. Phys. Eng. Express 1(4), 045008 (2015).
[Crossref]

Pratx, G.

G. Pratx, C. M. Carpenter, C. Sun, and L. Xing, “X-Ray Luminescence Computed Tomography via Selective Excitation: A Feasibility Study,” IEEE Trans. Med. Imaging 29(12), 1992–1999 (2010).
[Crossref] [PubMed]

G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, “Tomographic molecular imaging of x-ray-excitable nanoparticles,” Opt. Lett. 35(20), 3345–3347 (2010).
[Crossref] [PubMed]

Qi, J.

Rao, R. P.

Shen, H.

W. Cong, H. Shen, and G. Wang, “Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography,” J. Biomed. Opt. 16(6), 066014 (2011).
[Crossref] [PubMed]

Srivastava, A.

W. Cong, Z. Pan, R. Filkins, A. Srivastava, N. Ishaque, P. Stefanov, and G. Wang, “X-ray micromodulated luminescence tomography in dual-cone geometry,” J. Biomed. Opt. 19(7), 076002 (2014).
[Crossref] [PubMed]

Stefanov, P.

W. Cong, Z. Pan, R. Filkins, A. Srivastava, N. Ishaque, P. Stefanov, and G. Wang, “X-ray micromodulated luminescence tomography in dual-cone geometry,” J. Biomed. Opt. 19(7), 076002 (2014).
[Crossref] [PubMed]

Stout, D.

Y. Lu, H. B. Machado, Q. Bao, D. Stout, H. Herschman, and A. F. Chatziioannou, “In vivo mouse bioluminescence tomography with radionuclide-based imaging validation,” Mol. Imaging Biol. 13(1), 53–58 (2011).
[Crossref] [PubMed]

Sun, C.

G. Pratx, C. M. Carpenter, C. Sun, and L. Xing, “X-Ray Luminescence Computed Tomography via Selective Excitation: A Feasibility Study,” IEEE Trans. Med. Imaging 29(12), 1992–1999 (2010).
[Crossref] [PubMed]

G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, “Tomographic molecular imaging of x-ray-excitable nanoparticles,” Opt. Lett. 35(20), 3345–3347 (2010).
[Crossref] [PubMed]

Tian, J.

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: a feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

Wang, C.

Wang, G.

W. Cong, F. Liu, C. Wang, and G. Wang, “X-ray micro-modulated luminescence tomography (XMLT),” Opt. Express 22(5), 5572–5580 (2014).
[Crossref] [PubMed]

W. Cong, Z. Pan, R. Filkins, A. Srivastava, N. Ishaque, P. Stefanov, and G. Wang, “X-ray micromodulated luminescence tomography in dual-cone geometry,” J. Biomed. Opt. 19(7), 076002 (2014).
[Crossref] [PubMed]

W. Cong, H. Shen, and G. Wang, “Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography,” J. Biomed. Opt. 16(6), 066014 (2011).
[Crossref] [PubMed]

C. Li, G. Wang, J. Qi, and S. R. Cherry, “Three-dimensional fluorescence optical tomography in small-animal imaging using simultaneous positron-emission-tomography priors,” Opt. Lett. 34(19), 2933–2935 (2009).
[Crossref] [PubMed]

Wang, H.

Xing, L.

G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, “Tomographic molecular imaging of x-ray-excitable nanoparticles,” Opt. Lett. 35(20), 3345–3347 (2010).
[Crossref] [PubMed]

G. Pratx, C. M. Carpenter, C. Sun, and L. Xing, “X-Ray Luminescence Computed Tomography via Selective Excitation: A Feasibility Study,” IEEE Trans. Med. Imaging 29(12), 1992–1999 (2010).
[Crossref] [PubMed]

Yang, Y.

J. Du, Y. Yang, E. Berg, X. Bai, A. Gola, A. Ferri, N. Zorzi, C. Piemonte, and S. R. Cherry, “Evaluation of linearly-graded SiPMs for high resolution small-animal PET,” Biomed. Phys. Eng. Express 1(4), 045008 (2015).
[Crossref]

C. Li, Y. Yang, G. S. Mitchell, and S. R. Cherry, “Simultaneous PET and multispectral 3-dimensional fluorescence optical tomography imaging system,” J. Nucl. Med. 52(8), 1268–1275 (2011).
[Crossref] [PubMed]

Yi, H.

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: a feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

Zhang, K.

W. Zhang, D. Zhu, K. Zhang, and C. Li, “Microscopic x-ray luminescence computed tomography,” Proc. SPIE 9316, 93160M (2015).
[Crossref]

Zhang, W.

W. Zhang, D. Zhu, K. Zhang, and C. Li, “Microscopic x-ray luminescence computed tomography,” Proc. SPIE 9316, 93160M (2015).
[Crossref]

Zhang, X.

