Abstract

Imaging photoplethysmography (IPPG) is a recently developed technique for noncontact assessment of cardiovascular function. However, its wide use is limited by low signal-to-noise ratio due to motion artifacts. The aim of this work is to estimate the polarization-filtration impact on discriminating artifacts in IPPG measurements. Experiments were carried out in-vivo by almost simultaneous illumination of subject’s palm with polarized and non-polarized light during video recording of 41 subjects. It was found that the light-polarization filtration efficiently reduces motion artifacts compared to the non-polarized illumination while the pulsation amplitude measured at the heartbeat frequency remains unaffected. The polarization filtration improves reliability of IPPG system in non-contact monitoring of subject’s heart rate and its variability.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ambiguity of mapping the relative phase of blood pulsations

Victor Teplov, Ervin Nippolainen, Alexander A. Makarenko, Rashid Giniatullin, and Alexei A. Kamshilin
Biomed. Opt. Express 5(9) 3123-3139 (2014)

Influence of a skin status on the light interaction with dermis

Alexei A. Kamshilin, Oleg V. Mamontov, Vasily T. Koval, Grigory A. Zayats, and Roman V. Romashko
Biomed. Opt. Express 6(11) 4326-4334 (2015)

The value of polarization in camera-based photoplethysmography

Alexander Trumpp, Philipp L. Bauer, Stefan Rasche, Hagen Malberg, and Sebastian Zaunseder
Biomed. Opt. Express 8(6) 2822-2834 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Serov, B. Steinacher, and T. Lasser, “Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera,” Opt. Express 13(10), 3681–3689 (2005).
    [Crossref] [PubMed]
  2. H. Fujii, T. Asakura, K. Nohira, Y. Shintomi, and T. Ohura, “Blood flow observed by time-varying laser speckle,” Opt. Lett. 10(3), 104–106 (1985).
    [Crossref] [PubMed]
  3. J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
    [Crossref] [PubMed]
  4. T. Wu, V. Blazek, and H. J. Schmitt, “Photoplethysmography imaging: a new noninvasive and noncontact method for mapping of the dermal perfusion changes,” Proc. SPIE 4163, 62–70 (2000).
    [Crossref]
  5. F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
    [Crossref] [PubMed]
  6. Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
    [Crossref] [PubMed]
  7. J. Allen and K. Howell, “Microvascular imaging: Techniques and opportunities for clinical physiological measurements,” Physiol. Meas. 35(7), R91–R141 (2014).
    [Crossref] [PubMed]
  8. A. A. Kamshilin, V. Teplov, E. Nippolainen, S. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS One 8(2), e57117 (2013).
    [Crossref] [PubMed]
  9. S. Xu, L. Sun, and G. K. Rohde, “Robust efficient estimation of heart rate pulse from video,” Biomed. Opt. Express 5(4), 1124–1135 (2014).
    [Crossref] [PubMed]
  10. S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66(6), 821–825 (1997).
    [Crossref] [PubMed]
  11. R. Nothdurft and G. Yao, “Expression of target optical properties in subsurface polarization-gated imaging,” Opt. Express 13(11), 4185–4195 (2005).
    [Crossref] [PubMed]
  12. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
    [Crossref] [PubMed]
  13. M. G. D. Karlsson and K. Wårdell, “Polarized laser Doppler perfusion imaging--reduction of movement-induced artifacts,” J. Biomed. Opt. 10(6), 064002 (2005).
    [Crossref] [PubMed]
  14. J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
    [Crossref] [PubMed]
  15. W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light,” Opt. Express 16(26), 21434–21445 (2008).
    [Crossref] [PubMed]
  16. A. A. Kamshilin, S. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express 2(4), 996–1006 (2011).
    [Crossref] [PubMed]
  17. U. Bal, “Non-contact estimation of heart rate and oxygen saturation using ambient light,” Biomed. Opt. Express 6(1), 86–97 (2015).
    [Crossref] [PubMed]
  18. A. A. Kamshilin, O. V. Mamontov, V. T. Koval, G. A. Zayats, and R. V. Romashko, “Influence of a skin status on the light interaction with dermis,” Biomed. Opt. Express 6(11), 4326–4334 (2015).
    [Crossref] [PubMed]
  19. A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
    [Crossref] [PubMed]
  20. V. Teplov, E. Nippolainen, A. A. Makarenko, R. Giniatullin, and A. A. Kamshilin, “Ambiguity of mapping the relative phase of blood pulsations,” Biomed. Opt. Express 5(9), 3123–3139 (2014).
    [Crossref] [PubMed]
  21. S. P. Morgan and I. M. Stockford, “Surface-reflection elimination in polarization imaging of superficial tissue,” Opt. Lett. 28(2), 114–116 (2003).
    [Crossref] [PubMed]

2015 (3)

2014 (3)

2013 (1)

A. A. Kamshilin, V. Teplov, E. Nippolainen, S. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS One 8(2), e57117 (2013).
[Crossref] [PubMed]

2012 (1)

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

2011 (1)

2009 (1)

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

2005 (4)

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

M. G. D. Karlsson and K. Wårdell, “Polarized laser Doppler perfusion imaging--reduction of movement-induced artifacts,” J. Biomed. Opt. 10(6), 064002 (2005).
[Crossref] [PubMed]

A. Serov, B. Steinacher, and T. Lasser, “Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera,” Opt. Express 13(10), 3681–3689 (2005).
[Crossref] [PubMed]

R. Nothdurft and G. Yao, “Expression of target optical properties in subsurface polarization-gated imaging,” Opt. Express 13(11), 4185–4195 (2005).
[Crossref] [PubMed]

2003 (1)

2002 (1)

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
[Crossref] [PubMed]

2000 (1)

T. Wu, V. Blazek, and H. J. Schmitt, “Photoplethysmography imaging: a new noninvasive and noncontact method for mapping of the dermal perfusion changes,” Proc. SPIE 4163, 62–70 (2000).
[Crossref]

1997 (1)

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66(6), 821–825 (1997).
[Crossref] [PubMed]

1985 (1)

Alfano, R. R.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66(6), 821–825 (1997).
[Crossref] [PubMed]

Allen, J.

J. Allen and K. Howell, “Microvascular imaging: Techniques and opportunities for clinical physiological measurements,” Physiol. Meas. 35(7), R91–R141 (2014).
[Crossref] [PubMed]

Anderson, C.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

Asakura, T.

Azorin-Peris, V.

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

Bal, U.

Blazek, V.

T. Wu, V. Blazek, and H. J. Schmitt, “Photoplethysmography imaging: a new noninvasive and noncontact method for mapping of the dermal perfusion changes,” Proc. SPIE 4163, 62–70 (2000).
[Crossref]

Clancy, N. T.

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
[Crossref] [PubMed]

Demos, S. G.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66(6), 821–825 (1997).
[Crossref] [PubMed]

Enfield, J. G.

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
[Crossref] [PubMed]

Erofeev, N. P.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
[Crossref] [PubMed]

Fujii, H.

Giniatullin, R.

V. Teplov, E. Nippolainen, A. A. Makarenko, R. Giniatullin, and A. A. Kamshilin, “Ambiguity of mapping the relative phase of blood pulsations,” Biomed. Opt. Express 5(9), 3123–3139 (2014).
[Crossref] [PubMed]

A. A. Kamshilin, V. Teplov, E. Nippolainen, S. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS One 8(2), e57117 (2013).
[Crossref] [PubMed]

Greenwald, S.

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

Heerdt, A. S.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66(6), 821–825 (1997).
[Crossref] [PubMed]

Henricson, J.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

Howell, K.

J. Allen and K. Howell, “Microvascular imaging: Techniques and opportunities for clinical physiological measurements,” Physiol. Meas. 35(7), R91–R141 (2014).
[Crossref] [PubMed]

Hu, S.

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

Kalawsky, R.

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

Kamshilin, A. A.

Karlsson, M. G. D.

M. G. D. Karlsson and K. Wårdell, “Polarized laser Doppler perfusion imaging--reduction of movement-induced artifacts,” J. Biomed. Opt. 10(6), 064002 (2005).
[Crossref] [PubMed]

Koval, V. T.

Lasser, T.

Leahy, M. J.

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
[Crossref] [PubMed]

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

Maitland, D. J.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
[Crossref] [PubMed]

Makarenko, A. A.

Mamontov, O. V.

Mastik, F.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

McNamara, P.

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
[Crossref] [PubMed]

Miridonov, S.

A. A. Kamshilin, V. Teplov, E. Nippolainen, S. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS One 8(2), e57117 (2013).
[Crossref] [PubMed]

A. A. Kamshilin, S. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express 2(4), 996–1006 (2011).
[Crossref] [PubMed]

Morgan, S. P.

Nelson, J. S.

Nilsson, G. E.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

Nippolainen, E.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
[Crossref] [PubMed]

V. Teplov, E. Nippolainen, A. A. Makarenko, R. Giniatullin, and A. A. Kamshilin, “Ambiguity of mapping the relative phase of blood pulsations,” Biomed. Opt. Express 5(9), 3123–3139 (2014).
[Crossref] [PubMed]

A. A. Kamshilin, V. Teplov, E. Nippolainen, S. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS One 8(2), e57117 (2013).
[Crossref] [PubMed]

A. A. Kamshilin, S. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express 2(4), 996–1006 (2011).
[Crossref] [PubMed]

Nohira, K.

Nothdurft, R.