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: a feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

Zhao, F.

Zhu, D.

W. Zhang, D. Zhu, K. Zhang, and C. Li, “Microscopic x-ray luminescence computed tomography,” Proc. SPIE 9316, 93160M (2015).
[Crossref]

D. Zhu and C. Li, “Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement,” Phys. Med. Biol. 59(12), 2901–2912 (2014).
[Crossref] [PubMed]

D. Zhu and C. Li, “Nonuniform update for sparse target recovery in fluorescence molecular tomography accelerated by ordered subsets,” Biomed. Opt. Express 5(12), 4249–4259 (2014).
[Crossref] [PubMed]

Zhu, S.

D. Chen, S. Zhu, X. Cao, F. Zhao, and J. Liang, “X-ray luminescence computed tomography imaging based on X-ray distribution model and adaptively split Bregman method,” Biomed. Opt. Express 6(7), 2649–2663 (2015).
[Crossref] [PubMed]

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: a feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

Zorzi, N.

J. Du, Y. Yang, E. Berg, X. Bai, A. Gola, A. Ferri, N. Zorzi, C. Piemonte, and S. R. Cherry, “Evaluation of linearly-graded SiPMs for high resolution small-animal PET,” Biomed. Phys. Eng. Express 1(4), 045008 (2015).
[Crossref]

Biomed. Opt. Express (2)

Biomed. Phys. Eng. Express (1)

J. Du, Y. Yang, E. Berg, X. Bai, A. Gola, A. Ferri, N. Zorzi, C. Piemonte, and S. R. Cherry, “Evaluation of linearly-graded SiPMs for high resolution small-animal PET,” Biomed. Phys. Eng. Express 1(4), 045008 (2015).
[Crossref]

IEEE Trans. Med. Imaging (1)

G. Pratx, C. M. Carpenter, C. Sun, and L. Xing, “X-Ray Luminescence Computed Tomography via Selective Excitation: A Feasibility Study,” IEEE Trans. Med. Imaging 29(12), 1992–1999 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

W. Cong, H. Shen, and G. Wang, “Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography,” J. Biomed. Opt. 16(6), 066014 (2011).
[Crossref] [PubMed]

W. Cong, Z. Pan, R. Filkins, A. Srivastava, N. Ishaque, P. Stefanov, and G. Wang, “X-ray micromodulated luminescence tomography in dual-cone geometry,” J. Biomed. Opt. 19(7), 076002 (2014).
[Crossref] [PubMed]

C. Li, A. Martínez-Dávalos, and S. R. Cherry, “Numerical simulation of x-ray luminescence optical tomography for small-animal imaging,” J. Biomed. Opt. 19(4), 046002 (2014).
[Crossref] [PubMed]

J. Nucl. Med. (1)

C. Li, Y. Yang, G. S. Mitchell, and S. R. Cherry, “Simultaneous PET and multispectral 3-dimensional fluorescence optical tomography imaging system,” J. Nucl. Med. 52(8), 1268–1275 (2011).
[Crossref] [PubMed]

Med. Phys. (1)

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: a feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

Mol. Imaging Biol. (1)

Y. Lu, H. B. Machado, Q. Bao, D. Stout, H. Herschman, and A. F. Chatziioannou, “In vivo mouse bioluminescence tomography with radionuclide-based imaging validation,” Mol. Imaging Biol. 13(1), 53–58 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Med. Biol. (1)

D. Zhu and C. Li, “Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement,” Phys. Med. Biol. 59(12), 2901–2912 (2014).
[Crossref] [PubMed]

Proc. SPIE (1)

W. Zhang, D. Zhu, K. Zhang, and C. Li, “Microscopic x-ray luminescence computed tomography,” Proc. SPIE 9316, 93160M (2015).
[Crossref]

Other (1)