O’Doherty, J.

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
[Crossref] [PubMed]

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

Ohura, T.

Papadopoulos, A. J.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66(6), 821–825 (1997).
[Crossref] [PubMed]

Papin, C.

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

Podolian, N. P.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
[Crossref] [PubMed]

Rohde, G. K.

Romashko, R. V.

A. A. Kamshilin, O. V. Mamontov, V. T. Koval, G. A. Zayats, and R. V. Romashko, “Influence of a skin status on the light interaction with dermis,” Biomed. Opt. Express 6(11), 4326–4334 (2015).
[Crossref] [PubMed]

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
[Crossref] [PubMed]

Saarenheimo, R.

Sankaran, V.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
[Crossref] [PubMed]

Savage, H.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66(6), 821–825 (1997).
[Crossref] [PubMed]

Schantz, S.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66(6), 821–825 (1997).
[Crossref] [PubMed]

Schmitt, H. J.

T. Wu, V. Blazek, and H. J. Schmitt, “Photoplethysmography imaging: a new noninvasive and noncontact method for mapping of the dermal perfusion changes,” Proc. SPIE 4163, 62–70 (2000).
[Crossref]

Serov, A.

Shintomi, Y.

Sidorov, I. S.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
[Crossref] [PubMed]

Sjöberg, F.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

Steinacher, B.

Stockford, I. M.

Sun, L.

Sun, Y.

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

Svaasand, L. O.

Teplov, V.

van der Steen, A. F. W.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

Vasilev, P. V.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
[Crossref] [PubMed]

Verkruysse, W.

Walsh, J. T.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
[Crossref] [PubMed]

Wårdell, K.

M. G. D. Karlsson and K. Wårdell, “Polarized laser Doppler perfusion imaging--reduction of movement-induced artifacts,” J. Biomed. Opt. 10(6), 064002 (2005).
[Crossref] [PubMed]

Wieringa, F. P.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

Wu, T.

T. Wu, V. Blazek, and H. J. Schmitt, “Photoplethysmography imaging: a new noninvasive and noncontact method for mapping of the dermal perfusion changes,” Proc. SPIE 4163, 62–70 (2000).
[Crossref]

Xu, S.

Yao, G.

Zayats, G. A.

Ann. Biomed. Eng. (1)

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

Biomed. Opt. Express (5)

J. Biomed. Opt. (4)

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
[Crossref] [PubMed]

M. G. D. Karlsson and K. Wårdell, “Polarized laser Doppler perfusion imaging--reduction of movement-induced artifacts,” J. Biomed. Opt. 10(6), 064002 (2005).
[Crossref] [PubMed]

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Photochem. Photobiol. (1)

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66(6), 821–825 (1997).
[Crossref] [PubMed]

Physiol. Meas. (1)

J. Allen and K. Howell, “Microvascular imaging: Techniques and opportunities for clinical physiological measurements,” Physiol. Meas. 35(7), R91–R141 (2014).
[Crossref] [PubMed]

PLoS One (1)

A. A. Kamshilin, V. Teplov, E. Nippolainen, S. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS One 8(2), e57117 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

T. Wu, V. Blazek, and H. J. Schmitt, “Photoplethysmography imaging: a new noninvasive and noncontact method for mapping of the dermal perfusion changes,” Proc. SPIE 4163, 62–70 (2000).
[Crossref]

Sci. Rep. (1)

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
[Crossref] [PubMed]

Skin Res. Technol. (1)

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of the experimental setup for estimation of influence of the polarization filtration on blood pulsations imaging.

Fig. 2
Fig. 2

An example of raw images of the same palm recorded a) with polarization filtration and b) without.

Fig. 3
Fig. 3

Distribution of blood pulsation amplitude calculated from the set of frames with (a) and without (b) polarization filtration. The hot spot with the maximal BPA was found in the middle finger and marked by white squares. The plot (c) shows unprocessed, raw PPG waveforms calculated from the hot spot in the case with (red curve) and without (black curve) polarization filtration.

Fig. 4
Fig. 4

Comparison of PPG waveforms in the hot spot measured with and without polarization filtration. (a) Normalized (AC / DC ratio) PPG waveforms obtained under polarized (red curve) and non-polarized (black curve) illumination. (b) Pulsations amplitude as a function of the cardiac cycle for polarized (red curve) and non-polarized (black curve) illumination.

Fig. 5
Fig. 5

Comparison of the parameters of PPG waveforms measured in the hot spots found in a palm of different subjects with and without polarization filtration. a) Relative difference in the amplitude of blood pulsations at the heartbeat frequency. b) Ratio of the root-mean-square of the high-frequency noise measured without polarization filtration to that with polarization filtration. The red dashed line in the graph (a) indicates the mean BPA difference.

Metrics