“Standardized methods for measuring diagnostic X-ray exposures,” AAPM Diagnostic X-ray Imaging Committee Task Group #8, Report No. 31, (1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 3D design of the multiple pinhole collimator based XLCT imaging system.
Fig. 2
Fig. 2 Schematic of linear scan setup for one typical angular projection: (a) Scan with a single X-ray beam; (b) Scan with multiple X-ray beams. The red dots indicate the targets. The blue arrows indicate the X-ray beams.
Fig. 3
Fig. 3 Pinhole design for the experimental study: (a) X-ray tube with a designed collimator; (b) Zoomed in picture of the pinhole design where red lines indicate X-ray beams; (c) The schematic draw of the disk mounted at the end of the cylindrical steel rod; (d) An X-ray image of the two collimated X-ray beams; (e) The zoomed in image of the collimated X-ray beams.
Fig. 4
Fig. 4 A photo of the experimental setup for measuring the X-ray beam size and intensity along the X-ray beam at different distances from the collimator.
Fig. 5
Fig. 5 The phantom geometry for numerical simulations with two targets (a) and six targets (b).
Fig. 6
Fig. 6 (a) Geometry of the phantom used in experimental study; (b) The white light photos of the physical phantom (white) inside its plastic mold (black) with a penny (golden) as reference; (c) The X-ray projection pictures of the phantom inside its plastic mold from top and side views, and the reference penny (the rightmost picture).
Fig. 7
Fig. 7 The schematic design (left) and a photo (right) of the X-ray radiation dose measurement setup.
Fig. 8
Fig. 8 Measurement and fitting of one collimated X-ray beam diameter and intensity: (a) X-ray beam diameter at different distances from the collimator; (b) Profile plot across the X-ray beam at different distances; (c) Maximum X-ray intensity at different distances; (d) Mean X-ray intensity at different distances.
Fig. 9
Fig. 9 Measurement and fitting of another collimated X-ray beam diameter and intensity: (a) X-ray beam diameter at different distances from the collimator. (b) Profile plot across the X-ray beam at different distances. (c) Maximum X-ray intensity at different distances. (d) Mean X-ray intensity at different distances.
Fig. 10
Fig. 10 Measured interval between two X-ray beams at different distance and the linear fitting plot.
Fig. 11
Fig. 11 Reconstructed XLCT images (left column), zoomed in regions (middle column) and normalized profile plots (right column) for numerical simulation with two targets. (a) Reconstructed XLCT image with single parallel X-ray beam scan; (b) Reconstructed XLCT image with single conical X-ray beam scan; (c) Reconstructed XLCT image with four parallel X-ray beam scan; (d) Reconstructed XLCT image with four conical X-ray beam scan. The dotted green line indicates the profile position.
Fig. 12
Fig. 12 Reconstructed XLCT images (left column), zoomed in regions (middle column) and normalized profile plots (right column) for numerical simulation with six targets. (a) Reconstructed XLCT image with single parallel X-ray beam scan; (b) Reconstructed XLCT image with single conical X-ray beam scan; (c) Reconstructed XLCT image with four parallel X-ray beam scan; (d) Reconstructed XLCT image with four conical X-ray beam scan. The dotted green line indicates the profile position.
Fig. 13
Fig. 13 Reconstructed XLCT images (top row) and zoomed regions (bottom row) for numerical simulation with two and six targets: reconstructed images for two target case with 8 parallel X-ray beam scan (a) and 16 parallel X-ray beam scan (b); reconstructed images for six targets with 8 parallel X-ray beam scan (c) and 16 parallel X-ray beam scan (d). The images in bottom row (e-h) are the zoomed images of their corresponding images of the same column in the top row.
Fig. 14
Fig. 14 (a) A transverse section from the reconstructed microCT image of the phantom with two targets; (b) The reconstructed XCLT image with two parallel X-ray beams; (c) The zoomed in region in (b); (d) The normalized profile plot across the targets in (c); (e) The reconstructed XLCT image with two conical X-ray beams; (f) The zoomed region in (e); (g) The normalized profile plot across the targets in (f). The green circles are the inner and outer walls of the plastic tubes. The dotted line indicates the profile position.

Tables (3)

Tables Icon

Table 1 Quantitative imaging quality metrics for numerical simulation with two targets using different X-ray beams

Tables Icon

Table 2 Quantitative imaging quality metrics for numerical simulation with six targets using different X-ray beams

Tables Icon

Table 3 Quantitative imaging quality metrics for phantom experiment

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

{   . ( D ( λ , r ) Φ ( r ) ) + μ a ( λ , r ) Φ ( r ) = S k ( r ) n . ( D ( λ , r ) Φ ( r ) ) + C r o b i n Φ ( r ) = 0       r Ω
S k ( r ) = η T k ( r ) x ( r )
T k ( r ) = T o exp ( μ x ( r ) × L )
A n d × I × J , m   x m , 1 = b n d × I × J , 1
A n d × I × J , m = [ [ Φ 1 Φ n d ] Γ 1 T 1 [ Φ 1 Φ n d ] Γ I × J T I × J ]
Γ j j ( s ) = { 1         if node  s  is within the X ray beam 0         otherwise
x = a r g   m i n x 0 ( x ) :   =   1 2 b A x 2 2 + α x p p
d ( r ) = k × L ( r ) + d o
T k ( r ) = e x p ( 0.0214 × L ( r ) )
T S E =   | D r D t | D t × 100 %
C D E =   | D i s t r D i s t t | D i s t t × 100 %
D I C E =   2 × | R O I r R O I t | | R O I r | + | R O I t | × 100 %

Metrics